Model Checking Mobile Stochastic Logics

Rocco De Nicola¹ Joost-Pieter Katoen²
Diego Latella³
Michele Loreti¹ Mieke Massink³

 1 DSIUF- Università di Firenze 2 RHWT - University of Aachen 3 ISTI-Istituto di Scienza e Tecnologie della Informazione "A. Faedo"

Lucca, June 25, 2009

Outline

A brief introduction to STOKLAIM

2 MoSL: Mobile Stochastic Logic

3 Model Checking MoSL

Concluding Remarks

Kernel Language for Agent Interaction and Mobility

Process Calculus Flavored

- Small set of basic combinator;
- Clean operational semantics.

Linda based communication model

- Asynchronous communication;
- Shared tuple spaces;
- Pattern Matching

Explicit Distribution

- Multiple distributed tuple spaces;
- Code and Process mobility.

From Linda and Process Algebras to KLAIM

Explicit Localities to model distribution

- Physical Locality (sites)
- Logical Locality (names for sites)
- A distinct name self (or here) indicates the site a process is on.

Allocation environment to associate sites to logical localities

This avoids the programmers to know the exact physical structure.

Process Algebras Operators to compose programs

- Sequentialization
- Parallel composition
- Creation of new names

KLAIM Nodes and KLAIM Nets

Klaim Nodes

consist of:

- a site
- a tuple space
- a set of parallel processes
- an allocation environment

KLAIM Nets

are:

 \bullet a set of $K{\rm LAIM}$ nodes linked via the allocation environment

Actions execution take time

- Actions execution take time
- Execution times is described by means of Random Variables

- Actions execution take time
- Execution times is described by means of Random Variables
- Random Variables are assumed to be Exponentially Distributed

- Actions execution take time
- Execution times is described by means of Random Variables
- Random Variables are assumed to be Exponentially Distributed
- Random Variables are fully characterized by their Rates

- Actions execution take time
- Execution times is described by means of Random Variables
- Random Variables are assumed to be Exponentially Distributed
- Random Variables are fully characterized by their Rates

From KLAIM to STOKLAIM

- Actions execution take time
- Execution times is described by means of Random Variables
- Random Variables are assumed to be Exponentially Distributed
- Random Variables are fully characterized by their Rates

From KLAIM to STOKLAIM

• KLAIM Action Prefix: A.P.

- Actions execution take time
- Execution times is described by means of Random Variables
- Random Variables are assumed to be Exponentially Distributed
- Random Variables are fully characterized by their Rates

From KLAIM to STOKLAIM

- KLAIM Action Prefix: A.P
- STOKLAIM Action Prefix: (A, r).P

STOKLAIM Actions

- $(\mathbf{out}(T)@/2, r1)$
 - ▶ uploads tuple T to 12,
 - ▶ the time it takes is e.d. with rate r1
- (eval(P)@/1, r2)
 - spawns process P to I1,
 - ▶ the time it takes is e.d. with rate r2
- (newloc(!u), r3)
 - creates a new site (with locality) u,
 - ▶ the time it takes is e.d. with rate r3
- (in(F)@/1, r4)
 - ▶ downloads, if available, a tuple matching F from /1,
 - ▶ it takes a time which is e.d. with rate r4,
- (read(F)@/1, r4)
 - ► reads, if available, a tuple matching F from /1, without consuming it
 - it takes a time which is e.d. with rate r4,

STOKLAIM Syntax

Nets: $N ::= 0 \mid i ::_{\rho} E \mid N \parallel N$

Node Elements: $E ::= P \mid \langle \vec{f} \rangle$

Processes: $P ::= \mathbf{nil} \mid (A, r).P \mid P + P \mid P \mid P \mid X(\vec{P}, \vec{\ell}, \vec{e})$

Actions: $A ::= \mathbf{out}(\vec{f})@\ell \mid \mathbf{in}(\vec{F})@\ell \mid \mathbf{read}(\vec{F})@\ell \mid \mathbf{eval}(P)@\ell \mid \mathbf{newloc}(!u)$

Tuple Fields: $f := P \mid \ell \mid e$

Template Fields: $F := f \mid !X \mid !u \mid !x$

Operational Semantics for STOKLAIM

Stochastic semantics of STOKLAIM is defined by means of a transition relation \longrightarrow that associates to a process P and a transition label α a function (\mathcal{P} , \mathcal{Q} ,...) that maps each process into a non-negative real number.

