
Towards a Resilient Cosmos: Evaluating Consensus Process in PoS Networks

Daria Smuseva <u>Ivan Malakhov</u> Andrea Marin Carla Piazza and Sabina Rossi

About Cosmos Ecosystem

- Network of blockchain networks
- Inter-Blockchain Communication
- PoS consensus
- Multi-round consensus
- CosmosBFT (ex Tendermint)

PoS Blockchains

Characteristics:

- Validators
- Agreement by voting
- Stake
 - Voting power
 - Propose probability
 - Reward

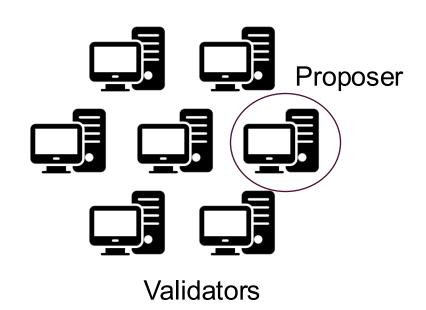
Examples:

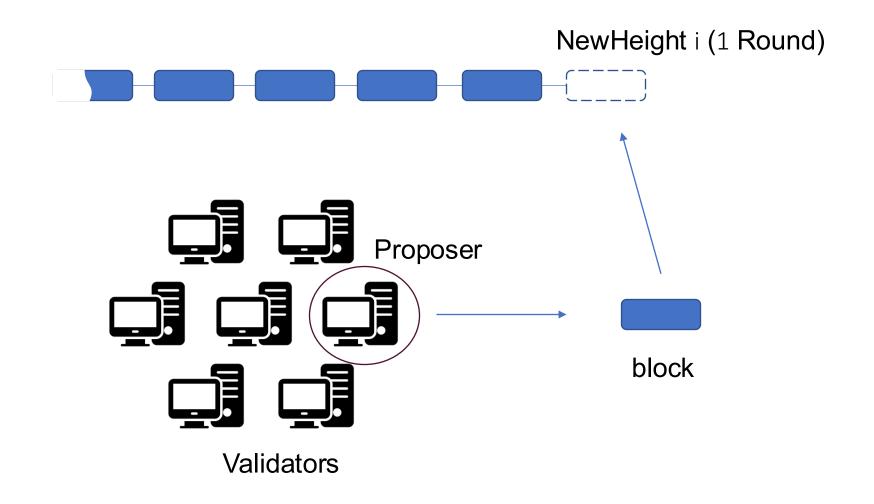
- Ethereum
- Algorand
- Cosmos

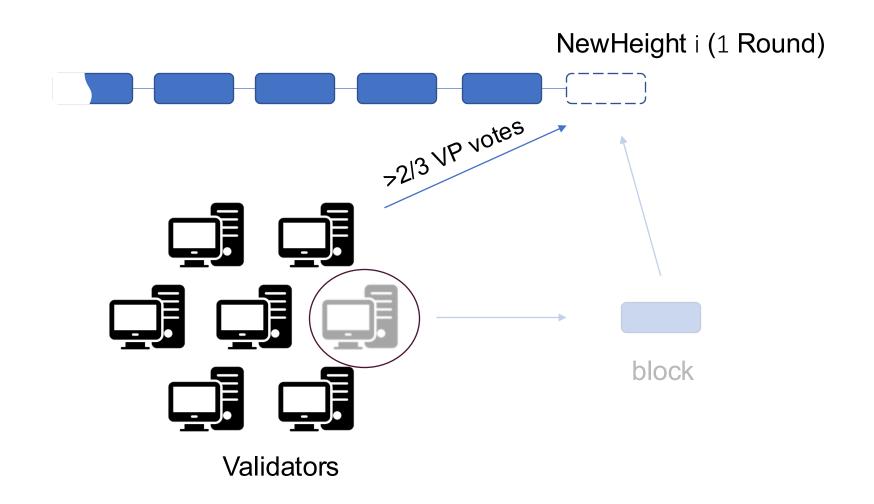
Challenges:

- Verifiers Dilemma
- Frontrunning Economic Attack
- Reorg Attack
- Balancing-type Attacks
- Voting Delay Attack
- . . .

