Blockchain Energy Consumption: Unveiling the Impact of Network Topologies

NiRvAna Annual Workshop May 29-31, 2025, Urbino, Italy

Vincenzo Di Perna (PhD Student - UniUrb)

Valerio Schiavoni (Senior lecturer - UniNe)

Francesco Fabris (Professor - UniTs)

Marco Bernardo (Professor - UniUrb)

vincenzo.diperna**a**unicam.it

valerio.schiavoniaunine.ch

ffabris**a**units.it

marco.bernardo**a**uniurb.it

Blockchain: Innovation and the Energy Challenge

• Blockchain as a distributed ledger between (mutually untrusted) nodes.

- Blockchain as a distributed ledger between (mutually untrusted) nodes.
- Widespread adoption of blockchain technology (e.g., Algorand, Ethereum, Solana, Quorum).

- Blockchain as a distributed ledger between (mutually untrusted) nodes.
- Widespread adoption of blockchain technology (e.g., Algorand, Ethereum, Solana, Quorum).
- Technological versatility across diverse sectors such as finance, supply chain, healthcare, and public administration.

- Blockchain as a distributed ledger between (mutually untrusted) nodes.
- Widespread adoption of blockchain technology (e.g., Algorand, Ethereum, Solana, Quorum).
- Technological versatility across diverse sectors such as finance, supply chain, healthcare, and public administration.
- The sustainability challenge: High energy consumption raises environmental concerns.

- Blockchain as a distributed ledger between (mutually untrusted) nodes.
- Widespread adoption of blockchain technology (e.g., Algorand, Ethereum, Solana, Quorum).
- Technological versatility across diverse sectors such as finance, supply chain, healthcare, and public administration.
- The sustainability challenge: High energy consumption raises environmental concerns.
- The role of network topology impacts workload distribution, latency, and overall blockchain energy efficiency.

Blockchain energy consumption challenges

• Research focus:

- Research focus:
 - o Optimizing the consensus protocol.

- Research focus:
 - o Optimizing the consensus protocol.
 - Hardware employed by participating nodes.

- Research focus:
 - Optimizing the consensus protocol.
 - Hardware employed by participating nodes.
 - Methods for data optimization (e.g., data sharding).

- Research focus:
 - Optimizing the consensus protocol.
 - Hardware employed by participating nodes.
 - Methods for data optimization (e.g., data sharding).
 - Adoption of renewable energy sources.

- Research focus:
 - Optimizing the consensus protocol.
 - Hardware employed by participating nodes.
 - Methods for data optimization (e.g., data sharding).
 - Adoption of renewable energy sources.
- Energy consumption analysis through predictive evaluations (e.g., via testbed and benchmarking frameworks) and post-deployment analysis (e.g., by means of visualization tools and measures).

- Research focus:
 - Optimizing the consensus protocol.
 - Hardware employed by participating nodes.
 - Methods for data optimization (e.g., data sharding).
 - Adoption of renewable energy sources.
- Energy consumption analysis through predictive evaluations (e.g., via testbed and benchmarking frameworks) and post-deployment analysis (e.g., by means of visualization tools and measures).
 - Very few existing blockchain benchmarking tools can analyze energy consumption, and none of them can fully model a network topology.

- Research focus:
 - Optimizing the consensus protocol.
 - Hardware employed by participating nodes.
 - Methods for data optimization (e.g., data sharding).
 - Adoption of renewable energy sources.
- Energy consumption analysis through predictive evaluations (e.g., via testbed and benchmarking frameworks) and post-deployment analysis (e.g., by means of visualization tools and measures).
 - Very few existing blockchain benchmarking tools can analyze energy consumption, and none of them can fully model a network topology.
- Despite its significant impact on workload distribution, and communication latency, network topology remains largely overlooked.

LILITH: A Topology-Aware Benchmark Tool for Blockchains

1. Integrates Diablo benchmark suite and the distributed network topology emulator Kollaps.

- 1. Integrates Diablo benchmark suite and the distributed network topology emulator Kollaps.
- 2. Uses the Intel Running Average Power Limit (RAPL) energy indicators to measure and observe the energy consumption of several blockchains (Algorand, Diem, Ethereum Clique, Quorum IBFT, Solana) under different topologies.

- 1. Integrates Diablo benchmark suite and the distributed network topology emulator Kollaps.
- 2. Uses the Intel Running Average Power Limit (RAPL) energy indicators to measure and observe the energy consumption of several blockchains (Algorand, Diem, Ethereum Clique, Quorum IBFT, Solana) under different topologies.
- 3. Serving a controlled environment.

- 1. Integrates Diablo benchmark suite and the distributed network topology emulator Kollaps.
- 2. Uses the Intel Running Average Power Limit (RAPL) energy indicators to measure and observe the energy consumption of several blockchains (Algorand, Diem, Ethereum Clique, Quorum IBFT, Solana) under different topologies.

- 3. Serving a controlled environment.
- 4. Assessing the feasibility of achieving comparable performance in a cost-effective cluster setup.

Research objectives

Research objectives

Analyze the impact of different network topologies (fat-tree, full mesh, hypercube, torus, scale-free) on the energy consumption of five blockchain platforms (Algorand, Diem, Ethereum Clique, Quorum IBFT, Solana).

Research objectives

- Analyze the impact of different network topologies (fat-tree, full mesh, hypercube, torus, scale-free) on the energy consumption of five blockchain platforms (Algorand, Diem, Ethereum Clique, Quorum IBFT, Solana).
- Evaluation across multiple workloads simulating real-world scenarios (PayPal, VISA, GAFAM).