Operational Semantics for STOKLAIM

Stochastic semantics of STOKLAIM is defined by means of a transition relation \longrightarrow that associates to a process P and a transition label α a function (\mathcal{P} , \mathcal{Q} ,...) that maps each process into a non-negative real number.

 $P \stackrel{\alpha}{\longrightarrow} \mathscr{P}$ means that:

- if $\mathscr{P}(Q) = x \ (\neq 0)$ then Q is reachable from P via the execution of α with rate or weight x
- if $\mathscr{P}(Q) = 0$ then Q is not reachable from P via α

Operational Semantics for STOKLAIM

Stochastic semantics of Stoklaim is defined by means of a transition relation \longrightarrow that associates to a process P and a transition label α a function $(\mathcal{P}, \mathcal{Q}, \dots)$ that maps each process into a non-negative real number.

 $P \stackrel{\alpha}{\longrightarrow} \mathscr{P}$ means that:

- if $\mathscr{P}(Q) = x \ (\neq 0)$ then Q is reachable from P via the execution of α with rate or weight x
- if $\mathscr{P}(Q) = 0$ then Q is not reachable from P via α

We have that if $P \xrightarrow{\alpha} \mathscr{P}$ then

• $\oplus \mathscr{P} = \sum_{Q} \mathscr{P}(Q)$ represents the total rate/weight of α in P.

Rate transition systems...

Definition (Rate Transition Systems)

A rate transition system is a triple (S, A, \longrightarrow) where:

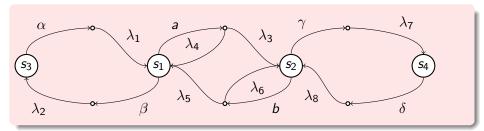
- *S* is a set of states;
- A is a set of transition labels;
- $\bullet \to \subseteq S \times A \times [S \to \mathbb{R}_{\geq 0}]$

Rate transition systems...

Definition (Rate Transition Systems)

A rate transition system is a triple (S, A, \longrightarrow) where:

- *S* is a set of states;
- A is a set of transition labels;
- $\bullet \to \subseteq S \times A \times [S \to \mathbb{R}_{\geq 0}]$



M. Loreti (DSIUF)

Rate transition systems...

Notations:

- RTS will be denoted by $\mathcal{R}, \mathcal{R}_1, \mathcal{R}', \ldots$,
- ullet Elements of $[S o \mathbb{R}_{\geq 0}]$ are denoted by $\mathscr{P}, \mathscr{Q}, \mathscr{R}, \dots$
- Ø denotes the constant function 0
- $[s_1 \mapsto v_1, \dots, s_n \mapsto v_n]$ identifies a function associating v_i to s_i and 0 to all the other states.
- χ_s stands for $[s \mapsto 1]$.
- $\mathscr{P}+\mathscr{Q}$ denotes the function \mathscr{R} such that: $\mathscr{R}(s)=\mathscr{P}(s)+\mathscr{Q}(s)$.
- $\mathscr{P} \cdot \frac{x}{y}$ denotes function \mathscr{R} such that: $\mathscr{R}(s) = \mathscr{P}(s) \cdot \frac{x}{y}$ if $y \neq 0$, and \emptyset if y = 0.

MoSL: General

- a temporal logic (dynamic evolution);
- both action- and state-based;
- a real-time logic (real-time bounds);
- a probabilistic logic (performance and dependability aspects);
- a spatial logic (spatial structure of the network).

$$\aleph ::= Q(\vec{Q'}, \vec{\ell}, \vec{e})@\imath \to \Phi \mid \langle \vec{F} \rangle @\imath \to \Phi \mid Q(\vec{Q'}, \vec{\ell}, \vec{e})@\imath \leftarrow \Phi \mid \langle \vec{f} \rangle @\imath \leftarrow \Phi$$

$$\aleph ::= \textcolor{red}{Q(\vec{Q'},\vec{\ell},\vec{e})@\imath \to \Phi \mid \langle \vec{F} \rangle @\imath \to \Phi \mid Q(\vec{Q'},\vec{\ell},\vec{e})@\imath \leftarrow \Phi \mid \langle \vec{f} \rangle @\imath \leftarrow \Phi}$$

