Generalized Proportional Lumpability

Carla Piazza¹ Sabina Rossi²

¹Università di Udine, Italy

²Università Ca' Foscari Venezia, Italy

VALUETOOLS - Milano, December 2024

Meeting NiRvAna - Urbino, 30 Maggio 2025

Introduction

The context

- In performance evaluation of complex systems, continuous-time Markov chains (CTMCs) are fundamental models
- The main goal is to calculate stationary performance metrics like throughput, response time, and resource utilization
- This requires determining the stationary probability distribution of the CTMC

Background

Aggregation techniques

- High-level modeling formalisms often result in large state spaces, making their analysis challenging or infeasible
- State space explosion can be addressed by aggregating states with equivalent behaviors
- Lumpability enables efficient computation of performance indices for Markov chains with structural regularity
- However, lumpability is limited, as few real-world applications exhibit non-trivial lumpability

Previous work

Proportional lumpability

- Proportional lumpability¹ has been introduced to broaden the applicability of traditional lumpability
- It allows for the exact computation of stationary performance indices, unlike quasi-lumpability, which provides only bounds
- It is based on a perturbation of the Markov chain's transition rates using a proportionality function

¹A. Marin, C. Piazza, S. Rossi: "Proportional lumpability and proportional bisimilarity". Acta Informatica 2022

Present work

Contributions

- We reformulate proportional lumpability in terms of matrix multiplications
- We introduce two matrix-based perturbation methods for Markov chains: left-perturbations and right-perturbations
- We provide a characterization for a class of left-perturbations and for a class of right-perturbations
- We generalize the notion of proportional lumpability by incorporating left- and right-perturbations

Background

Ergodic CTMC

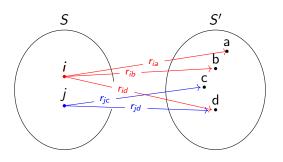
- We refer to a finite ergodic CTMC by its infinitesimal generators Q
- A square matrix is the infinitesimal generator of a finite ergodic CTMC, if
 - All off-diagonal elements are non-negative
 - The sum of each row is zero
 - It serves as the adjacency matrix of a strongly connected weighted directed graph

Intuition

- Lumpability is defined using equivalence relations that partition the state space of a Markov chain
- Aggregation groups equivalent states into macro-states, reducing the state space size
- If the partition satisfies ordinary lumpability criteria, the equilibrium solution of the aggregated process can provide an exact solution for the original process

Intuition

 An equivalence relation exhibits ordinary lumpability if it induces a partition into equivalence classes such that any two states within the same class have identical aggregated transition rates to any other class.



$$r_{ia} + r_{ib} + r_{id} = r_{jc} + r_{jd}$$

Notation

• ~ is an equivalence relation over the state space

Original CTMC	Aggregated CTMC	
Q	\widetilde{Q}	
q(i,j)	$\widetilde{q}(S,S')$	
π	$\widetilde{\pi}$	

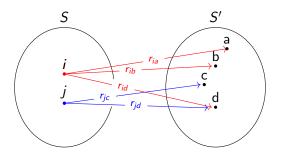
• for any equivalence class S,

$$q(i,S) = \sum_{k \in S} q(i,k)$$

Definition

 \sim is an *ordinary lumpability* for ${f Q}$ if

$$q(i,S')=q(j,S')$$



$$r_{ia} + r_{ib} + r_{id} = r_{jc} + r_{jd}$$

Aggregated CTMC for ordinary lumpability

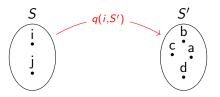
Definition

 $oldsymbol{\widetilde{Q}}$ is the aggregated CTMC such that

$$\widetilde{q}(S,S')=q(i,S')$$

ullet $\widetilde{\pi}$ is the equilibrium distribution of $\widetilde{\mathbf{Q}}$ such that

$$\widetilde{\pi}(S) = \sum_{i \in S} \pi(i)$$



Matrices associated to \sim

Notation

- \bullet N_S is the number of states
- \bullet N_C is the number of equivalence classes

Definition

The matrices V and U associated to \sim are:

• V is the $N_S \times N_C$ matrix such that

$$v(s, S) = 1 \text{ iff } s \in S.$$

• U is the $N_C \times N_S$ matrix such that

$$u(S,s) = 1/|S| \text{ iff } s \in S.$$

Matrix-based characterization of ordinary lumpability

Definition of ordinary lumpability

The relation \sim is an oridinary lumpability for ${f Q}$ iff

$$\mathbf{Q}V = VU\mathbf{Q}V$$
.