Research objectives

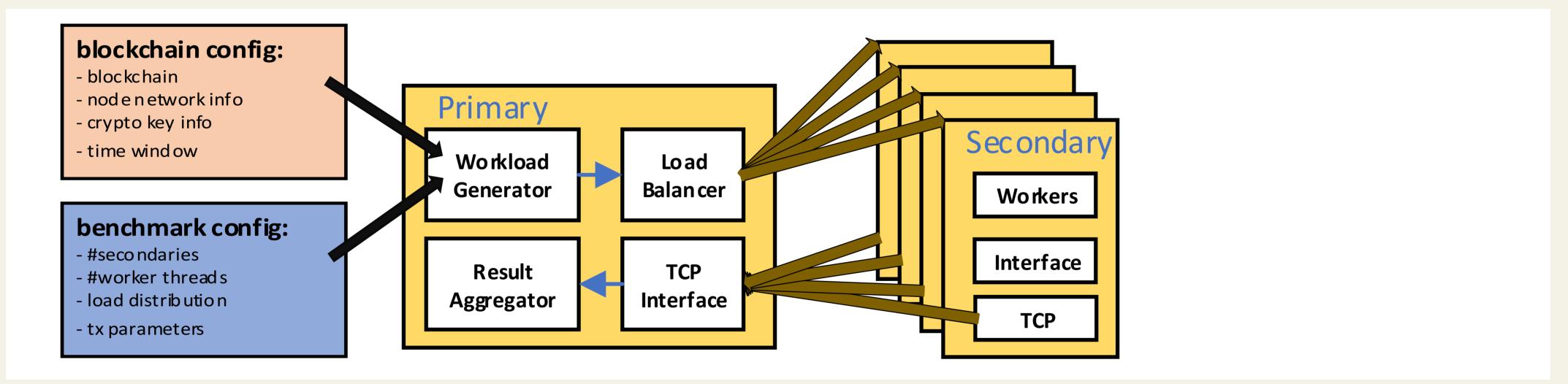
- Analyze the impact of different network topologies (fat-tree, full mesh, hypercube, torus, scale-free) on the energy consumption of five blockchain platforms (Algorand, Diem, Ethereum Clique, Quorum IBFT, Solana).
- Evaluation across multiple workloads simulating real-world scenarios (PayPal, VISA, GAFAM).
- Comparing network configurations to determine which optimize energy consumption while maintaining performance.

• Versatile blockchain benchmark framework.

- Versatile blockchain benchmark framework.
- Define, evaluate and compare different blockchains under realistic and tunable workloads/Dapps (e.g., Exchange, Web Service).

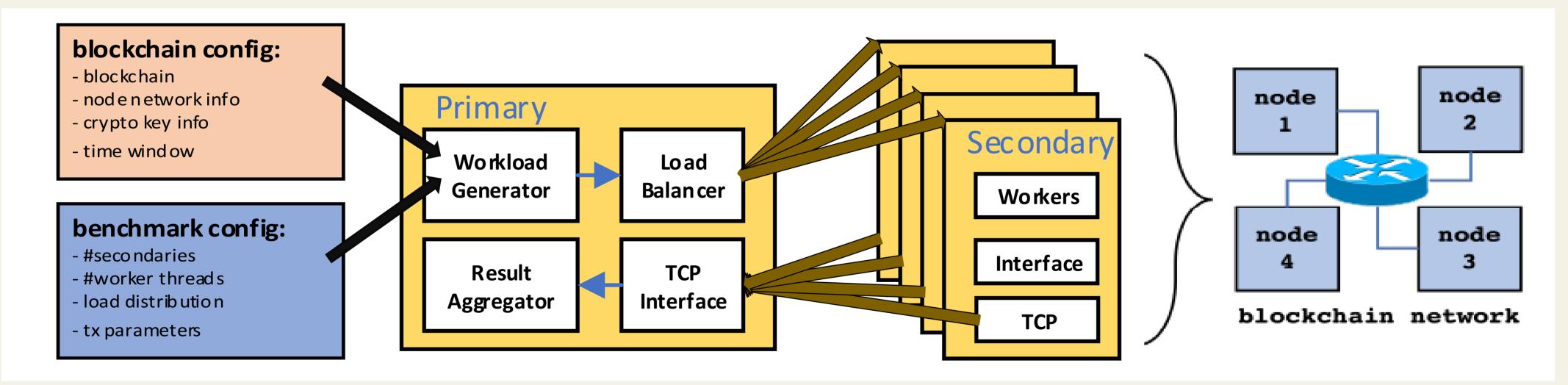
- Versatile blockchain benchmark framework.
- Define, evaluate and compare different blockchains under realistic and tunable workloads/Dapps (e.g., Exchange, Web Service).
- Enhanced distributed workload generation.