Process Consumption:

Holds for a network whenever in the network there exists a process Q running at site i, and the "remaining" network satisfies Φ .

$$\aleph ::= Q(\vec{Q'}, \vec{\ell}, \vec{e}) @ \imath \to \Phi \mid \langle \vec{\textit{F}} \rangle @ \imath \to \Phi \mid Q(\vec{Q'}, \vec{\ell}, \vec{e}) @ \imath \leftarrow \Phi \mid \langle \vec{\textit{f}} \rangle @ \imath \leftarrow \Phi$$

Tuple Consumption:

Holds whenever a tuple \vec{f} matching \vec{F} is stored in a node of site i and the "remaining" network satisfies Φ .

$$\aleph ::= Q(\vec{Q'}, \vec{\ell}, \vec{e})@\imath \to \Phi \mid \langle \vec{F} \rangle @\imath \to \Phi \mid Q(\vec{Q'}, \vec{\ell}, \vec{e})@\imath \leftarrow \Phi \mid \langle \vec{f} \rangle @\imath \leftarrow \Phi$$

Process Production:

Holds if the network satisfies Φ whenever process $Q(\vec{Q'}, \vec{\ell}, \vec{e})$ is executed at site i.

$$\aleph ::= Q(\vec{Q'}, \vec{\ell}, \vec{e})@\imath \to \Phi \mid \langle \vec{F} \rangle @\imath \to \Phi \mid Q(\vec{Q'}, \vec{\ell}, \vec{e})@\imath \leftarrow \Phi \mid \langle \vec{f} \rangle @\imath \leftarrow \Phi$$

Tuple Production:

Holds if the network satisfies Φ whenever tuple \vec{f} is stored at site i.

MoSL: State formulae

$$\Phi ::= tt \big| \aleph \, \big| \, \neg \, \Phi \, \big| \, \Phi \, \vee \, \Phi$$

MoSL: State formulae

$$\begin{split} \Phi &::= \mathsf{tt} \big| \aleph \, \big| \neg \Phi \, \big| \, \Phi \, \vee \, \Phi \, \big| \, \mathcal{P}_{\bowtie p} \big(\varphi \big) \\ \text{with } \bowtie \in \{<,>,\leq,\geq\} \text{ and } p \in [0,1] \end{split}$$

CSL path-operator: $\mathcal{P}_{\bowtie p}(\varphi)$

Satisfied by a state s iff the total probability mass for all paths starting in s that satisfy φ meets the bound $\bowtie p$;

MoSL: State formulae

$$\Phi ::= \mathsf{tt} \big| \aleph \big| \neg \Phi \big| \Phi \lor \Phi \big| \mathcal{P}_{\bowtie p}(\varphi) \big| \mathcal{S}_{\bowtie p}(\Phi)$$
 with $\bowtie \in \{<,>,\leq,\geq\}$ and $p \in [0,1]$

CSL path-operator: $\mathcal{P}_{\bowtie p}(\varphi)$

Satisfied by a state s iff the total probability mass for all paths starting in s that satisfy φ meets the bound $\bowtie p$;

CSL Steady-state operator: $S_{\bowtie p}(\Phi)$

Satisfied by a state s iff the probability of reaching from s, in the long run, a state which satisfies Φ is $\bowtie p$.

$$\Phi_{\Delta} \mathcal{U}_{\Omega}^{< t} \Psi$$

• Satisfied by those paths where eventually a Ψ -state is reached, by time t, via a Φ -path, and, in addition, while evolving between Φ states, actions are performed satisfying Δ and the Ψ -state is entered via an action satisfying Ω .

$$\Phi_{\Delta} \mathcal{U}_{\Omega}^{< t} \Psi$$

- Satisfied by those paths where eventually a Ψ -state is reached, by time t, via a Φ -path, and, in addition, while evolving between Φ states, actions are performed satisfying Δ and the Ψ -state is entered via an action satisfying Ω .
- Instantiations of variables in Ω act as binders Ψ .

$$\Phi_{\Delta} \mathcal{U}_{\Omega}^{< t} \Psi$$

- Satisfied by those paths where eventually a Ψ -state is reached, by time t, via a Φ -path, and, in addition, while evolving between Φ states, actions are performed satisfying Δ and the Ψ -state is entered via an action satisfying Ω .
- Instantiations of variables in Ω act as binders Ψ .
- Simpler operator: $\Phi \ _{\Delta} \mathcal{U}^{< t} \Psi$.