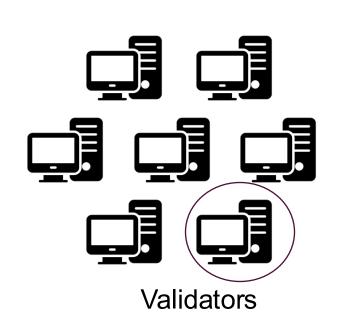
- . . .

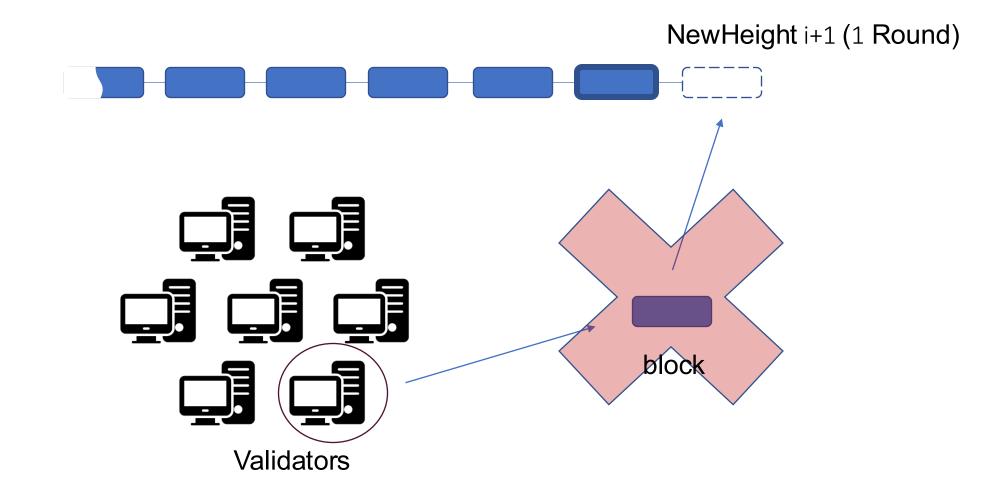

Cosmos consensus

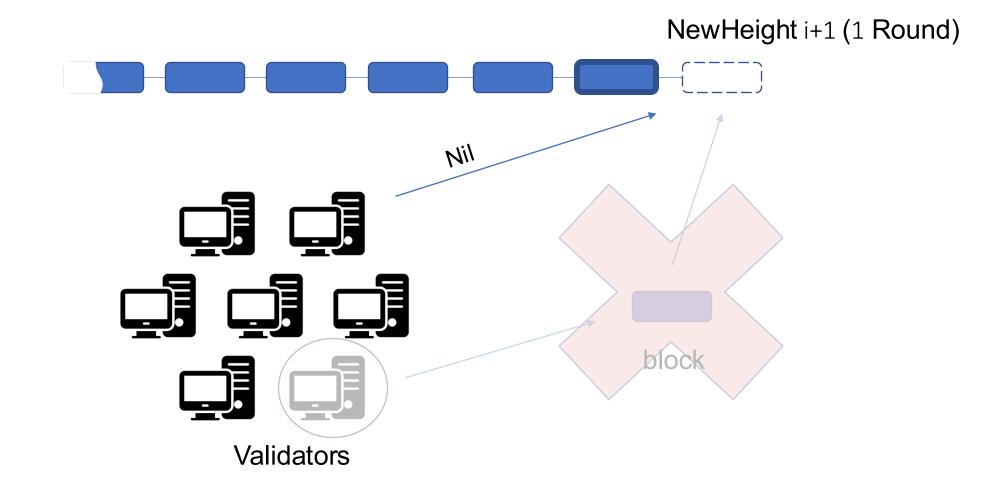

NewHeight
$$\rightarrow$$
 (Propose \rightarrow Prevote \rightarrow Precommit) $^{\geq 1}$ \rightarrow Commit \rightarrow Round

