Noninterference Analysis of Reversible Probabilistic Systems

Andrea Esposito

University of Urbino

Joint work with Alessandro Aldini and Marco Bernardo

Noninterference

- The notion of noninterference was first introduced by Goguen and Meseguer (1982).
- Used to reason about the way in which illegitimate information flows can occur in multi-level security systems by exploiting covert channels.
- Noninterference guarantees that low-level agents can never infer from their observations what high-level agents are doing.
- Regardless of the specific implementation, noninterference is closely tied to the notion of behavioral equivalence among processes.

Noninterference in Nondeterministic Reversible Systems

 One of the most established formal definitions of equivalence employed for noninterference properties is weak bisimilarity.

Noninterference in Nondeterministic Reversible Systems

- One of the most established formal definitions of equivalence employed for noninterference properties is weak bisimilarity.
- It is not adequate to study noninterference in reversible systems.

Noninterference in Nondeterministic Reversible Systems

- One of the most established formal definitions of equivalence employed for noninterference properties is weak bisimilarity.
- It is not adequate to study noninterference in reversible systems.
- Esposito, Aldini, and Bernardo (2023) have shown that an adequate semantics is given by branching bisimilarity.
- The reason is that it has been proven to coincide with weak back-and-forth bisimilarity [DMV90].

Noninterference in Probabilistic Reversible Systems

- How to analyze noninterference in probabilistic reversible systems?
- Probabilistic noninterference has been investigated by Aldini, Bravetti, and Gorrieri (2004) in the generative-reactive model, where only a very limited form of nondeterminism is allowed.
- In their calculus, in addition to probabilistic choice, other operators such as parallel composition and hiding are decorated with a probabilistic parameter.
- This complicates the definitions of noninterference properties as they require universal quantifications over probabilistic parameters.

Noninterference in Probabilistic Reversible Systems

- We want to study noninterference for reversible systems that feature both nondeterminism and probabilities.
- A more expressive probabilistic model is the strictly alternating model introduced by Hansson e Jonsson (1990):
 - States are divided into nondeterministic (S_n) and probabilistic (S_n) .
 - Transitions are divided into:
 - action transitions, from S_n to S_p
 - probabilistic transitions, from S_p to S_n .
- We use weak and branching bisimilarities for this model to recast a variety of noninterference properties (they are decidable in polynomial time).
- A process calculus in which to express noninterference properties, where only the probabilistic choice operator is decorated.

Probabilistic Labeled Transition Systems

Definition

A probabilistic labeled transition system (PLTS) is a triple $(S, A_{\tau}, \longrightarrow)$:

- $S = S_n \cup S_p$ is a nonempty set of nondet. (S_n) and prob. (S_p) states with $S_n \cap S_p = \emptyset$.
- $A_{\tau} = A \cup \{\tau\}$ is a countable set of actions with $\tau \notin A$ denoting the unobservable action.
- $\bullet \longrightarrow = \longrightarrow_a \cup \longrightarrow_p$ is a transition relation where:
 - $\longrightarrow_a \subseteq \mathcal{S}_n \times \mathcal{A}_\tau \times \mathcal{S}_p$ is the action transition relation.
 - $\longrightarrow_p \subseteq \mathcal{S}_p \times \mathbb{R}_{]0,1[} \times \mathcal{S}_n$ is the probabilistic transition relation where $\sum_{s \xrightarrow{p}_p s'} p \in \{0,1\}$ for all $s \in \mathcal{S}_p$.

Probabilistic Bisimilarities

- Identifying nondeterministic (resp. probabilistic) states when they behave the same based on their transitions [HJ90].
- Philippou, Lee, and Sokolsky (2000) additionally allows a nondeterministic state and a probabilistic state to be identified when the latter concentrates all of its probabilistic mass in reaching the former.
- To this purpose the following function is introduced:

$$\textit{prob}(s,s') \ = \begin{cases} p & \text{if } s \in \mathcal{S}_{\mathbf{p}} \land \sum_{s \stackrel{p'}{\longrightarrow}_{\mathbf{p}} s'} p' = p > 0 \\ 1 & \text{if } s \in \mathcal{S}_{\mathbf{n}} \land s' = s \\ 0 & \text{otherwise} \end{cases}$$

• The function is then lifted to a set C of states by letting $prob(s, C) = \sum_{s' \in C} prob(s, s')$.