$$\Phi_{\Delta} \mathcal{U}_{\Omega}^{< t} \Psi$$

- Satisfied by those paths where eventually a Ψ -state is reached, by time t, via a Φ -path, and, in addition, while evolving between Φ states, actions are performed satisfying Δ and the Ψ -state is entered via an action satisfying Ω .
- Instantiations of variables in Ω act as binders Ψ .
- Simpler operator: $\Phi_{\Delta} \mathcal{U}^{< t} \Psi$.
- Time t can be omitted (assumed as ∞).

$$\Phi_{\Delta} \mathcal{U}_{\Omega}^{< t} \Psi$$

- Satisfied by those paths where eventually a Ψ -state is reached, by time t, via a Φ -path, and, in addition, while evolving between Φ states, actions are performed satisfying Δ and the Ψ -state is entered via an action satisfying Ω .
- Instantiations of variables in Ω act as binders Ψ .
- Simpler operator: $\Phi_{\Delta} \mathcal{U}^{< t} \Psi$.
- Time t can be omitted (assumed as ∞).

tt
$$_{\top}\mathcal{U}^{< t}_{\{\textit{init}: \textbf{O}(\textit{GO},\textit{A})\}}$$
tt

$$\Phi_{\Delta} \mathcal{U}_{\Omega}^{\leq t} \Psi$$

- Satisfied by those paths where eventually a Ψ -state is reached, by time t, via a Φ -path, and, in addition, while evolving between Φ states, actions are performed satisfying Δ and the Ψ -state is entered via an action satisfying Ω .
- Instantiations of variables in Ω act as binders Ψ .
- Simpler operator: $\Phi_{\Delta} \mathcal{U}^{< t} \Psi$.
- Time t can be omitted (assumed as ∞).

$$\mathsf{tt}_{\ \top} \mathcal{U}^{< t}_{\{\mathit{init}: \mathbf{O}(\mathit{GO}, A)\}} \, \mathsf{tt} \qquad \mathsf{tt}_{\ \top} \mathcal{U}^{< t}_{\top} \, \langle \mathit{GO} \rangle @A$$

$$\Phi_{\Delta} \mathcal{U}_{\Omega}^{< t} \Psi$$

- Satisfied by those paths where eventually a Ψ -state is reached, by time t, via a Φ -path, and, in addition, while evolving between Φ states, actions are performed satisfying Δ and the Ψ -state is entered via an action satisfying Ω .
- Instantiations of variables in Ω act as binders Ψ .
- Simpler operator: $\Phi_{\Delta} \mathcal{U}^{< t} \Psi$.
- Time t can be omitted (assumed as ∞).

$$\mathsf{tt}_{\ \top} \mathcal{U}^{< t}_{\{\mathit{init}: \mathbf{O}(GO, A)\}} \, \mathsf{tt} \quad \ \mathsf{tt}_{\ \top} \mathcal{U}^{< t}_{\top} \, \langle \mathit{GO} \rangle @A \quad \ \mathsf{tt}_{\ \top} \mathcal{U}^{< \infty}_{\{\mathit{i}_1: \mathbf{N}(!z)\}} \, \mathsf{nil} @z$$

 $init: \mathbf{o}(GO, A)$

Satisfied by any action executed at site *init*, by means of which a process uploads value *GO* to site *A*;

init :
$$o(GO, A)$$

Satisfied by any action executed at site *init*, by means of which a process uploads value *GO* to site *A*;

$$!z_1:\mathbf{o}(GO,!z_2)$$

Satisfied by any action, executed at some site (z_1) , by means of which a process uploads value GO to some site (z_2) ;

Satisfied by any action executed at site *init*, by means of which a process uploads value *GO* to site *A*;

$$!z_1: \mathbf{o}(GO,!z_2)$$

Satisfied by any action, executed at some site (z_1) , by means of which a process uploads value GO to some site (z_2) ;

 $\Delta = \{\xi_1, \dots \xi_n\}$ satisfied by any action satisfying any of ξ_j ;

$$init: \mathbf{o}(GO, A)$$

Satisfied by any action executed at site *init*, by means of which a process uploads value *GO* to site *A*;

$$!z_1 : \mathbf{o}(GO, !z_2)$$

Satisfied by any action, executed at some site (z_1) , by means of which a process uploads value GO to some site (z_2) ;

 $\Delta = \{\xi_1, \dots \xi_n\}$ satisfied by any action satisfying any of ξ_j ;

 \top : satisfied by *any* action.

ullet We present a strategy for model checking MoSL formulae against Stoklaim models.