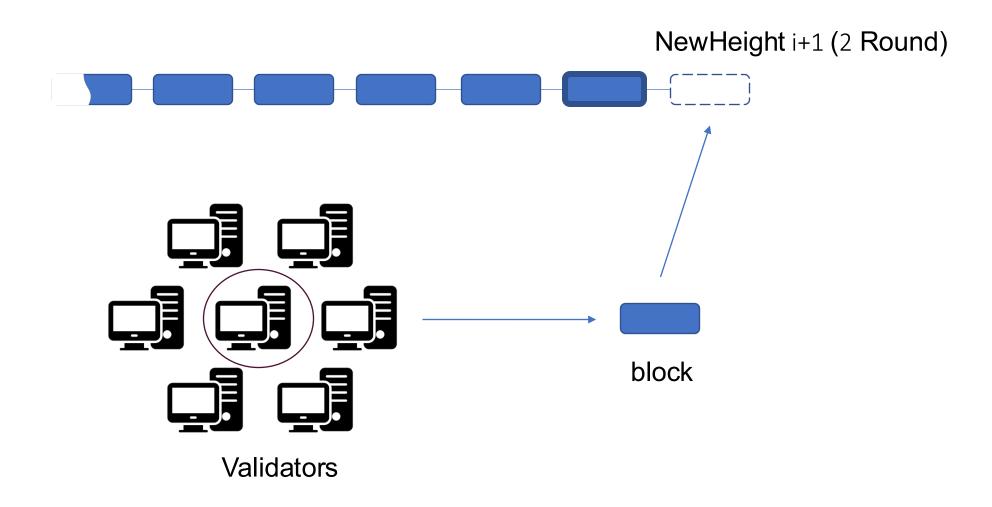

Notes:

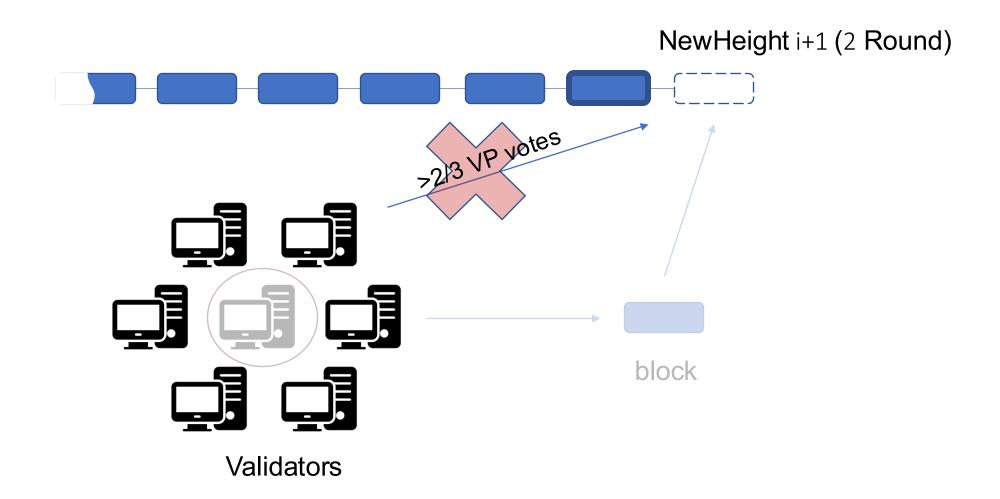
- One or more rounds needed
- New round increases step timeouts


NewHeight i (1 Round)

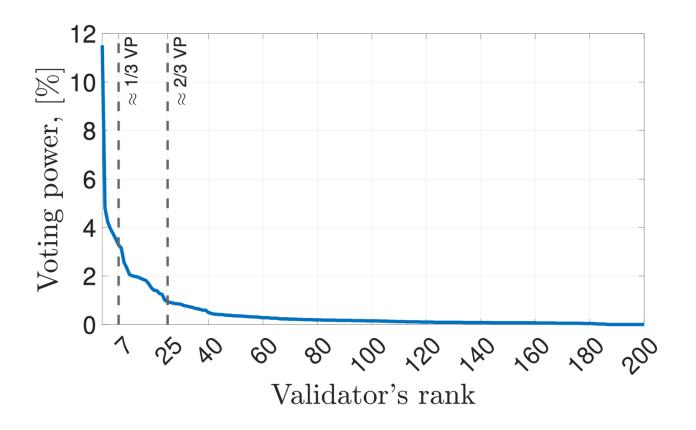







NewHeight i+1 (1 Round)