Weak Probabilistic Bisimilarity

- Weak bisimilarity $\approx_{\rm w}$ was introduced by Milner (1989) to abstract from the unobservable action τ .
- \Longrightarrow is a finite sequence of alternating $\xrightarrow{\tau}_a$ and \xrightarrow{p}_p .
- $\stackrel{\hat{a}}{\Longrightarrow}$ is \Longrightarrow if $a = \tau$, $\Longrightarrow \stackrel{a}{\longrightarrow}_a \Longrightarrow$ otherwise.

Definition

 $s_1 \approx_p s_2$ iff $(s_1, s_2) \in \mathcal{B}$ for some weak probabilistic bisimulation \mathcal{B} . An equivalence relation \mathcal{B} over \mathcal{S} is a weak probabilistic bisimulation iff, whenever $(s_1, s_2) \in \mathcal{B}$, then:

- For each $s_1 \xrightarrow{a} s_1'$ there exists $s_2 \stackrel{\hat{a}}{\Longrightarrow} s_2'$ with $(s_1', s_2') \in \mathcal{B}$.
- $prob(s_1, C) = prob(s_2, C)$ for all equivalence classes $C \in \mathcal{S}/\mathcal{B}$.
- By restricting the definition to nondeterministic states and ignoring *prob* we obtain \approx_w .

Probabilistic Branching Bisimilarity

- Branching bisimilarity $\approx_{\rm b}$ was introduced by Van Glabbeek and Wejland (1996) as a refinement of weak bisimilarity.
- A probabilistic variant for the non-strictly alternating model was introduced by Andova, Georgievska, and Trčka (2012).

Definition

 $s_1 \approx_{\mathrm{pb}} s_2$ iff $(s_1, s_2) \in \mathcal{B}$ for some probabilistic branching bisimulation \mathcal{B} . An equivalence relation \mathcal{B} over \mathcal{S} is a probabilistic branching bisimulation iff, whenever $(s_1, s_2) \in \mathcal{B}$, then:

- For each $s_1 \xrightarrow{a}_a s'_1$:
 - either $a = \tau$ and $(s'_1, s_2) \in \mathcal{B}$;
 - or there exist $s_2 \Longrightarrow \bar{s}_2 \stackrel{a}{\longrightarrow}_a s_2'$ with $(s_1, \bar{s}_2) \in \mathcal{B}$ and $(s_1', s_2') \in \mathcal{B}$.
- $prob(s_1, C) = prob(s_2, C)$ for all equivalence classes $C \in \mathcal{S}/\mathcal{B}$.
- By restricting the definition to nondeterministic states and ignoring *prob* we obtain ≈_b.

Process Language: High and Low Actions

- Two sets of actions for multi-level security systems:
 - High level actions: $\mathcal{A}_{\mathcal{H}}$.
 - Low level actions: $A_{\mathcal{L}}$.
- Set of visible actions: $A := A_{\mathcal{H}} \cup A_{\mathcal{L}}$.
- Overall set of actions: $A_{\tau} := A \cup \{\tau\}$.

Process Language: Nondeterministic Processes

- The overall set of process terms is $\mathbb{P} = \mathbb{P}_n \cup \mathbb{P}_p$.
- The set of nondeterministic process terms \mathbb{P}_n is the following where $a \in \mathcal{A}_{\tau}$ and $L \subseteq \mathcal{A}$:

Process Language: Probabilistic Processes

ullet The set of probabilistic process terms \mathbb{P}_p is the following:

Process Language: Probabilistic Processes

ullet The set of probabilistic process terms \mathbb{P}_p is the following:

• $\bigoplus_{i \in I} [p_i]_{-}$ is the generalized probabilistic composition operator expressing a probabilistic choice among finitely many processes each with probability $p_i \in \mathbb{R}_{]0,1]}$ and such that $\sum_{i \in I} p_i = 1$.