- \bullet We present a strategy for model checking MoSL formulae against StoKlaim models.
- Model-checking of RTSs is performed by using a CSL model checker.

- ullet We present a strategy for model checking MoSL formulae against Stoklaim models.
- Model-checking of RTSs is performed by using a CSL model checker.
- The proposed model-checking algorithm manipulates the input RTS obtained from a STOKLAIM specification

- ullet We present a strategy for model checking MoSL formulae against Stoklaim models.
- Model-checking of RTSs is performed by using a CSL model checker.
- ullet The proposed model-checking algorithm manipulates the input RTS obtained from a Stoklaim specification
 - the RTS to be model-checked is translated into an equivalent state-labelled CTMC
 - obtained CTMC is then analysed by making use of existing (state-based) CSL model checkers.

- $N \oplus (i, E)$ denotes the net obtained from N by adding element E at address i
- $N \ominus (i, E)$ denotes the net obtained from N by removing existing element E from i

- N ⊕ (i, E) denotes the net obtained from N by adding element E at address i
- $N \ominus (i, E)$ denotes the net obtained from N by removing existing element E from i
- Let C be a set of STOKLAIM nets:
 - ▶ $C \oplus (i, E)$ denotes the set of $N \oplus (i, E)$ such that $N \in C$;
 - ▶ $C \ominus (i, E)$ denotes the set of $N \ominus (i, E)$ such that $N \in C$;

- $N \oplus (i, E)$ denotes the net obtained from N by adding element E at address i
- $N \ominus (i, E)$ denotes the net obtained from N by removing existing element E from i
- Let C be a set of STOKLAIM nets:
 - ▶ $C \oplus (i, E)$ denotes the set of $N \oplus (i, E)$ such that $N \in C$;
 - ▶ $C \ominus (i, E)$ denotes the set of $N \ominus (i, E)$ such that $N \in C$;
- ullet $\mathcal{R}[C]$ denotes the RTS generated starting from the set of nets C

- $N \oplus (i, E)$ denotes the net obtained from N by adding element E at address i
- $N \ominus (i, E)$ denotes the net obtained from N by removing existing element E from i
- Let C be a set of STOKLAIM nets:
 - ▶ $C \oplus (i, E)$ denotes the set of $N \oplus (i, E)$ such that $N \in C$;
 - ▶ $C \ominus (i, E)$ denotes the set of $N \ominus (i, E)$ such that $N \in C$;
- ullet $\mathcal{R}[\mathcal{C}]$ denotes the RTS generated starting from the set of nets \mathcal{C}
- $\mathcal{R} \oplus (i, E)$ denotes the RTS obtained from \mathcal{R} by adding (i, E)
- $\mathcal{R}\ominus(i,E)$ denotes the RTS obtained from \mathcal{R} by removing (i,E)

Idea:

- ullet A finite RTS ${\mathcal R}$ is translete into a finite, state-labelled, CTMC $({\mathcal K}({\mathcal R}))$
- The states of such CTMC will contain information which will be used by the model-checking algorithm; consequently

Idea:

- ullet A finite RTS ${\mathcal R}$ is translete into a finite, state-labelled, CTMC $({\mathcal K}({\mathcal R}))$
- The states of such CTMC will contain information which will be used by the model-checking algorithm; consequently

Translation:

Idea:

- ullet A finite RTS ${\mathcal R}$ is translete into a finite, state-labelled, CTMC $({\mathcal K}({\mathcal R}))$
- The states of such CTMC will contain information which will be used by the model-checking algorithm; consequently

Translation:

• For each state s in \mathcal{R} , and for each transition pointing to s labelled by an action a, a distinct duplicate of s, labelled by a, is created in the target CTMC

Idea:

- ullet A finite RTS $\mathcal R$ is translete into a finite, state-labelled, CTMC $(\mathcal K(\mathcal R))$
- The states of such CTMC will contain information which will be used by the model-checking algorithm; consequently

Translation:

- For each state s in \mathcal{R} , and for each transition pointing to s labelled by an action a, a distinct duplicate of s, labelled by a, is created in the target CTMC
- In order to consider the first transition delay correctly, one additional \perp -labelled duplicate is added for s.

