Exact Non-Interference

Riccardo Romanello¹

¹ Ca' Foscari, University of Venice

May 30, 2025

 We investigate the notion of Persistence Stochastic Non-Interference

- We investigate the notion of Persistence Stochastic Non-Interference
- Current approaches [2] are built upon the notion of Lumpable Bisimulation, aka Strong Equivalence

- We investigate the notion of Persistence Stochastic Non-Interference
- Current approaches [2] are built upon the notion of Lumpable Bisimulation, aka Strong Equivalence
- ▶ We want to obtain similar results using Exact Equivalence

- We investigate the notion of Persistence Stochastic Non-Interference
- Current approaches [2] are built upon the notion of Lumpable Bisimulation, aka Strong Equivalence
- ▶ We want to obtain similar results using *Exact Equivalence*
- Roughly speaking:
 - Strong: looks at ougoing rates
 - Exact: looks at incoming rates

Outline of the Talk

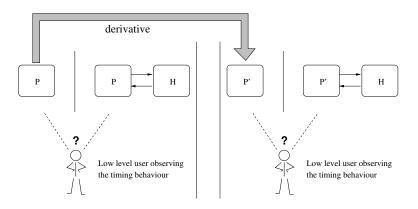
- ► An High-Level view of PSNI
- Observational Equivalence
- PSNI and strong equivalence
- Exact Equivalence
- Weak-exact equivalence

Persistent Stochastic Non-Interference

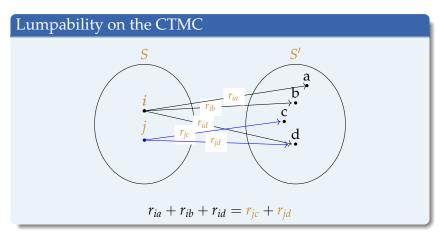
The Context

- ► Non-Interference aims at protecting sensitive data from undesired accesses
- Goguen-Meseguer'82: information does not flow from high (confindential) to low (public) if the high behavior cannot be observed at low level
- Persistency: Non-Interference has to be guaranteed in all the states of the system, if processes migrate during execution

Intuitively



Observation Equivalence



Users cannot distinguish lumpable bisimilar PEPA components

Observation Equivalence

Definition - Lumpable bisimilarity

It is the largest equivalence relation \approx_l such that if $P \approx_l Q$, then for all α and for each S equivalence class

- either $\alpha \neq \tau$,

it holds

$$\sum_{P' \in S, \ P \xrightarrow{(\alpha, r_{\alpha})} P'} r_{\alpha} = \sum_{Q' \in S, \ Q \xrightarrow{(\alpha, r_{\alpha})} Q'} r_{\alpha}$$

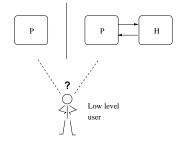
It is contextual, action preserving, and induces a lumpability

Non-Interference

A general definition [Focardi-Gorrieri'95]

 $P \in NI$ iff \forall high level process H, $(P|0) \sim^{low} (P|H)$

where \sim^{low} denotes a low level observation equivalence



Stochastic Non-Interference (SNI)

- ▶ We partition the actions into \mathcal{L} (low), \mathcal{H} (high), $\{\tau\}$ (synch.)
- High (low) level processes can only perform(/observe) high (low) level actions

Definition - SNI

 $P \in SNI$ iff \forall high level PEPA component H

$$(P \bowtie_{\mathcal{H}} 0) \sim^{low} (P \bowtie_{\mathcal{H}} H)$$

The above can be rewritten as:

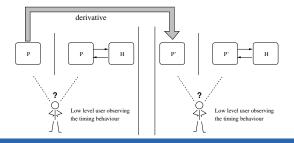
$$(P \bowtie_{\mathcal{H}} 0)/\mathcal{H} \approx_{l} (P \bowtie_{\mathcal{H}} H)/\mathcal{H}$$

Persistent SNI (PSNI)

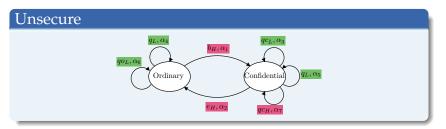
Definition - PSNI

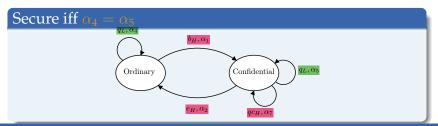
 $P \in PSNI$ iff \forall derivative P' of P