- Versatile blockchain benchmark framework.
- Define, evaluate and compare different blockchains under realistic and tunable workloads/Dapps (e.g., Exchange, Web Service).
- Enhanced distributed workload generation.


blockchain config:

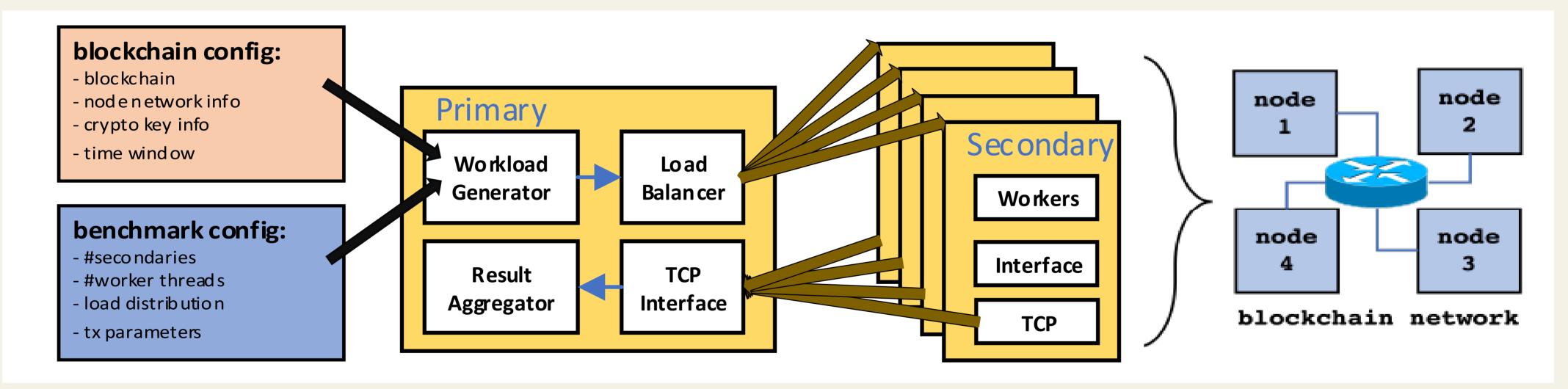
- blockchain
- nodenetwork info
- crypto key info
- time window

benchmark config:


- #secondaries
- #worker threads
- load distribution
- tx parameters
- **Primary** element transmits a description of the transactions to Secondaries elements, waits for all of them to be ready and informs when to start the benchmark.

- Versatile blockchain benchmark framework.
- Define, evaluate and compare different blockchains under realistic and tunable workloads/Dapps (e.g., Exchange, Web Service).
- Enhanced distributed workload generation.

• **Primary** element transmits a description of the transactions to Secondaries elements, waits for all of them to be ready and informs when to start the benchmark.


- Versatile blockchain benchmark framework.
- Define, evaluate and compare different blockchains under realistic and tunable workloads/Dapps (e.g., Exchange, Web Service).
- Enhanced distributed workload generation.

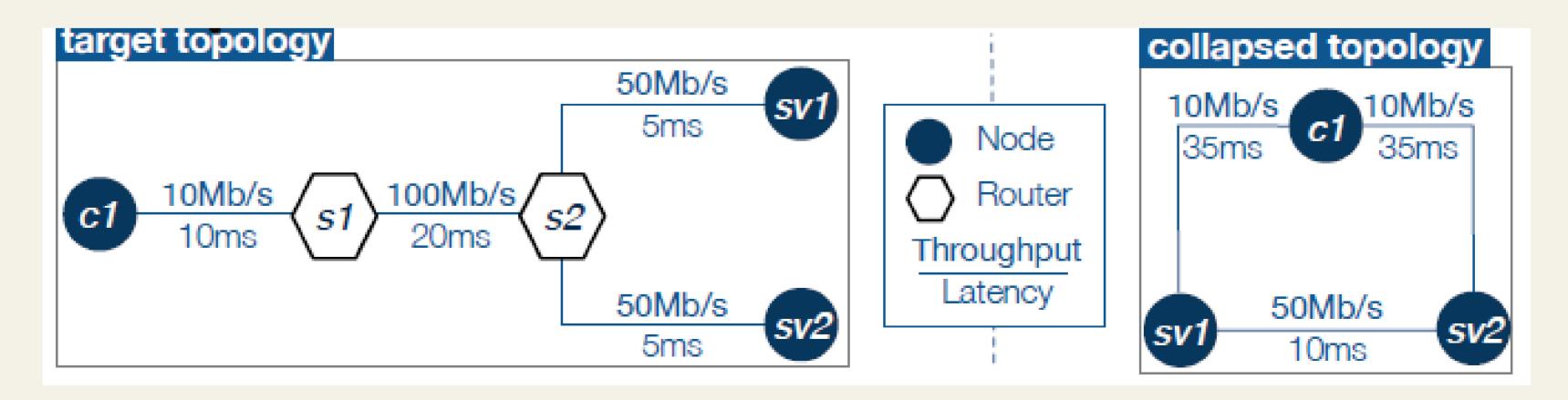
• **Primary** element transmits a description of the transactions to Secondaries elements, waits for all of them to be ready and informs when to start the benchmark.

DIABLO BENCHMARK

- Versatile blockchain benchmark framework.
- Define, evaluate and compare different blockchains under realistic and tunable workloads/Dapps (e.g., Exchange, Web Service).
- Enhanced distributed workload generation.