Operational Semantic Rules: Nondeterministic Processes

• Operational semantic rule for action prefix:

$$a \cdot P \xrightarrow{a}_{a} P$$

• Operational semantic rules for nondeterministic choice:

$$\begin{bmatrix}
N_1 \xrightarrow{a}_{\mathbf{a}} P_1 & N_2 \xrightarrow{a}_{\mathbf{a}} P_2 \\
N_1 + N_2 \xrightarrow{a}_{\mathbf{a}} P_1 & N_1 + N_2 \xrightarrow{a}_{\mathbf{a}} P_2
\end{bmatrix}$$

Operational Semantic Rules: Nondeterministic Processes

• Operational semantic rules for parallel composition:

$$\frac{N_1 \stackrel{a}{\longrightarrow}_{\mathbf{a}} P_1 \quad a \notin L}{N_1 \parallel_L N_2 \stackrel{a}{\longrightarrow}_{\mathbf{a}} P_1 \parallel_L [\mathbf{1}] N_2} \qquad \frac{N_2 \stackrel{a}{\longrightarrow}_{\mathbf{a}} P_2 \quad a \notin L}{N_1 \parallel_L N_2 \stackrel{a}{\longrightarrow}_{\mathbf{a}} [\mathbf{1}] N_1 \parallel_L P_2}$$

• Operational semantic rule for synchronization:

$$\begin{array}{|c|c|c|c|}
\hline
N_1 \stackrel{a}{\longrightarrow}_a P_1 & N_2 \stackrel{a}{\longrightarrow}_a P_2 & a \in L \\
\hline
N_1 \parallel_L N_2 \stackrel{a}{\longrightarrow}_a P_1 \parallel_L P_2
\end{array}$$

Operational Semantic Rules: Nondeterministic Processes

Operational semantic rules for restriction and hiding:

$$\frac{N \xrightarrow{a}_{a} P \quad a \notin L}{N \setminus L \xrightarrow{a}_{a} P \setminus L}$$

$$\frac{N \xrightarrow{a}_{a} P \quad a \in L}{N / L \xrightarrow{\tau}_{a} P / L} \qquad \frac{N \xrightarrow{a}_{a} P \quad a \notin L}{N / L \xrightarrow{a}_{a} P / L}$$

Operational Semantic Rules: Probabilistic Processes

• Operational semantic rule for probabilistic choice:

$$\boxed{\frac{j \in I}{\bigoplus_{i \in I} [p_i] N_i \stackrel{p_j}{\longrightarrow}_{\mathbf{p}} N_j}}$$

• Operational semantic rule for parallel composition:

$$\frac{P_1 \xrightarrow{p_1}_p N_1 \quad P_2 \xrightarrow{p_2}_p N_2}{P_1 \parallel_L P_2 \xrightarrow{p_1 \cdot p_2}_p N_1 \parallel_L N_2}$$

Operational Semantic Rules: Probabilistic Processes

Operational semantic rules for restriction and hiding:

$$\frac{P \xrightarrow{p}_{p} N}{P \setminus L \xrightarrow{p}_{p} N \setminus L}$$

$$\frac{P \xrightarrow{p}_{p} N}{P / L \xrightarrow{p}_{p} N / L}$$

Nondeterministic Noninterference

- Whenever a group of agents at the high security level performs some actions, the effect of those actions should not be seen by any agent at the low security level.
- We recall some bisimilarity-based noninterference properties.
- Focardi and Gorrieri (2001) provided a characterization of these properties by employing weak bisimilarity in a nondeterministic process algebraic framework, resulting in a study of their features and comparisons between them.
- In [EAB23] we extended their approach to reversible systems by recasting the same properties with branching bisimilarity.
- We provide a further extension by recasting the properties with probabilistic bisimilarities.