19 / 30

Idea:

- ullet A finite RTS $\mathcal R$ is translete into a finite, state-labelled, CTMC $(\mathcal K(\mathcal R))$
- The states of such CTMC will contain information which will be used by the model-checking algorithm; consequently

Translation:

- For each state s in \mathcal{R} , and for each transition pointing to s labelled by an action a, a distinct duplicate of s, labelled by a, is created in the target CTMC
- ullet In order to consider the first transition delay correctly, one additional ot-labelled duplicate is added for s.
- The outgoing transitions of these duplicate states have the same target and same rate as those of the original state.

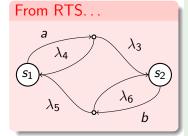
Idea:

- ullet A finite RTS ${\cal R}$ is translete into a finite, state-labelled, CTMC $({\cal K}({\cal R}))$
- The states of such CTMC will contain information which will be used by the model-checking algorithm; consequently

Translation:

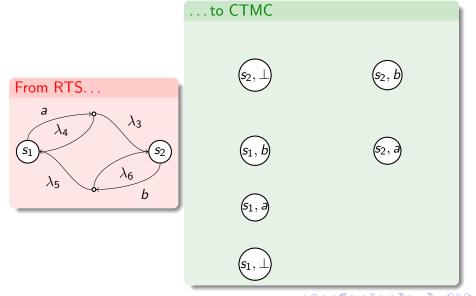
- For each state s in \mathcal{R} , and for each transition pointing to s labelled by an action a, a distinct duplicate of s, labelled by a, is created in the target CTMC
- In order to consider the first transition delay correctly, one additional

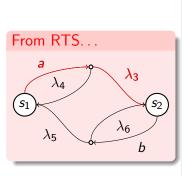
 ⊥—labelled duplicate is added for s.
- The outgoing transitions of these duplicate states have the same target and same rate as those of the original state.
 - All copies of state s in the target CTMC are strong Markovian bisimilar and therefore enjoy the same transient and steady state properties.

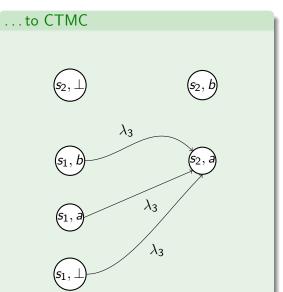


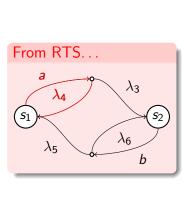
M. Loreti (DSIUF)

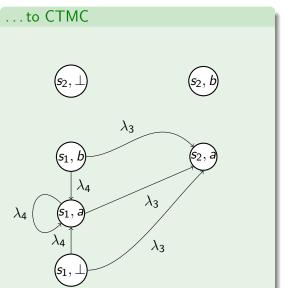
20 / 30

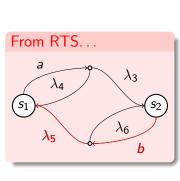


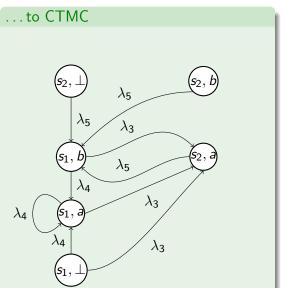


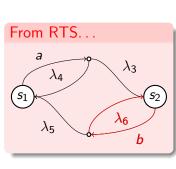


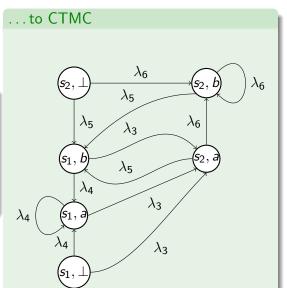












Definition

For each RTS \mathcal{R} and for each MoSL formula Φ , $Sat(\Phi, \mathcal{R})$ returns the set of all states of \mathcal{R} which satisfy Φ , and is defined recursively on the structure of Φ as follows:

Definition

For each RTS \mathcal{R} and for each MoSL formula Φ , $Sat(\Phi, \mathcal{R})$ returns the set of all states of \mathcal{R} which satisfy Φ , and is defined recursively on the structure of Φ as follows:

- $Sat(tt, \mathcal{R}) \stackrel{\text{def}}{=} S$
- $Sat(\neg \Phi, \mathcal{R}) \stackrel{\text{def}}{=} S \setminus Sat(\Phi, \mathcal{R})$
- $Sat(\Phi \lor \Psi, \mathcal{R}) \stackrel{\text{def}}{=} Sat(\Phi, \mathcal{R}) \cup Sat(\Psi, \mathcal{R})$
- . . .