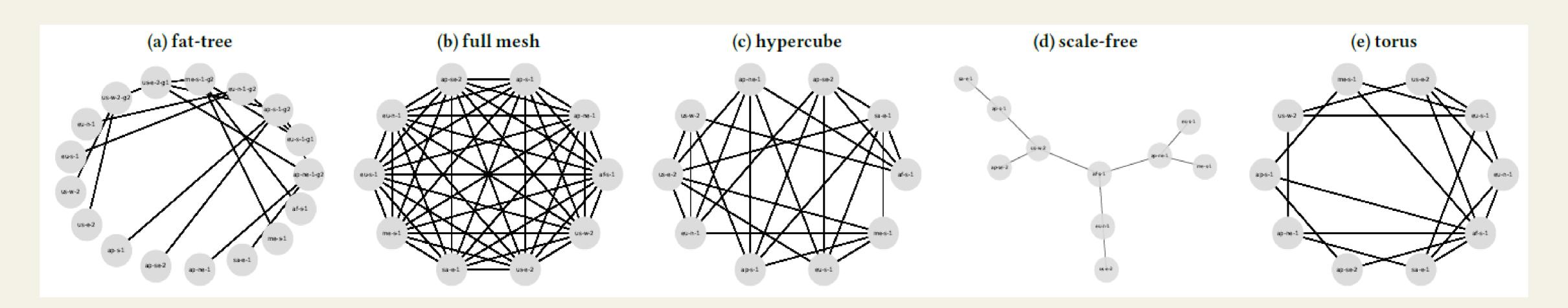
- **Primary** element transmits a description of the transactions to Secondaries elements, waits for all of them to be ready and informs when to start the benchmark.
- Each **Secondary** sends its results to the Primary and an aggregator collects them indicating the timestamps that can be used to generate time series, analyze latencies, etc.

• Decentralized network emulator for large-scale applications.

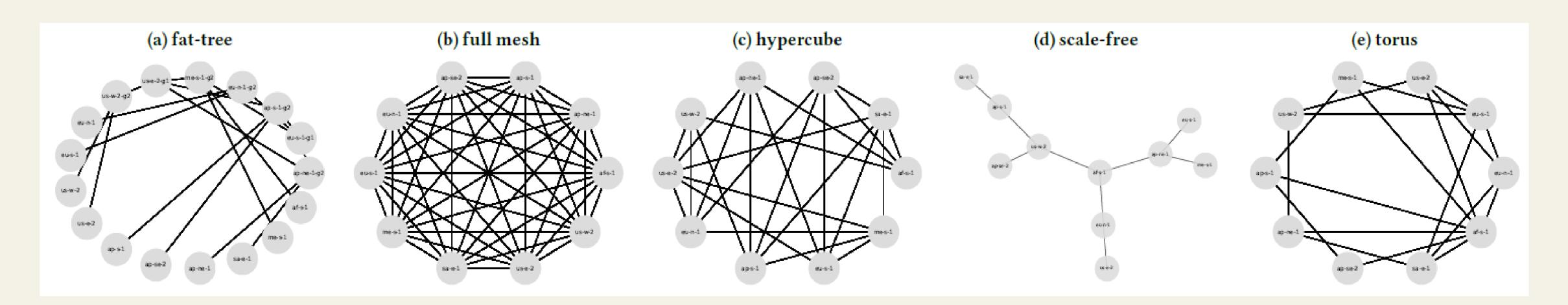

- Decentralized network emulator for large-scale applications.
- Observable end-to-end properties (latency, jitter, bandwidth and packet loss) without emulating the full-state of network elements (routers, switches).

- Decentralized network emulator for large-scale applications.
- Observable end-to-end properties (latency, jitter, bandwidth and packet loss) without emulating the full-state of network elements (routers, switches).
- Fully-distributed emulation model allowing to scale without sacrificing accuracy.

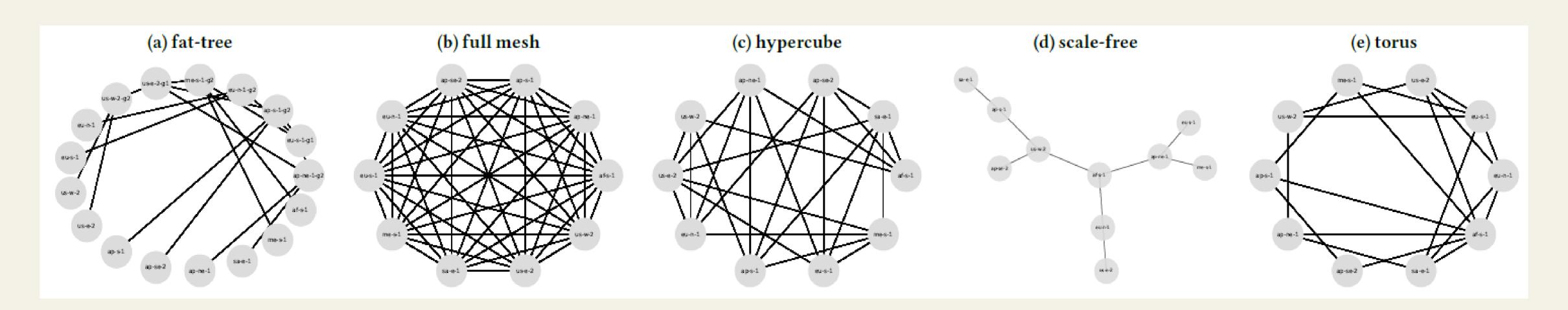
- Decentralized network emulator for large-scale applications.
- Observable end-to-end properties (latency, jitter, bandwidth and packet loss) without emulating the full-state of network elements (routers, switches).
- Fully-distributed emulation model allowing to scale without sacrificing accuracy.
- Quick changes to emulate dynamic events (e.g., link removals).