- The first property we examine is the *Bisimulation-based Strong Nondeterministic Non Interference* (BSNNI).
- It is satisfied by any process that behaves the same when its high-level actions are forbidden or hidden.

Definition

Let $E \in \mathbb{P}$ and \approx a weak bisimilarity.

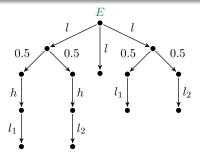
 $E \in BSNNI_{\approx} \iff E \setminus \mathcal{A}_{\mathcal{H}} \approx E / \mathcal{A}_{\mathcal{H}}.$

- The first property we examine is the *Bisimulation-based Strong Nondeterministic Non Interference* (BSNNI).
- It is satisfied by any process that behaves the same when its high-level actions are forbidden or hidden.

Definition

Let $E \in \mathbb{P}$ and \approx a weak bisimilarity.

 $E \in \text{BSNNI}_{\approx} \iff E \setminus \mathcal{A}_{\mathcal{H}} \approx E / \mathcal{A}_{\mathcal{H}}.$

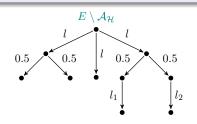


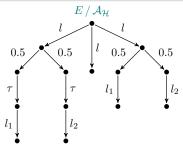
- The first property we examine is the *Bisimulation-based Strong Nondeterministic Non Interference* (BSNNI).
- It is satisfied by any process that behaves the same when its high-level actions are forbidden or hidden.

Definition

Let $E \in \mathbb{P}$ and \approx a weak bisimilarity.

 $E \in BSNNI_{\approx} \iff E \setminus \mathcal{A}_{\mathcal{H}} \approx E / \mathcal{A}_{\mathcal{H}}.$





- BSNNI is not powerful enough to capture covert channels that derive from the behavior of high-level agents interacting with the system, so other stronger properties have been studied in the literature.
- Non Deducibility on Composition (BNDC) requires to check the interaction between the system and every possible high-level agent.
- Strong BSNNI (SBSNNI) requires that at any reachable state the property BSNNI must be satisfied.
- Persistent BNDC (P_BNDC) requires that at any reachable state the property BNDC must be satisfied.
- Strong BNDC (SBNDC) requires that the low-level view of every reachable state of a system must be the same before and after the execution of every high level action.

Definition

Let $E \in \mathbb{P}$ and \approx a weak bisimilarity:

- $E \in BSNNI_{\approx} \iff E \setminus A_{\mathcal{H}} \approx E / A_{\mathcal{H}}$.
- $E \in \mathrm{BNDC}_{\approx} \iff$ for all $F \in \mathbb{P}$ such that every $F' \in \mathit{reach}(F)$ can execute only actions in $\mathcal{A}_{\mathcal{H}}$ and for all $L \subseteq \mathcal{A}_{\mathcal{H}}$, $E \setminus \mathcal{A}_{\mathcal{H}} \approx ((E \parallel_L F) / L) \setminus \mathcal{A}_{\mathcal{H}}$.
- $E \in SBSNNI_{\approx} \iff$ for all $E' \in reach(E)$, $E' \in BSNNI_{\approx}$.
- $E \in P_BNDC_{\approx} \iff$ for all $E' \in reach(E)$, $E' \in BNDC_{\approx}$.
- $E \in \operatorname{SBNDC}_{\approx} \iff$ for all $E' \in \operatorname{reach}(E)$ for all E'' such that $E' \stackrel{a}{\longrightarrow}_{\operatorname{a}} E''$ for some $a \in \mathcal{A}_{\mathcal{H}}$, $E' \setminus \mathcal{A}_{\mathcal{H}} \approx E'' \setminus \mathcal{A}_{\mathcal{H}}$.

