A Process Algebraic Approach to Modeling and Performance Evaluation of Blockchain Fraud Reversal Protocols

Performance Indices

Andrea Tirelli

joint work with Andrea Marin and Sabina Rossi

Ca' Foscari University of Venice, NiRvAna Final Meeting

May 30, 2025

Agenda

- 1 Introduction
- 2 Modelling
- 3 Performance Indices
- 4 Results
- 5 Conclusions

Context

- Public and private blockchains (digital Euro)
- Fraudulent transactions and smart contracts
- Fraud Reversal Protocols (FRP)
- Can we reverse a (possibly) fraudulent transaction?
- How to model and evaluate the performance of FRPs?

Relevant Questions

- Is there a optimal time window to ask for a refund?
- Is there a cost associated with the reversal?
- Is there a trade-off between the productivity of the blockchain and fairness, i.e. the possibility of reversing a transaction?

Components

Introduction

Four main components:

- Block states: blockchain evolution throughout the relevant time window
- User: a user of the blockchain that is involved in a potentially fraudulent transaction
- Judges: a set of judges that can be involved in the transaction reversal process, deciding whether on the reversal (refund) request
- Hacker: a malicious user that tries to exploit the blockchain by creating fraudulent transactions

PEPA Specification - Block States

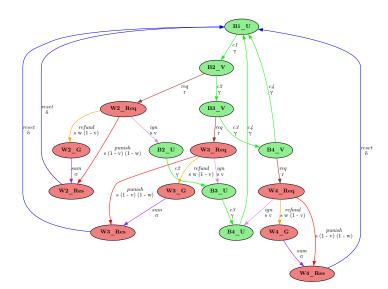
B₁ = $(c_1, \gamma).B_2$

- **■** $B_i = (req, \top).W_i + (c_i, \gamma).B_{i+1}$ for i = 2, ..., n-1
- **■** $B_n = (req, \top).W_n + (c_n, \gamma).B_1$
- $W_i = (ign, \gamma).B_i + (reset, \delta).B_1$ for i = 2, ..., n

- $User = (c_1, \top).Victim + (c_n, \top).User$
- $Victim = (req, r).Req + (c_n, \top).User$
- \blacksquare Req = $(ign, \top).User + (refund, \top).Granted + (punish, \top).Resume$
- Granted = $(full, \top)$. Resume + (partial, \top). Resume + (none, \top). Resume
- Resume = $(reset, \top).User$
- **Hacker** = $(full, p\sigma)$. Hacker + $(partial, (1-p)t\sigma)$. Hacker + (none, $(1-p)(1-t)\sigma$). Hacker
- **Judges** = (ign, vs). Judges + (refund, (1 v)ws). Judges + (punish, (1-v)(1-w)s). Judges

PEPA Specification - System Cooperation Equation

Denoting with


Introduction

- $L_1 = \{c_1, c_n, reset, ign, reg\}$
- $L_2 = \{ign, refund, punish\}$
- $L_3 = \{full, partial, none\}$

the system cooperation equation is:

$$B_1 \bowtie_{L_1} \left(\textit{User} \bowtie_{L_3} \textit{Hacker} \right) \bowtie_{L_2} \textit{Judges}$$

Derivation Graph - n = 4

The network is *productive* when new blocks are created, i.e., when the counter is not in a waiting state. If $\mathcal{U} = \{User, Victim\}$ and $B_i^* = B_i \bowtie (* \bowtie Hacker) \bowtie Judges$

Performance Indices

$$U_n = \sum_{i=1}^n \sum_{* \in \mathcal{U}} \pi_{B_i^*}$$

The refund probability is the probability of being in a state where the user is granted a refund. If

$$B_i^G = B_i \bowtie_{L_1} (Granted \bowtie_{L_3} Hacker) \bowtie_{L_2} Judges$$

$$R_n = \sum_{i=1}^n \pi_{B_i^G}$$

Accepting a refund request has a cost, which is directly proportional to the length of the time window between the fraudolent transaction and the refund request:

Performance Indices

$$C_n = \frac{\alpha \sum_{i=1}^n i^e \pi_{B_i^G}}{\sum_{i=1}^n \pi_{B_i^G}}$$

One possible choice for α is the average number of transactions per block - this value can be estimated from empirical blockchain data or set according to the specific scenario being modeled.