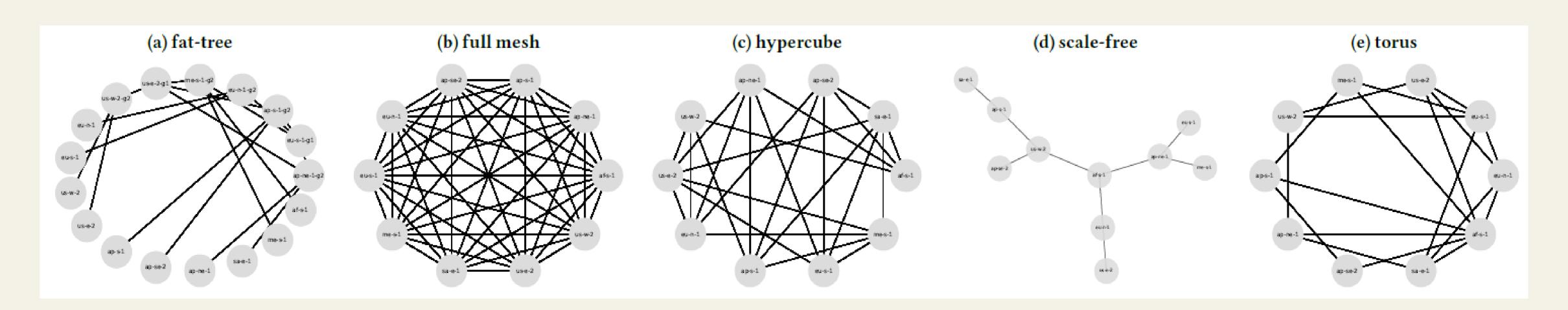

- Decentralized network emulator for large-scale applications.
- Observable end-to-end properties (latency, jitter, bandwidth and packet loss) without emulating the full-state of network elements (routers, switches).
- Fully-distributed emulation model allowing to scale without sacrificing accuracy.
- Quick changes to emulate dynamic events (e.g., link removals).
- Obtain a collapsed network topology.

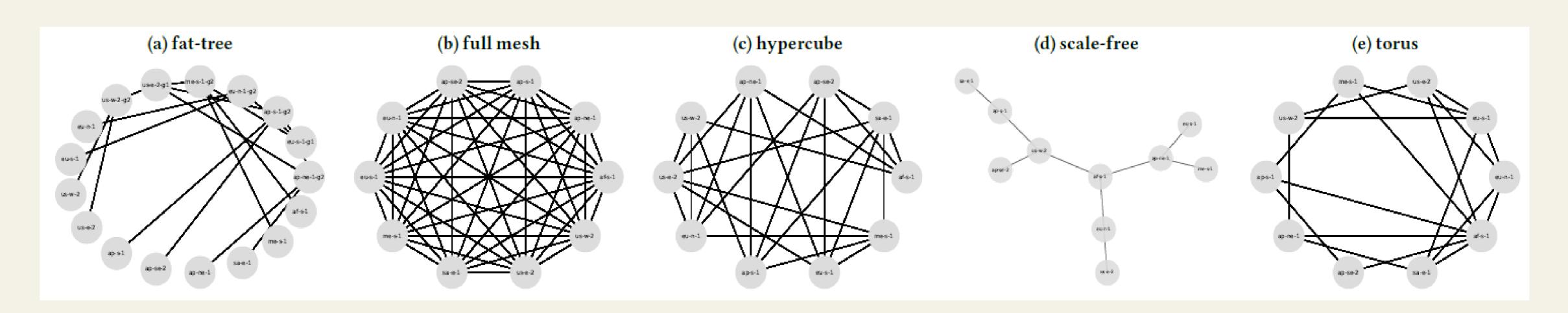
- Decentralized network emulator for large-scale applications.
- Observable end-to-end properties (latency, jitter, bandwidth and packet loss) without emulating the full-state of network elements (routers, switches).
- Fully-distributed emulation model allowing to scale without sacrificing accuracy.
- Quick changes to emulate dynamic events (e.g., link removals).
- Obtain a collapsed network topology.



Real-world network topologies employed


• Fat-tree. A hierarchical topology consisting of core, aggregation, and edge layers.


- Fat-tree. A hierarchical topology consisting of core, aggregation, and edge layers.
- Full mesh. Each node is connected to every other node, ensuring maximum connectivity.


- Fat-tree. A hierarchical topology consisting of core, aggregation, and edge layers.
- Full mesh. Each node is connected to every other node, ensuring maximum connectivity.
- Hypercube. Each node is connected to its adjacent nodes in a binary-like fashion, forming a multidimensional cube.

- Fat-tree. A hierarchical topology consisting of core, aggregation, and edge layers.
- Full mesh. Each node is connected to every other node, ensuring maximum connectivity.
- Hypercube. Each node is connected to its adjacent nodes in a binary-like fashion, forming a multidimensional cube.
- Scale-free. A few nodes have significantly more connections than others.

- Fat-tree. A hierarchical topology consisting of core, aggregation, and edge layers.
- Full mesh. Each node is connected to every other node, ensuring maximum connectivity.
- Hypercube. Each node is connected to its adjacent nodes in a binary-like fashion, forming a multidimensional cube.
- Scale-free. A few nodes have significantly more connections than others.
- Torus. Resembling a grid where each node is connected to its adjacent nodes in a wrap-around fashion.

• Algorand. Featuring Silvio Micali, employs a pure Proof of Stake (PoS) consensus algorithm, ensuring swift transaction finality and efficient scalability through node selection using sortition.