Relation among Properties

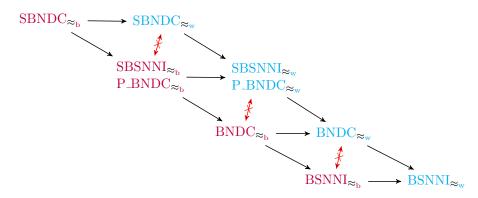
• Focardi and Gorrieri showed the following taxonomy:

$$\mathrm{SBNDC}_{\approx_{\mathrm{w}}} \longrightarrow \mathrm{SBSNNI}_{\approx_{\mathrm{w}}} \longrightarrow \mathrm{BNDC}_{\approx_{\mathrm{w}}} \longrightarrow \mathrm{BSNNI}_{\approx_{\mathrm{w}}}$$

• Later on, $P_BNDC_{\approx_w}$ was introduced by Focardi and Rossi (2006) and proven to be equivalent to $SBSNNI_{\approx_w}$.

Nondeterministic Taxonomy

• In [EAB23] branching bisimilarity has been used to recast the nonintenference properties and extend the taxonomy:



Preservation

- By recasting noninterference properties using \approx_p and \approx_{pb} we can study their features and characteristics.
- $\bullet \approx_p$ and \approx_{pb} preserve all the five properties.

Theorem

```
Let E_1, E_2 \in \mathbb{P}, \approx \in \{\approx_p, \approx_{pb}\}, and \mathcal{P} \in \{BSNNI_{\approx}, BNDC_{\approx}, SBSNNI_{\approx}, P\_BNDC_{\approx}, SBNDC_{\approx}\}.

If E_1 \approx E_2, then E_1 \in \mathcal{P} \iff E_2 \in \mathcal{P}.
```

 This is very useful in automated property verification as it can be more convenient to work with a reduced system, i.e., a system equivalent to the one we are checking but with a smaller state space.

Compositionality

ullet The stronger properties are preserved by (most of) the operators of ${\Bbb P}.$

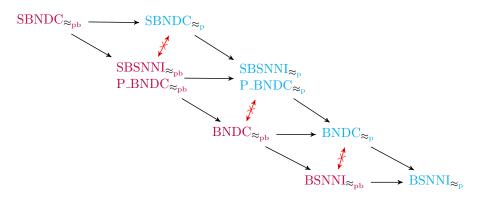
Theorem

Let $E, E_1, E_2 \in \mathbb{P}$, $\approx \in \{\approx_p, \approx_{pb}\}$, $\mathcal{P} \in \{SBSNNI_{\approx}, P_BNDC_{\approx}SBNDC_{\approx}\}$. Then:

- $\bullet \quad E \in \mathcal{P} \Longrightarrow a \cdot E \in \mathcal{P} \text{ for all } a \in \mathcal{A}_{\mathcal{L}} \cup \{\tau\} \text{ and } E \in \mathbb{P}_{p}.$
- ② $E_1, E_2 \in \mathcal{P} \Longrightarrow E_1 \parallel_L E_2 \in \mathcal{P} \text{ for all } L \subseteq \mathcal{A}_{\mathcal{L}}$ if $\mathcal{P} \in \{\text{SBSNNI}_{\approx_{\text{pb}}}, \text{P_BNDC}_{\approx_{\text{pb}}}\}$, $L \subseteq \mathcal{A} \text{ if } \mathcal{P} \in \{\text{SBSNNI}_{\approx_{\text{p}}}, \text{P_BNDC}_{\approx_{\text{p}}}, \text{SBNDC}_{\approx_{\text{p}}}, \text{SBNDC}_{\approx_{\text{pb}}}\}$.
- $\bullet \quad E \in \mathcal{P} \Longrightarrow E / L \in \mathcal{P} \text{ for all } L \subseteq \mathcal{A}_{\mathcal{L}}.$

Extended Probabilistic Taxonomy

 Taxonomy of security properties based on weak and branching probabilistic bisimilarities:



- Given a process $E \in \mathbb{P}$, we can obtain its nondet. variant nd(E).
- We replace each $\bigoplus_{i \in I} [p_i] E_i$ with $\sum_{i \in I} \tau \cdot E_i$.