 $P' \in SNI$



Toy Example: Unsecure Vs Secure System





Our new approach

- ► The above notion of PSNI is based on strong equivalence/lumpable bisimilarity
- ▶ What if we leverage such notion to exact equivalence?
- We are defining a weak exact equivalence that treats τ actions in different ways that classical exact equivalence does
- Addressing the problems of:
 - Formalize PSNI in terms of such new notion
 - Provide an efficient algorithm to test this newly introduced concept

Exact Equivalence

Exact Equivalence on CTMC

Let X(t) be a CTMC with state space $S = \{0, 1, ..., n\}$ and \sim be an equivalence relation over S. We say that X(t) is exactly lumpable with respect to \sim if for any [k], $[l] \in S / \sim$ and $i, j \in [l]$, it holds that $q_{[k],i} = q_{[k],j}$.

Exact Equivalence on PEPA components

An equivalence relation over PEPA components, $\mathcal{R} \subseteq \mathcal{C} \times \mathcal{C}$ is an *exact equivalence* if whenever $(P,Q) \in \mathcal{R}$, then for all $\alpha \in \mathcal{A}$:

- ▶ $q[S, P, \alpha] = q[S, Q, \alpha] \quad \forall S \in C/\mathcal{R}$

- The two definitions seem different
- The one on PEPA components seems stricter than the other on CTMCs

- The two definitions seem different
- The one on PEPA components seems stricter than the other on CTMCs
- ► The condition on total outgoing rates was introduced in [1]

- ► The two definitions seem different
- The one on PEPA components seems stricter than the other on CTMCs
- ▶ The condition on total outgoing rates was introduced in [1]
- It must be introduced because of the diagonal elements in the infinitesimal generator
- ► That have no counterpart in the PEPA settings

- The two definitions seem different
- The one on PEPA components seems stricter than the other on CTMCs
- ▶ The condition on total outgoing rates was introduced in [1]
- ► It must be introduced because of the diagonal elements in the infinitesimal generator
- That have no counterpart in the PEPA settings
- ► The outgoing rate condition is fundamental for the equiprobability of the partition induced by the relation

Exact Equivalence, **7** transitions, and PSNI

- ► Recalling that the property we want to ensure is the following: $(P \bowtie_{\mathcal{H}} 0)/\mathcal{H} \approx_l (P \bowtie_{\mathcal{H}} H)/\mathcal{H}$
- ▶ It is fundamental to carefully deal with τ -transitions

Exact Equivalence, τ transitions, and PSNI

- ► Recalling that the property we want to ensure is the following: $(P \bowtie_{\mathcal{H}} 0)/\mathcal{H} \approx_l (P \bowtie_{\mathcal{H}} H)/\mathcal{H}$
- ▶ It is fundamental to carefully deal with τ -transitions
- Lumpable bisimulation achieves such endeavor by imposing different conditions according to the symbol α
- Defining PSNI with exact equivalence would have led to a trivial property

Weak Exact Equivalence

Weak Exact Equivalence

An equivalence relation over PEPA components, $\mathcal{R} \subseteq \mathcal{C} \times \mathcal{C}$ is a *weak exact equivalence* if whenever $(P,Q) \in \mathcal{R}$, then for all $\alpha \in \mathcal{A}$:

- either $\alpha \neq \tau$ and;
 - $q[P, \alpha] = q[Q, \alpha]$
 - $q[S, P, \alpha] = q[S, Q, \alpha] \quad \forall S \in \mathcal{C}/\mathcal{R}$
- ightharpoonup or $\alpha = \tau$ and:
 - $q[S, P, \alpha] = q[S, Q, \alpha] \quad \forall S \in \mathcal{C}/\mathcal{R} \cdot P, Q \notin S$

The results so far

- We were able to prove that our new notion induces an equiprobable stationary distribution in the underlying CTMC
- ► This implies that the reversed CTMC has a strong equivalence
- ► We are now mimicking the proofs for PSNI by substituting strong equivalence with the weak exact equivalence.

[1] S. Baarir, M. Beccuti, C. Dutheillet, G. Franceschinis, and S. Haddad.

Lumping partially symmetrical stochastic models.

Performance Evaluation, 68(1):21–44, 2011.

[2] Jane Hillston, Carla Piazza, and Sabina Rossi.
Persistent stochastic non-interference.

Electronic Proceedings in Theoretical Computer Science,

276:53–68, 2018.