Blockchain	Consensus	VM	DApp	Block Finality	Claimed
				(s)	TPS
Algorand	BA [41]	AVM	PyTeal [8]	3.3 [9]	7.5K [9]
Diem	HotStuff [82]	MoveVM	Move	100 [61]	60-1K [83]
Ethereum	Clique [70]	geth	Solidity	10-20 [4]	10-15 [67]
Quorum	IBFT [66]	geth	Solidity	2-15 [52]	0.7K-2.5K [10]
Solana	TowerBFT [80]	Sealevel	Solang	12 [42]	65K [11]

- Algorand. Featuring Silvio Micali, employs a pure Proof of Stake (PoS) consensus algorithm, ensuring swift transaction finality and efficient scalability through node selection using sortition.
- **Diem.** Formerly known as Libra (Facebook), employs a modified HotStuff consensus protocol to ensure deterministic resolution of the consensus problem, reduce communication overhead, and imposes a memory pool limit of 100 transactions per signer, with a sequence number in each transaction, akin to Ethereum.

Blockchain	Consensus	VM	DApp	Block Finality	Claimed
				(s)	TPS
Algorand	BA [41]	AVM	PyTeal [8]	3.3 [9]	7.5K [9]
Diem	HotStuff [82]	MoveVM	Move	100 [61]	60-1K [83]
Ethereum	Clique [70]	geth	Solidity	10-20[4]	10-15 [67]
Quorum	IBFT [66]	geth	Solidity	2-15 [52]	0.7K - 2.5K[10]
Solana	TowerBFT [80]	Sealevel	Solang	12 [42]	65K [11]

- Algorand. Featuring Silvio Micali, employs a pure Proof of Stake (PoS) consensus algorithm, ensuring swift transaction finality and efficient scalability through node selection using sortition.
- **Diem.** Formerly known as Libra (Facebook), employs a modified HotStuff consensus protocol to ensure deterministic resolution of the consensus problem, reduce communication overhead, and imposes a memory pool limit of 100 transactions per signer, with a sequence number in each transaction, akin to Ethereum.
- Ethereum Clique (Proof-of-Authority). Validates transactions in a round-robin fashion through approved validators with a minimum block interval.

Blockchain	Consensus	VM	DApp	Block Finality	Claimed
				(s)	TPS
Algorand	BA [41]	AVM	PyTeal [8]	3.3 [9]	7.5K [9]
Diem	HotStuff [82]	MoveVM	Move	100 [61]	60-1K [83]
Ethereum	Clique [70]	geth	Solidity	10-20 [4]	10-15 [67]
Quorum	IBFT [66]	geth	Solidity	2-15 [52]	0.7K-2.5K [10]
Solana	TowerBFT [80]	Sealevel	Solang	12 [42]	65K [11]

- Algorand. Featuring Silvio Micali, employs a pure Proof of Stake (PoS) consensus algorithm, ensuring swift transaction finality and efficient scalability through node selection using sortition.
- **Diem.** Formerly known as Libra (Facebook), employs a modified HotStuff consensus protocol to ensure deterministic resolution of the consensus problem, reduce communication overhead, and imposes a memory pool limit of 100 transactions per signer, with a sequence number in each transaction, akin to Ethereum.
- Ethereum Clique (Proof-of-Authority). Validates transactions in a round-robin fashion through approved validators with a minimum block interval.
- Quorum IBFT. A permissioned Ethereum variant maintained by ConsenSys for enterprise use, provides a web socket streaming API for accessing real-time blockchain data with a 1-second block period.

Blockchain	Consensus	VM	DApp	Block Finality	Claimed
				(s)	TPS
Algorand	BA [41]	AVM	PyTeal [8]	3.3 [9]	7.5K [9]
Diem	HotStuff [82]	MoveVM	Move	100 [61]	60-1K [83]
Ethereum	Clique [70]	geth	Solidity	10-20 [4]	10-15 [67]
Quorum	IBFT [66]	geth	Solidity	2-15 [52]	0.7K - 2.5K[10]
Solana	TowerBFT [80]	Sealevel	Solang	12 [42]	65K [11]

- Algorand. Featuring Silvio Micali, employs a pure Proof of Stake (PoS) consensus algorithm, ensuring swift transaction finality and efficient scalability through node selection using sortition.
- **Diem.** Formerly known as Libra (Facebook), employs a modified HotStuff consensus protocol to ensure deterministic resolution of the consensus problem, reduce communication overhead, and imposes a memory pool limit of 100 transactions per signer, with a sequence number in each transaction, akin to Ethereum.
- Ethereum Clique (Proof-of-Authority). Validates transactions in a round-robin fashion through approved validators with a minimum block interval.
- Quorum IBFT. A permissioned Ethereum variant maintained by ConsenSys for enterprise use, provides a web socket streaming API for accessing real-time blockchain data with a 1-second block period.
- Solana. A high-performance blockchain utilizing Proof-of-History combined with Proof-of-Stake for scalability and throughput, requires 30 confirmations for transaction finality and appends blocks every 400 milliseconds by replacing both Merkle Patricia Trie and ECDSA.

Blockchain	Consensus	VM	DApp	Block Finality (s)	Claimed TPS
Algorand	BA [41]	AVM	PyTeal [8]	3.3 [9]	7.5K [9]
Diem	HotStuff [82]	MoveVM	Move	100 [61]	60-1K [83]
Ethereum	Clique [70]	geth	Solidity	10-20[4]	10-15 [67]
Quorum	IBFT [66]	geth	Solidity	2-15 [52]	0.7K-2.5K [10]
Solana	TowerBFT [80]	Sealevel	Solang	12 [42]	65K [11]

• Based on both native transactions and smart contract requests.

- Based on both native transactions and smart contract requests.
- PayPal payment system workload averages 193 Transaction per second (TPS). For simplicity, however, we modeled it as a constant workload of 200 TPS over 5 minutes in our tests.