Theorem

Let $E_1, E_2 \in \mathbb{P}$. Then:

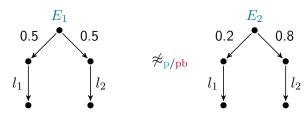
- $E_1 \approx_{\mathrm{p}} E_2 \Longrightarrow \mathsf{nd}(E_1) \approx_{\mathrm{w}} \mathsf{nd}(E_2)$.
- $E_1 \approx_{\mathbf{pb}} E_2 \Longrightarrow \mathsf{nd}(E_1) \approx_{\mathbf{b}} \mathsf{nd}(E_2)$.

- Given a process $E \in \mathbb{P}$, we can obtain its nondet. variant nd(E).
- We replace each $\bigoplus_{i \in I} [p_i] E_i$ with $\sum_{i \in I} \tau \cdot E_i$.

Theorem

Let $E_1, E_2 \in \mathbb{P}$. Then:

- $E_1 \approx_{\mathbf{p}} E_2 \Longrightarrow \mathsf{nd}(E_1) \approx_{\mathbf{w}} \mathsf{nd}(E_2)$.
- $E_1 \approx_{\mathbf{pb}} E_2 \Longrightarrow \operatorname{nd}(E_1) \approx_{\mathbf{b}} \operatorname{nd}(E_2)$.
- The inverse is not true.

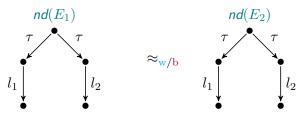


- Given a process $E \in \mathbb{P}$, we can obtain its nondet. variant nd(E).
- We replace each $\bigoplus_{i\in I} [p_i]E_i$ with $\sum_{i\in I} \tau \cdot E_i$.

Theorem

Let $E_1, E_2 \in \mathbb{P}$. Then:

- $E_1 \approx_{\mathbf{p}} E_2 \Longrightarrow \operatorname{nd}(E_1) \approx_{\mathbf{w}} \operatorname{nd}(E_2)$.
- $E_1 \approx_{\mathbf{pb}} E_2 \Longrightarrow \operatorname{nd}(E_1) \approx_{\mathbf{b}} \operatorname{nd}(E_2)$.
- The inverse is not true.



• A consequence is that if a process E is secure under a probabilistic noninterference property, then nd(E) is secure under the corresponding nondeterministic property.

Corollary

```
\begin{split} \text{Let } E \in \mathbb{P}, \approx_{\text{pr}} \in \{\approx_{\text{p}}, \approx_{\text{pb}}\}, \approx_{\text{nd}} \in \{\approx_{\text{w}}, \approx_{\text{b}}\}, \\ \mathcal{P}_{\text{pr}} \in \{\text{BSNNI}_{\approx_{\text{pr}}}, \text{BNDC}_{\approx_{\text{pr}}}, \text{SBSNNI}_{\approx_{\text{pr}}}, \text{P\_BNDC}_{\approx_{\text{pr}}}, \text{SBNDC}_{\approx_{\text{pr}}}\}, \\ \mathcal{P}_{\text{nd}} \in \{\text{BSNNI}_{\approx_{\text{nd}}}, \text{BNDC}_{\approx_{\text{nd}}}, \text{SBSNNI}_{\approx_{\text{nd}}}, \text{P\_BNDC}_{\approx_{\text{nd}}}, \text{SBNDC}_{\approx_{\text{nd}}}\}. \\ Then: \\ E \in \mathcal{P}_{\text{pr}} \Longrightarrow \textit{nd}(E) \in \mathcal{P}_{\text{nd}} \end{split}
```

 This means that our results further extend the nondeterministic taxonomy.

Back-and-Forth Bisimilarities

- Introduced by De Nicola, Montanari, and Vaandraager (1990).
- Back-and-forth bisimulations are defined over computational paths instead of states.
- This is needed to remain in an interleaving setting of concurrency.
- It preserves not only causality but also history.
- Whenever a process returns to a past state it must do it by reverting the same computational path performed in going forward.
- In the nondeterministic setting, weak back-and-forth bisimilarity is finer than weak bisimilarity, and coincides with branching bisimilarity.