Problem statement


Lack of performance assessment of Cosmos blockchain protocol

Contribution

- Analytical models of Cosmos consensus mechanism
 - Impact of multi-round consensus
 - Optimal processing time for network configuration
 - Effect of increased timeout durations
 - Impact of colluding validators
 - Effects of partial validator unavailability

NOTE: We use Cosmos blockchain as a viable example of Cosmos network

Cosmos blockchain: data visualization

Voting Power distribution of Cosmos blockchain

Performance Evaluation Process Algebra (PEPA)

$$P ::= P \bowtie_{L} P \mid P/L \mid S$$
Cooperation Hiding

$$S ::= (\alpha, r).S \mid S + S \mid A$$
Prefix Choice

$$lpha$$
 - action type

Operators:

$$au$$
 - unknown action type

$$L$$
 - cooperation set

$$P$$
 - model component

$$S\,$$
 - sequential component

Base Model introduction

```
NewHeight
                                    (nh, n).Round_1
                                    (r, n).Propose_i
    Round_i
                                   (p, w_{1_i}\gamma_i). \frac{Prevote_i}{Prevote_i} + (p, (1 - w_{1_i})\gamma_i). NilPrevote_i
    Propose_i
                                   (pv, w_{2i}\beta_i).Precommit_i + (pv, (1-w_{2i})\beta_i).Unsuccess_i
    Prevote_i
                          \stackrel{def}{=} (npv, eta_i).Unsuccess_i
 NilPrevote_i
                          def
≡
                                  (pc, \delta_i).Round_i
  Unsuccess_i
                                   (pc, w_3\delta_i). \frac{Commit_i}{Commit_i} + (pc, (1-w_{3_i})\delta). Round_i
 Precommit_i
                      \overset{def}{=} \quad (c_i, \eta). New Height
   Commit_i
where \gamma_i = max \left( \frac{1}{t_1}, \frac{1}{T_1 + (i-1)g} \right), \quad \beta_i = max \left( \frac{1}{t_2}, \frac{1}{T_2 + (i-1)g} \right),
\delta_i = \frac{1}{T_3 + (i-1)g}, \quad \eta = \frac{1}{T_4}, i \in \{1, \dots, R\} \text{ and } j = min(i+1, R)
```

Model with different proposers introduction

Propose rate

$$\gamma_i = max\left(\frac{1}{t_1}, \frac{1}{T_1 + (i-1)g}\right)$$

Prevote rate

$$eta_i = maxigg(rac{1}{t_2}, rac{1}{T_2 + (i-1)g}igg)$$

Name	Duration
Propose timeout, (T_1)	3s
Prevote timeout, (T_2)	1s
Precommit timeout, (T_3)	1s
Timeout increase, (g)	0.5s
Commit timeout, (T_4)	1s

Success probabilities (for the first Round)

$$w_{1_{FF/F/S}} = Pr[X_{1_{FF/F/S}} \le T_1] = 1 - e^{-\frac{1}{t_{1_{FF/F/S}}}T_1}$$
 $w_2 = Pr[X_2 \le T_2] = 1 - e^{-\frac{1}{t_2}T_2}$
 $w_3 \to 1$