Workload	Type	Duration (s)	Scenario	TPS
PayPal	Transfer Tx	300	Constant rate	200
VISA	Transfer Tx	300	Constant rate	1,800
GAFAM	Smart contract	180	Burst	20,000 down to 100

- Based on both native transactions and smart contract requests.
- PayPal payment system workload averages 193 Transaction per second (TPS). For simplicity, however, we modeled it as a constant workload of 200 TPS over 5 minutes in our tests.
- **VISA** payment system workload averages 1,700 TPS. For simplicity, however, we modeled it as a constant workload of 1,800 TPS over 5 minutes in our tests.

Workload	Type	Duration (s)	Scenario	TPS
PayPal	Transfer Tx	300	Constant rate	200
VISA	Transfer Tx	300	Constant rate	1,800
GAFAM	Smart contract	180	Burst	20,000 down to 100

- Based on both native transactions and smart contract requests.
- PayPal payment system workload averages 193 Transaction per second (TPS). For simplicity, however, we modeled it as a constant workload of 200 TPS over 5 minutes in our tests.
- **VISA** payment system workload averages 1,700 TPS. For simplicity, however, we modeled it as a constant workload of 1,800 TPS over 5 minutes in our tests.
- GAFAM. Implemented as a financial market smart contract with functions to buy and check the availability of the stocks for Google, Apple, Facebook, Amazon and Microsoft. The workload operates for 3 minutes, peaking at 19,800 TPS before stabilizing between 25 and 140 TPS. For simplicity, we have rounded the peak to 20,000 TPS.

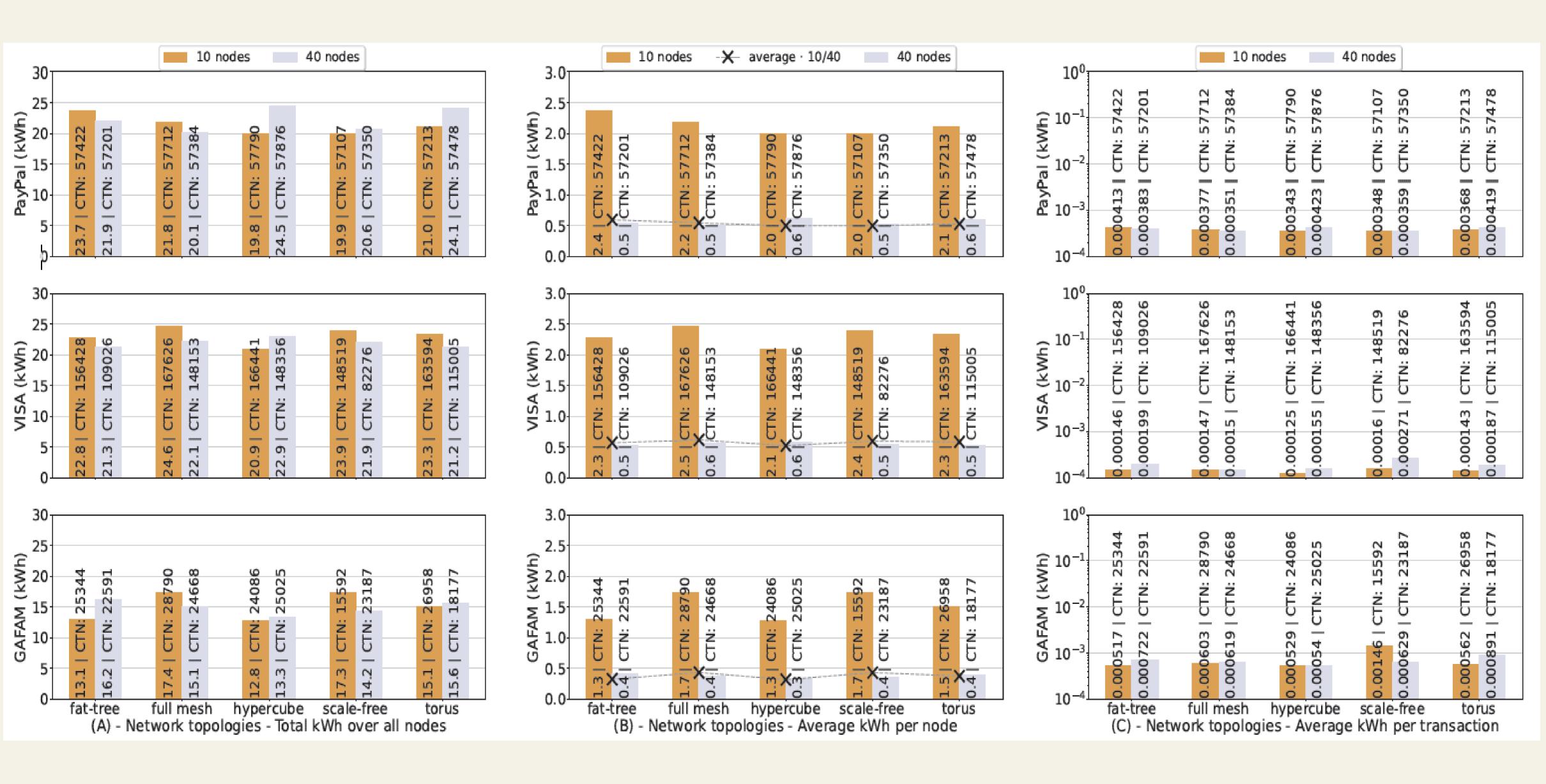
Workload	Type	Duration (s)	Scenario	TPS
PayPal	Transfer Tx	300	Constant rate	200
VISA	Transfer Tx	300	Constant rate	1,800
GAFAM	Smart contract	180	Burst	20,000 down to 100

 Fat-tree and full mesh are the most energy-efficient topologies across all blockchains, particularly in handling intensive workloads.