Weak Probabilistic Back-and-Forth Bisimilarity

• The bisimulation is defined over the set of computational paths \mathcal{U} instead of the set of states \mathcal{S} .

Definition

 $s_1 \approx_{\text{pbf}} s_2$ iff $((s_1, \varepsilon), (s_2, \varepsilon)) \in \mathcal{B}$ for some weak probabilistic back-and-forth bisimulation \mathcal{B} .

An equivalence relation \mathcal{B} over \mathcal{U} is a weak probabilistic back-and-forth bisimulation iff, whenever $(\rho_1, \rho_2) \in \mathcal{B}$, then:

- For each $\rho_1 \xrightarrow{a}_a \rho'_1$ there exists $\rho_2 \stackrel{\hat{a}}{\Longrightarrow} \rho'_2$ with $(\rho'_1, \rho'_2) \in \mathcal{B}$.
- For each $\rho'_1 \xrightarrow{a}_a \rho_1$ there exists $\rho'_2 \stackrel{\hat{a}}{\Longrightarrow} \rho_2$ with $(\rho'_1, \rho'_2) \in \mathcal{B}$.
- $prob(\rho_1, C) = prob(\rho_2, C)$ for all equivalence classes $C \in \mathcal{U}/\mathcal{B}$.

Comparisons

 As in the nondeterministic case, weak probabilistic back-and-forth bisimilarity coincides with probabilistic branching bisimilarity.

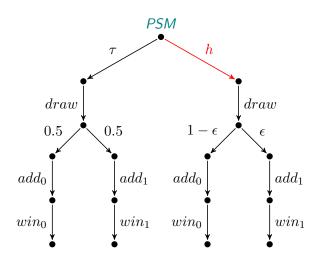
Theorem

$$s_1 \approx_{\mathbf{pbf}} s_2 \text{ iff } s_1 \approx_{\mathbf{pb}} s_2.$$

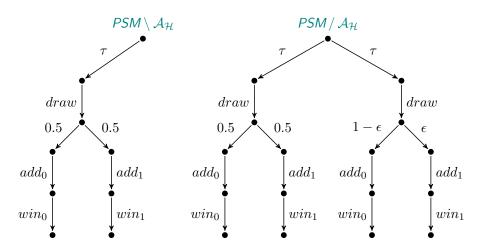
- Therefore:
 - We can reason about reversible systems without resorting to a reversible calculus nor a path-based equivalence.
 - All the results for probabilistic branching-bisimulation-based properties can be extended to probabilistic reversible systems.

- Consider a lottery implemented in a probabilistic smart contract.
- Anyone can buy a ticket.
- When the lottery is closed, anyone can invoke another smart contract function, draw(), in which a random number x, between 1 and the amount of sold tickets, is drawn and the entire money is paid to the owner of the extracted value x.
- We will examine two vulnerabilities.
 - The first one emphasizes the need for passing from the nondeterministic noninterference to the probabilistic one.
 - The second one emphasizes the difference between \approx_p and \approx_{pb} when dealing with reversibility.

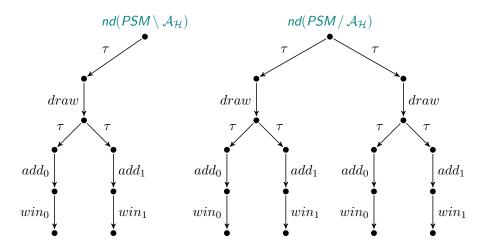
- In the first case the critical point is the randomization process of the function draw(), not natively available to smart contract programmer.
- A widely adopted approach consists of using the timestamp of the block including the transaction of the draw invocation as the seed for random number generation.
- A malicious participant can mine the block above and manipulate the timestamp to win the lottery.
- We consider the following transitions:
 - \bullet *h* which represent the interaction of a malicious miner.
 - *draw* expressing the invocation of the draw() function.
 - *add_i* expressing the determination of the winner.
 - win_i expressing the notification of the winner.
- For simplicity, we consider a lottery with only two participants.