Aggregated CTMC

The aggregated CTMC $\widetilde{\mathbf{Q}}$ is

$$\widetilde{\mathbf{Q}} = \mathbf{U}\mathbf{Q}\mathbf{V}$$
.

Proportional lumpability

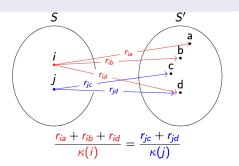
Definition

 \sim is an proportional lumpability for ${f Q}$ if there exists

$$\kappa: \mathit{States} o \mathbb{R}^+$$

such that

$$\frac{q(i,S')}{\kappa(i)} = \frac{q(j,S')}{\kappa(j)}.$$



Aggregated CTMC for proportional lumpability

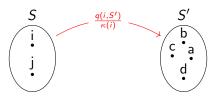
Definition

• $\widetilde{\mathbf{Q}}$ is the aggregated CTMC w.r.t. $\kappa: \mathit{States} \to \mathbb{R}^+$ such that

$$\widetilde{q}(S,S')=\frac{q(i,S')}{\kappa(i)}$$
.

ullet $\widetilde{\pi}$ is the equilibrium distribution of $\widetilde{f Q}$ such that

$$\widetilde{\pi}(S) = \sum_{i \in S} \pi(i) \kappa(i)$$
.



Perturbed Markov chain for proportional lumpability

Perturbed Markov chain

 \mathbf{Q}' is a perturbation of \mathbf{Q} w.r.t. $\kappa : States \to \mathbb{R}^+$ if for all i, j,

$$q'(i,j) = \frac{q(i,j)}{\kappa(i)}.$$

Equilibrium distribution of the original chain

 \mathbf{Q}' If $\boldsymbol{\pi}'$ is the equilibrium distribution of \mathbf{Q}' then the equilibrium distribution $\boldsymbol{\pi}$ of \mathbf{Q} is

$$\pi(i) = \frac{\pi'(i)}{\kappa(i)}.$$

Matrix-based characterization of proportional lumpability

Definition of proportional lumpability

- ullet V and U are the matrices associated to \sim
- κ : States $\to \mathbb{R}^+$
- K diagonal matrix with $\kappa(i, i) = 1/\kappa(i)$

The relation \sim is a proportional lumpability w.r.t. κ for **Q** iff

$$KQV = VUKQV$$
.

Aggregated CTMC

The aggregated CTMC $\widetilde{\mathbf{Q}}$ is

$$\widetilde{\mathbf{Q}} = \mathbf{U}\mathbf{K}\mathbf{Q}\mathbf{V}$$
.

Matrix-based characterization of proportional lumpability

Results

Original CTMC	Perturbed CTMC
Q	KQ
\sim prop. lump. w.r.t. κ	\sim ordinary lump.
π	π'
$\pi' K$	πK^{-1}

- $\pi' K Q = 0$ implies $\pi' K$ is an invariant measure for Q.
- $\pi \mathbf{Q} = \mathbf{0}$ implies $\pi K^{-1} K \mathbf{Q} = \mathbf{0}$ implies πK^{-1} is an invariant measure for $K \mathbf{Q}$

Generalizing proportional lumpability

Idea

Original CTMC	Perturbed CTMC
Q	L Q
\sim prop. lump. w.r.t. \red{L}	\sim ordinary lump.
π	$oldsymbol{\pi}'$
Q	QR
\sim prop. lump. w.r.t. \emph{R}	\sim ordinary lump.
π	$oldsymbol{\pi}'$

Perturbed Markov chains

Definition

 \mathbf{Q}' is a *perturbation* of \mathbf{Q} iff

- All off-diagonal elements are non-negative
- 2 The sum of each row is zero

A class of left-perturbed Markov chains

Definition

The matrix $\mathbf{Q}' = \mathbf{L}\mathbf{Q}$ is a *left-perturbation of* \mathbf{Q} if

- $oldsymbol{0}$ All the off-diagonal elements of \mathbf{Q}' are non-negative.
- 2 The sum of each row of \mathbf{Q}' is zero.
- **3** For all $s \neq s'$, q(s, s') = 0 iff q'(s, s') = 0.