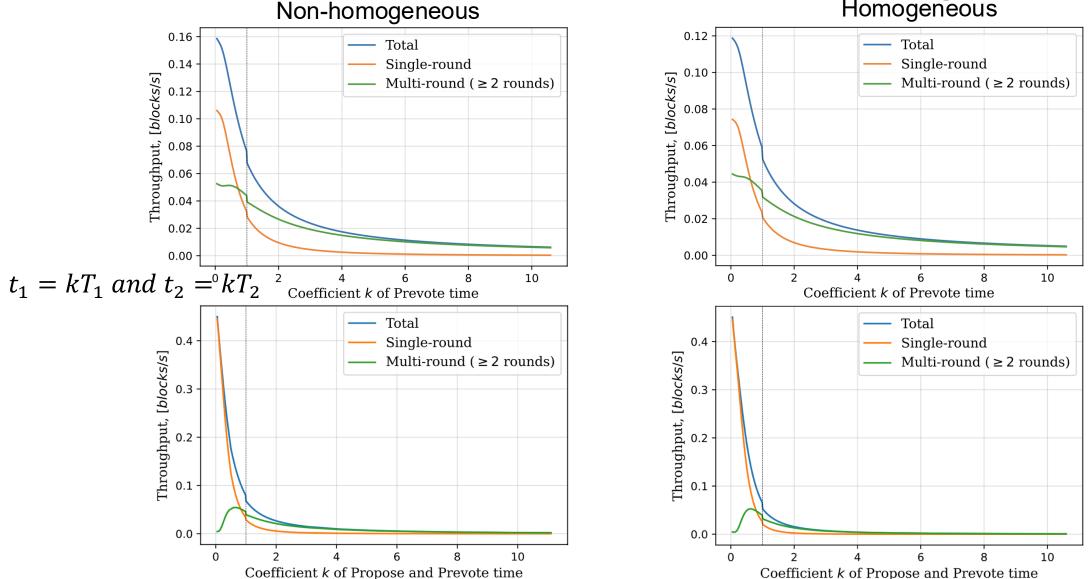
Success probabilities (for the first Round)

$$w_{1_{FF/F/S}} = Pr[X_{1_{FF/F/S}} \le T_1] = 1 - e^{-\frac{1}{t_{1_{FF/F/S}}}T_1}$$
 $w_2 = Pr[X_2 \le T_2] = 1 - e^{-\frac{1}{t_2}T_2}$
 $w_3 \to 1$

Success probabilities (for the first Round)

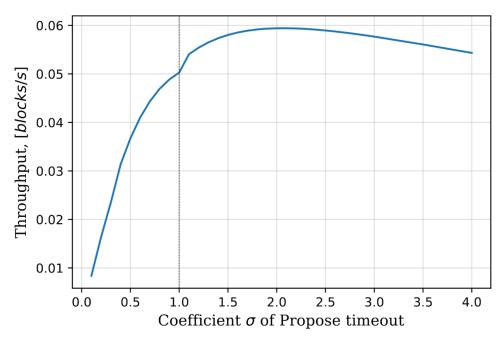
$$w_{1_{FF/F/S}} = Pr[X_{1_{FF/F/S}} \le T_1] = 1 - e^{-\frac{1}{t_{1_{FF/F/S}}}T_1}$$
 $w_2 = Pr[X_2 \le T_2] = 1 - e^{-\frac{1}{t_2}T_2}$
 $w_3 \to 1$

Success probabilities (for the first Round)

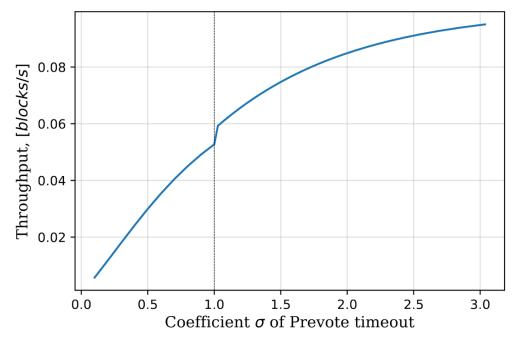

$$w_{1_{FF/F/S}} = Pr[X_{1_{FF/F/S}} \le T_1] = 1 - e^{-\frac{1}{t_{1_{FF/F/S}}}T_1}$$
 $w_2 = Pr[X_2 \le T_2] = 1 - e^{-\frac{1}{t_2}T_2}$
 $w_3 \to 1$

Prevote rates for FF, F, S

$$\overline{VP}_{FF} = 0.0483, \quad \overline{VP}_F = 0.0184, \quad \overline{VP}_S = 0.0021$$


$$t_{1_{FF}}^{-1} = \frac{\overline{VP}_{FF}}{\overline{VP}_F} \frac{1}{3}, \quad t_{1_F}^{-1} = \frac{\overline{VP}_F}{\overline{VP}_F} \frac{1}{3}, \quad t_{1_S}^{-1} = \frac{\overline{VP}_S}{\overline{VP}_F} \frac{1}{3}$$