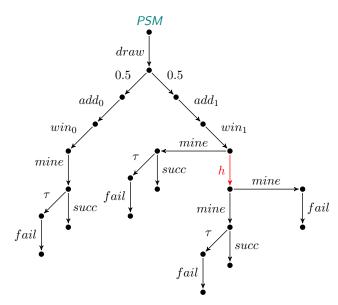
• The processes $PSM \setminus A_{\mathcal{H}}$ and $PSM / A_{\mathcal{H}}$ are not $\approx_{p/pb}$.



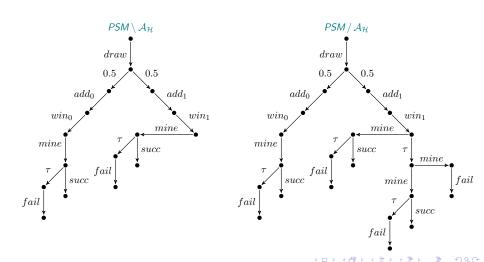
• But the processes $nd(PSM \setminus A_H)$ and $nd(PSM / A_H)$ are $\approx_{w/b}$.

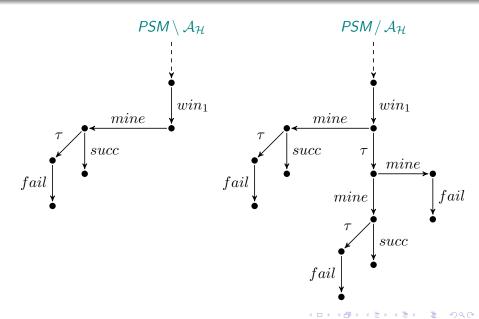


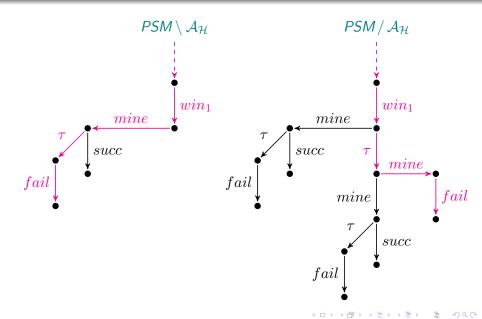
- In the second case the critical point is the mining procedure.
- The seed governing the probabilistic extraction cannot be manipulated.
- A malicious miner invokes the function draw() but is going to lose.
- He can force the mining failure and a rollback of the lottery.
- We add the following transitions:
 - mine expressing the mining of a block, by either an honest or dishonest miner.
 - succ expressing the successful termination of the mining.
 - fail expressing the failed termination of the mining, it can either be forced or occur for other reasons (a wrong transaction in the block or a fork in the blockchain).

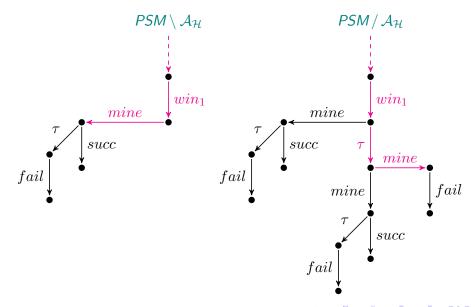


• The processes $nd(PSM \setminus A_{\mathcal{H}})$ and $nd(PSM / A_{\mathcal{H}})$ are \approx_{p} but not \approx_{pb} .









Conclusions

- We have recast a variety of noninterference properties in a probabilistic setting, studying their features and taxonomy.
- Potential covert channels arising in probabilistic reversible systems cannot be revealed by employing weak probabilistic bisimulation.
- Indeed, the higher discriminating power of probabilistic branching bisimilarity is necessary to capture information flows emerging whenever backward computations are activated.
- Since some proofs required the representation of processes as trees, we could not include recursion in our language.
- As future work we plan to find alternative proof techniques to add recursion.