A class of left-perturbed Markov chains

Theorem

Let **Q** be a CTMC and **L** be such that

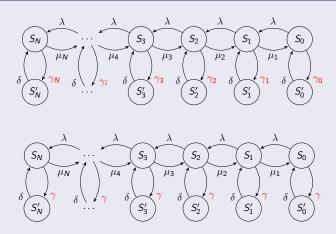
- **1** All the diagonal elements of **L** are positive.
- All the off-diagonal elements of L are non-positive.
- For all $s \neq s'$, if there exists $s'' \neq s, s'$ such that $q(s', s'') \neq 0$, then $\ell(s, s') = 0$.

The matrix $\mathbf{Q}' = \mathbf{L}\mathbf{Q}$ is a left perturbation of \mathbf{Q} with respect to \mathbf{L} .

Basically, if s reaches s' and s' reaches another state different from s, then $\ell(s,s')=0$. This implies that the columns in L of the states that have more than one outgoing edge have all off-diagonal elements zero.

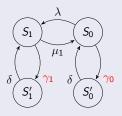
Left-perturbed Markov chains

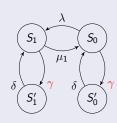
Example



Left-perturbed Markov chains

Example





$$\mathbf{Q} = \left(\begin{smallmatrix} -(\lambda+\gamma_0) & \lambda & \gamma_0 & 0 \\ \mu_1 & -\mu_1+\gamma_1 & 0 & \gamma_1 \\ \delta & 0 & -\delta & 0 & -\delta \\ 0 & \delta & 0 & -\delta \end{smallmatrix} \right) \quad L\mathbf{Q} = \left(\begin{smallmatrix} 1 & 0 & (\gamma_0-\gamma)/\delta & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{smallmatrix} \right) \mathbf{Q}$$

Steady state distribution of left-perturbed chains

Result			
	Original CTMC	Perturbed CTMC	
	Q	LQ	
	π L	π	

A class of right-perturbed Markov chains

Definition

The matrix $\mathbf{Q}' = \mathbf{Q}\mathbf{R}$ is a right-perturbation of \mathbf{Q} if

- \bullet All the off-diagonal elements of \mathbf{Q}' are non-negative.
- 2 The sum of each row of \mathbf{Q}' is zero.
- **3** For all $s \neq s'$, q(s, s') = 0 iff q'(s, s') = 0.

A class of right-perturbed Markov chains

Theorem

The matrix $\mathbf{Q}' = \mathbf{Q}\mathbf{R}$ is a right-perturbation of \mathbf{Q} if

- lacktriangle All the diagonal elements of R are positive.
- ② All the off-diagonal elements of R are non-positive.
- 3 The sum of each row of R is zero.
- For all $s \neq s'$, if q(s,s') = 0 then r(s,s') = 0.
- For all $s \neq s'$, if there exists $s'' \neq s, s'$ such that $q(s'', s) \neq 0$ then r(s, s') = 0.

Unfortunately, only a two-state loop.

But, we have examples out of this class.

Steady state distribution of right-perturbed chains

Result

• let R be invertible

Original CTMC	Perturbed CTMC	
Q	QR	
π	π	

Generalized proportional lumpability

Definition

 \sim is an *generalized proportional lumpability* for **Q** if there exist two invertible matrices **L** and **R** such that

$$Q' = LQR$$

satisfies:

- \mathbf{Q}' is a CTMC
- \mathbf{Q} \mathbf{Q}' has the same topology of the original chain \mathbf{Q}
- $oldsymbol{\circ}$ \sim is an ordinary lumpability for \mathbf{Q}'

Generalized proportional lumpability

Result	
Original CTMC	Perturbed CTMC
Q	L Q R
\sim gen. prop. lump. w.r.t. \emph{L} and \emph{R}	\sim ordinary lump.
π $\!$	π

Conclusion

- We introduce a generalized definition of lumpability enabling perturbation of a Markov chain via matrix multiplication while retaining the original steady-state distribution.
- We plan to explore a similar generalization for the concept of exact lumpability.
- We will examine the relationships between generalized proportional lumpability and reversibility.