Definition

```
• ...
```

•
$$Sat(\mathcal{P}_{\bowtie p}(\Phi_{\Delta}\mathcal{U}_{\Omega}^{< t}\Psi), \mathcal{R}) \stackrel{\text{def}}{=}$$

let $S_1 = Sat(\Phi, \mathcal{R}) \times (\Delta \cup \{\bot\})$ in
let $S_2 = Sat(\Psi, \mathcal{R}) \times \Omega$ in
 $\{s \in S \mid (s, \bot) \in until(\bowtie, p, t, S_1, S_2, \mathcal{K}(\mathcal{R}))\}$

• . . .

Definition

- ...
- $Sat(\mathcal{P}_{\bowtie p}(\Phi_{\Delta}\mathcal{U}_{\Omega}^{< t}\Psi), \mathcal{R}) \stackrel{\text{def}}{=}$ $\mathsf{let} \ S_1 = Sat(\Phi, \mathcal{R}) \times (\Delta \cup \{\bot\}) \ \mathsf{in}$ $\mathsf{let} \ S_2 = Sat(\Psi, \mathcal{R}) \times \Omega \ \mathsf{in}$ $\{s \in S \mid (s, \bot) \in \mathit{until}(\bowtie, p, t, S_1, S_2, \mathcal{K}(\mathcal{R}))\}$

• . . .

Computation of function *until* relies on an existing Stochastic Model Checker like, for instance, MRMC.

Definition

- . . .
- $Sat(\langle \vec{f} \rangle @ i \rightarrow \Psi, \mathcal{R}) = \{ s \mid s \ominus (i, \vec{f}) \in Sat(\Psi, \mathcal{R} \ominus (i, \vec{f})) \}$
- $Sat(\langle \vec{f} \rangle @ i \leftarrow \Psi, \mathcal{R}) = \{ s \mid s \oplus (i, \vec{f}) \in Sat(\Psi, \mathcal{R} \oplus (i, \vec{f})) \}$

Distributed Mobile Service Example

- A service is built on two sites, A and B;
- Client software and service dispatcher run on A;
- two types of services are available, S1 and S2:
 - each S1-service request is satisfied using local resources only (i.e. in A)
 - each S2-service request requires
 - ★ first, some computation at A
 - ★ followed by, a computation at B
 - ⇒ thus the agent taking care of the request is launched in A and then migrates to B.

MoSL: DMS Example

MoSL: DMS Example

• In the long run, the probability that the computational resource located at A is available is greater than 0.2:

MoSL: DMS Example

• In the long run, the probability that the computational resource located at A is available is greater than 0.2:

$$\mathcal{S}_{>0.2}(\langle AF \rangle @A)$$

• In the long run, the probability that the computational resource located at A is available is greater than 0.2:

$$S_{>0.2}(\langle AF \rangle @A)$$

• If, in the current state, at site A a request of an S2 service is issued, the probability that it gets served within 72.04 time-units is greater than 0.85:

• In the long run, the probability that the computational resource located at A is available is greater than 0.2:

$$S_{>0.2}(\langle AF \rangle @A)$$

• If, in the current state, at site A a request of an S2 service is issued, the probability that it gets served within 72.04 time-units is greater than 0.85:

$$\langle S2\rangle@A \Rightarrow \ \mathcal{P}_{>0.85}\big(\text{tt }_{\top}\mathcal{U}^{<72.04}_{\{A:I(S2,A)\}}\ \text{tt}\big)$$

• In the long run, the probability that the computational resource located at A is available is greater than 0.2:

$$S_{>0.2}(\langle AF \rangle @A)$$

• If, in the current state, at site A a request of an S2 service is issued, the probability that it gets served within 72.04 time-units is greater than 0.85:

$$\langle S2 \rangle @A \Rightarrow \ \mathcal{P}_{>0.85} (\mathsf{tt} \ _{\top} \mathcal{U}^{<72.04}_{\{A: \textbf{I}(S2,A)\}} \ \mathsf{tt})$$