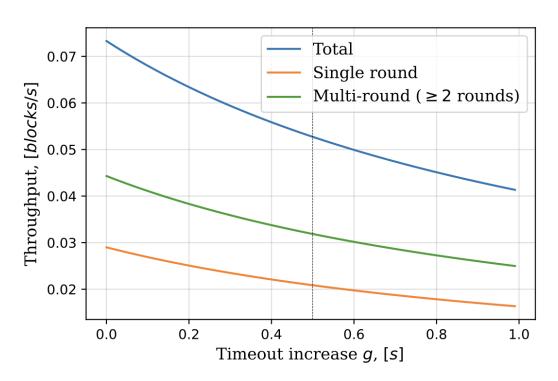
Numerical results: multi-round throughput Non-homogeneous Homogeneous



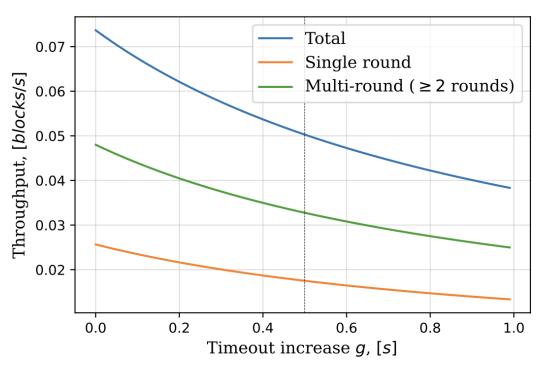
Numerical results: optimal timeout

$$T_1^* = \sigma t_1^*$$
 and $T_2^* = \sigma t_2^*$ \implies For $Round_1$ $w_1^* = w_2^* = 1 - e^{-\sigma}$

Homogeneous validators



Non-homogeneous validators

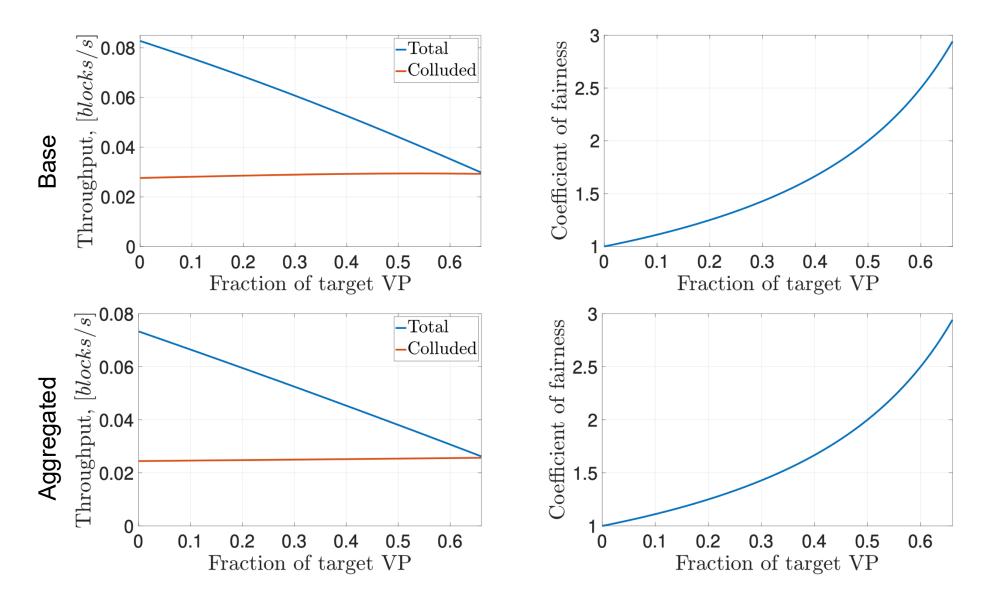

Numerical results: timeout increase

$$\gamma_i = max \left(rac{1}{t_1}, rac{1}{T_1 + (i-1)g}
ight) \quad ext{ and } \quad eta_i = max \left(rac{1}{t_2}, rac{1}{T_2 + (i-1)g}
ight)$$