Time Window Optimization

Optimal scenario:

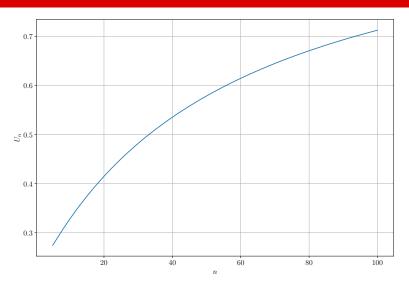
Introduction

- maximum utilization: blockain is as productive as possible
- maximum refund probability: fairness condition in which fraudolent transaction get reversed
- minimal refund cost: minimal disruption to the blockain

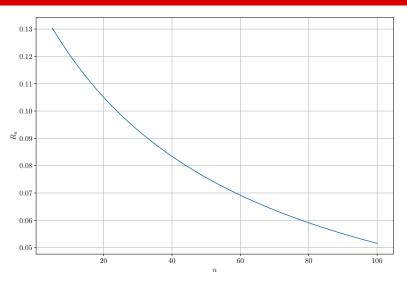
We define the Blockchain Efficiency-Fairness Index (BEFI) as

$$BEFI_n = \frac{U_n R_n}{C_n}$$

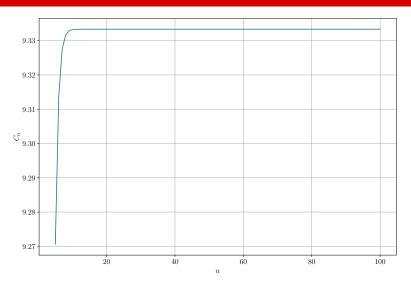
 U_n and R_n have opposite trends $\to BEFI_n$ captures the trade-off between these two indices and the cost of the refund mechanism.

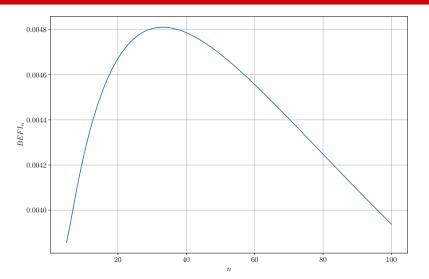

Experimental Setting

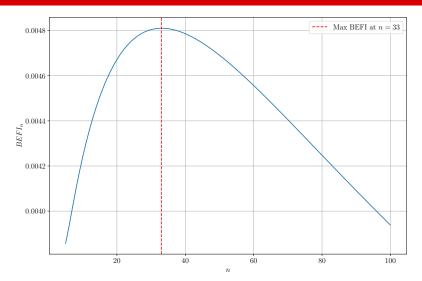
Introduction


Scenario: introduce refund mechanism in Ethereum blockchain Parameters:

- block production rate $\gamma = \frac{1}{12s}$
- \blacksquare refund request rate $r > \gamma$
- request assessment rate (can lead to refund, punishment, dismissal with no processing) $s = \gamma$
- \blacksquare granted refund rate $\sigma = \gamma$ (need to write a block where the transaction is reversed)
- system reset rate $\beta = m\gamma$ for 1 < m < n (need to re-create all blocks after the fraudolent transaction)


Utilization


Refund Probability


Total Refund Cost

BEFI

Trade-off Analysis

Performance Indices

Summary

Introduction

Assumptions:

- Simplified user behavior (e.g., single user, single hacker)
- Possibility to establish a pool of Judges.

Strengths:

- Agnostic model that can be applied to different blockchain scenarios (potentially even private blockchain)
- Model takes into account both productivity of the chain and the push for fairness and fraud remedy
- We acknowledge the possibility that a refund request may come in too late (hacker has already spent all/part of the hacked sum)

Future Work

- Investigate protocol applicability in concrete scenarios, such as private blockchains
- Analyse empirical data to understand transaction dependence and estimate spending speed
- Extend the model to capture fraudolent spending speed more precisely