• In the long run, there is a probability greater than 0.87, that a request for *S1*-service is issued at site *A* within 500 time units with a probability greater than 0.75:

• In the long run, the probability that the computational resource located at A is available is greater than 0.2:

$$S_{>0.2}(\langle AF \rangle @A)$$

• If, in the current state, at site A a request of an S2 service is issued, the probability that it gets served within 72.04 time-units is greater than 0.85:

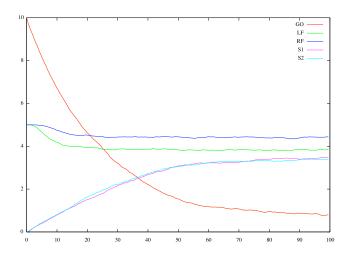
$$\langle S2 \rangle$$
 @ $A \Rightarrow \mathcal{P}_{>0.85}$ (tt $_{\top}\mathcal{U}^{<72.04}_{\{A:I(S2,A)\}}$ tt)

• In the long run, there is a probability greater than 0.87, that a request for *S1*-service is issued at site *A* within 500 time units with a probability greater than 0.75:

$$S_{>0.87}(\mathcal{P}_{>0.75}(\mathsf{tt}\ _{\top}\mathcal{U}_{\{!z:\mathbf{O}(S1,A)\}}^{<500}\ \mathsf{tt}))$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Simulating STOKLAIM Networks: DMS



- In Stoklaim the number of tuples matching a given template does not alter the rate of executing action
- Sometimes one is interested in increasing the rate of an input/read action when more instances of a same tuple are available (biological applications)

Example

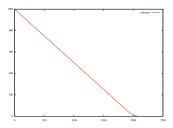
Let
$$A = (in(X)@,\lambda).A$$
:

$$I :: A || I :: \langle X \rangle || \cdots || I :: \langle X \rangle$$

Example

Let
$$A = (in(X)@,\lambda).A$$
:

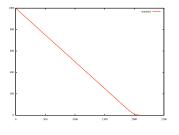
$$I :: A||I :: \langle X \rangle|| \cdots ||I :: \langle X \rangle|$$

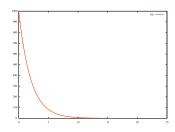


Example

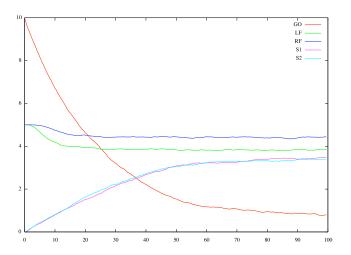
Let
$$A = (in(X)@,\lambda).A$$
:

$$I :: A || I :: \langle X \rangle || \cdots || I :: \langle X \rangle$$

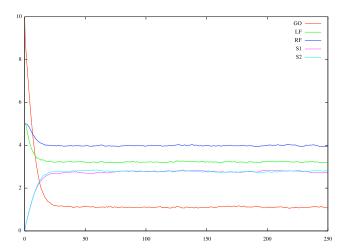




Simulating STOKLAIM Networks: DMS



Simulating STOKLAIM Networks: DMS (bio)



Concluding Remarks

Concluding Remarks

- STOKLAIM and MoSL can ben used for specifying and verifying properties of mobile and distributed systems.
- The proposed tool (SAM) permits:
 - verifying whether a given system satisfies or not a given property (by relying on MRMC)
 - simulate system behaviour.

Concluding Remarks

- STOKLAIM and MoSL can ben used for specifying and verifying properties of mobile and distributed systems.
- The proposed tool (SAM) permits:
 - verifying whether a given system satisfies or not a given property (by relying on MRMC)
 - simulate system behaviour.

On going work:

- \bullet Investigating direct (on-the-fly) model-checking algorithms for the logic and ${\rm STOKLAIM}$
 - An on-the-fly model-checker for PCTL is under construction
- Define an ODE semantics of STOKLAIM to predict behaviour of STOKLAIM systems
 - Simulation and model checking will be used to validate the obtained results

THANK YOU FOR YOUR ATTENTION