$$eta_i = maxigg(rac{1}{t_2}, rac{1}{T_2 + (i-1)g}igg)$$

Homogeneous validators

Non-homogeneous validators

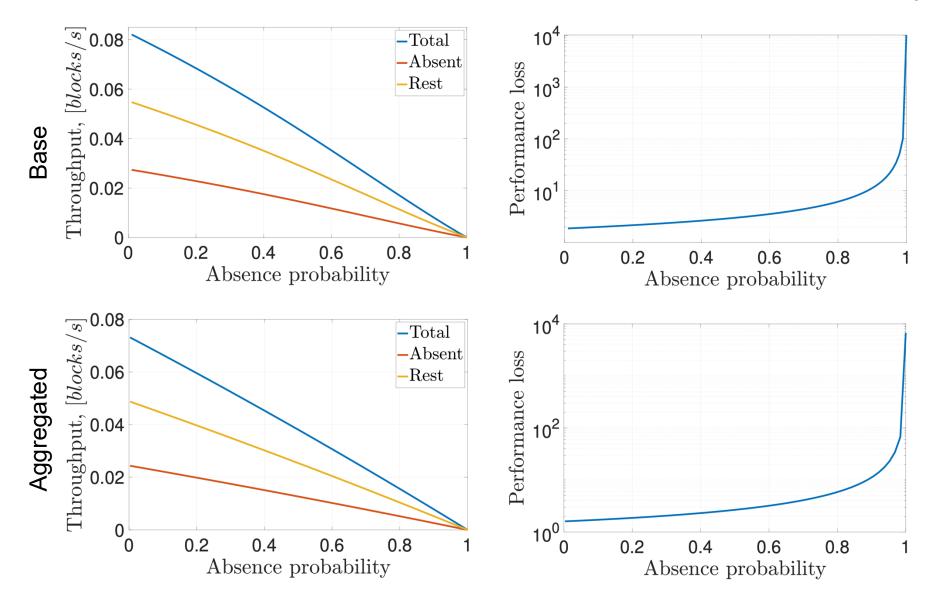

Model with colluded validators

```
\stackrel{def}{=}
   NewHeight
                                       (nh, n).Round_1
      Round_i
                                       (r, d_C n).Propose_{i_C} + (r, d_T n).Propose_{i_T} + (r, d_R n).Propose_{i_R}
                                       (p, w_{1_i}\gamma_i). \frac{Prevote_{i_C}}{Prevote_{i_C}} + (p, (1-w_{1_i})\gamma_i). NilPrevote_i
    Propose_{i_C}
                                       (pv, w_{\mathcal{Z}_i}eta_i). Precommit_{i_C} + (pv, (1-w_{\mathcal{Z}_i})eta_i). Unsuccess_i
    Prevote_{i_{C}}
                                                                                                                                                                                                              Colluded
                                       (pc, w_3\delta_i). Commit<sub>ic</sub> + (pc, (1-w_3)\delta_i). Round<sub>i</sub>
  Precommit_{i_C}
   Commit_{i_C}
                                       (c_C, \eta). New Height
                                       (p, w_{1_i}\gamma_i). Prevote<sub>i</sub> + (p, (1-w_{1_i})\gamma_i). NilPrevote<sub>i</sub>
    Propose_{i_{T}}
                                                                                                                                                                                                               Target
                                       (pv, \beta_i). Unsuccess_i
    Prevote_{i_T}
    Propose_{i_{\mathcal{D}}}
                                       (p, w_{1_i}\gamma_i). Prevote<sub>i<sub>R</sub></sub> + (p, (1 - w_{1_i})\gamma_i). NilPrevote<sub>i</sub>
                                       (pv, w_{\mathcal{Z}_i}eta_i). Precommit_{i_R} + (pv, (1-w_{\mathcal{Z}_i})eta_i). Unsuccess_i
    Prevote_{i_{R}}
                                                                                                                                                                                                              Rest
                                       (pc, w_3\delta_i). \frac{Commit_{i_R}}{Commit_{i_R}} + (pc, (1-w_3)\delta_i). Round_j
  Precommit_{i_R}
                                       (c, \eta). New Height
    Commit_{i_{\mathcal{B}}}
   NilPrevote_i
                                       (npv, \beta_i). Unsuccess_i
                                       (pc, \delta_i). Round;
   Unsuccess_i
where \gamma_i = max \left( \frac{1}{t_1}, \frac{1}{T_1 + (i-1)g} \right), \quad \beta_i = max \left( \frac{1}{t_2}, \frac{1}{T_2 + (i-1)g} \right), \quad \delta_i = \frac{1}{T_3 + (i-1)g}, \quad \eta = \frac{1}{T_4}, i \in \{1, \dots, R\}, \ j = min(i+1, R), \ \text{and} \ d_C = \frac{1}{3}, \quad d_T \in [0, \frac{2}{3}], \quad d_R = 1 - (d_C + d_T), \ \text{with} \ d_R \geq 0
```

Model with absent validators

```
\stackrel{def}{=}
    NewHeight
                                          (nh, n).Round_1
                                \stackrel{def}{=}
                                         (r,d_An).Propose_{i_A}+(r,(1-d_A)n).Propose_{i_B}
       Round_i
                                \stackrel{def}{=}
                                         (p, aw_{1_i}\gamma_i). rac{Prevote_{i_A}}{Prevote_{i_A}} + (p, (1-aw_{1_i})\gamma_i). NilPrevote_i
     Propose_{i,\lambda}
                                         (pv, w_{\mathcal{Z}_i}eta_i). Precommit_{i_A} + (pv, (1-w_{\mathcal{Z}_i})eta_i). rac{Unsuccess_i}{n}
     Prevote_{i_A}
                                                                                                                                                                                                  Absent
                                \stackrel{def}{=}
                                          (pc, w_3\delta_i). \frac{Commit_{i_A}}{} + (pc, (1-w_3)\delta_i). Round_i
  Precommit_{i,\lambda}
                                \stackrel{def}{=}
                                         (c_A, \eta). New Height
     Commit_{i_A}
                                         (p, w_{1_i}\gamma_i). \frac{Prevote_{i_R}}{Prevote_{i_R}} + (p, (1-w_{1_i})\gamma_i). NilPrevote_i
     Propose_{i_{R}}
                                \stackrel{def}{=}
                                         (pv, \overline{aw_{2_i}eta_i}). Precommit_{i_R} + (pv, (1-\overline{aw_{2_i}})eta_i). \overline{Unsuccess_i}
     Prevote_{i_R}
                                                                                                                                                                                                   Rest
                                \stackrel{def}{=}
                                         (pc, w_3\delta_i).\frac{Commit_{i_R}}{} + (pc, (1-w_3)\delta_i).Round_i
  Precommit_{i_R}
                                \stackrel{def}{=}
                                         (c,\eta). New Height
    Commit_{i_R}
   NilPrevote_i
                                          (npv, \beta_i). Unsuccess_i
                                                                                                                                         a - presence probability
                                \stackrel{def}{=}
                                         (pc, \delta_i).Round_i
    Unsuccess_i
\begin{array}{ll} \text{where} & \gamma_i = max \bigg(\frac{1}{t_1}, \frac{\overline{1}}{T_1 + (i-1)g}\bigg), \quad \beta_i = max \bigg(\frac{1}{t_2}, \frac{1}{T_2 + (i-1)g}\bigg), \quad \delta_i = \frac{1}{T_3 + (i-1)g}, \\ \eta = \frac{1}{T_4}, \quad \text{and} \quad d_A = \frac{1}{3}, \quad a \in [0,1] \end{array}
```

Numerical results: colluded attack


Numerical results: colluded attack

$$\phi_v = \frac{\frac{X_v}{X}}{\frac{VP_v}{VP}}$$

 $\frac{X_v}{X}$ - fraction of throughput *produced* by validator(s) v

 $\frac{\mathit{VP}_{\mathit{v}}}{\mathit{VP}}$ - fraction of voting power *possessed* by validator(s) v

Numerical results: absent superminority

Conclusion

- We assessed the performance of Cosmos blockchain studying:
 - Different verification time of round steps
 - Optimal timeout for better throughput
 - Timeout increase dynamics
 - Performance outcomes on colluded validators
 - Performance outcomes of absent validators
- We disccussed unfairness mitigation approaches