- Fat-tree and full mesh are the most energy-efficient topologies across
 all blockchains, particularly in handling intensive workloads.
- **Hypercube** performs well for transaction processing workloads, especially for Algorand and Diem, while **scale-free** and **torus** topologies show inefficiencies with certain types of transactions.

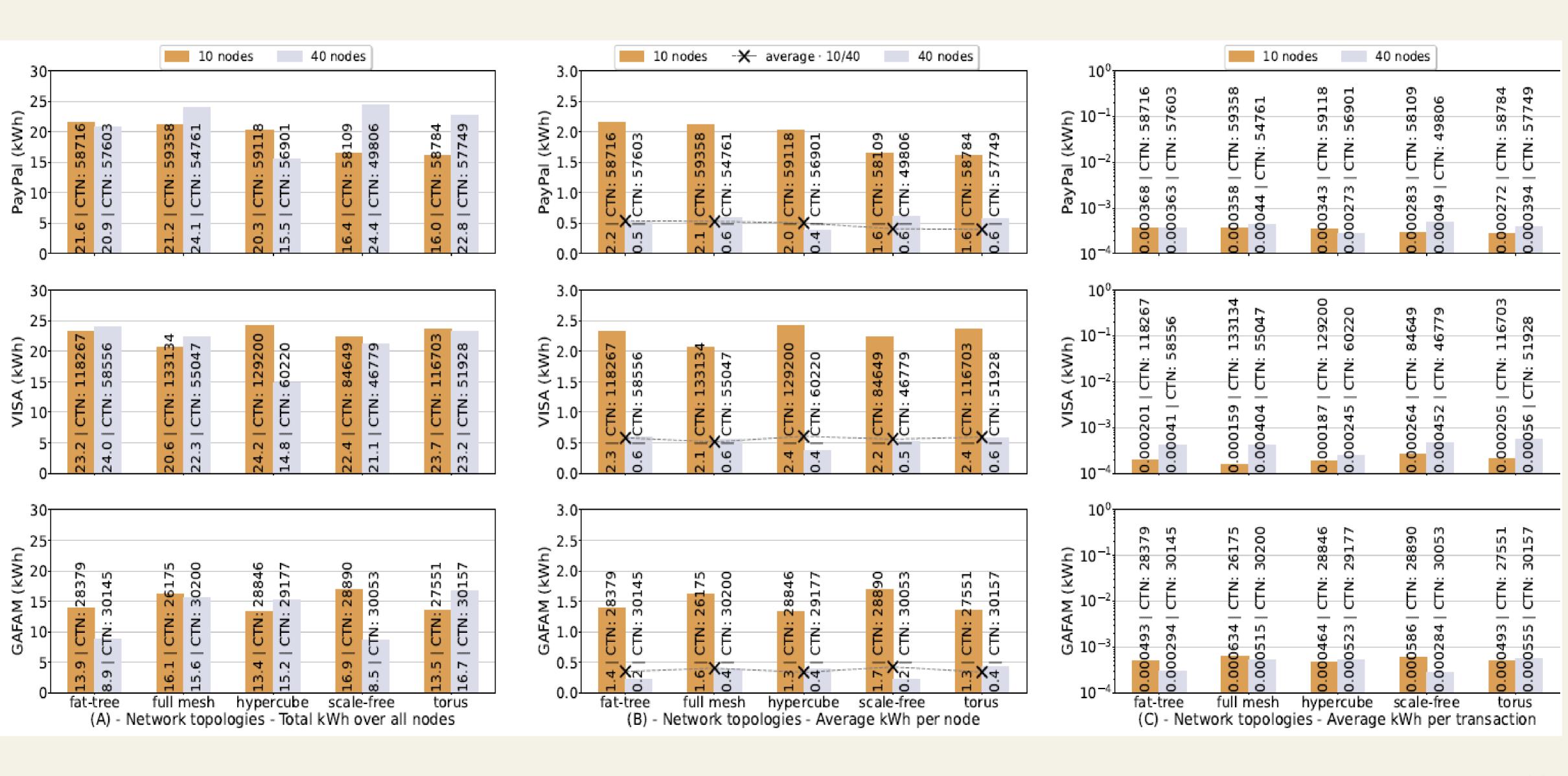
- Fat-tree and full mesh are the most energy-efficient topologies across all blockchains, particularly in handling intensive workloads.
- Hypercube performs well for transaction processing workloads, especially for Algorand and Diem, while scale-free and torus topologies show inefficiencies with certain types of transactions.
- **Torus** underperforms in energy efficiency, particularly in Ethereum Clique and Solana, due to conflicts with increasing network size.

- Fat-tree and full mesh are the most energy-efficient topologies across all blockchains, particularly in handling intensive workloads.
- Hypercube performs well for transaction processing workloads, especially for Algorand and Diem, while scale-free and torus topologies show inefficiencies with certain types of transactions.
- **Torus** underperforms in energy efficiency, particularly in Ethereum Clique and Solana, due to conflicts with increasing network size.
- Algorand and Diem benefit significantly from topologies like full mesh and hypercube, maintaining low energy consumption per transaction.

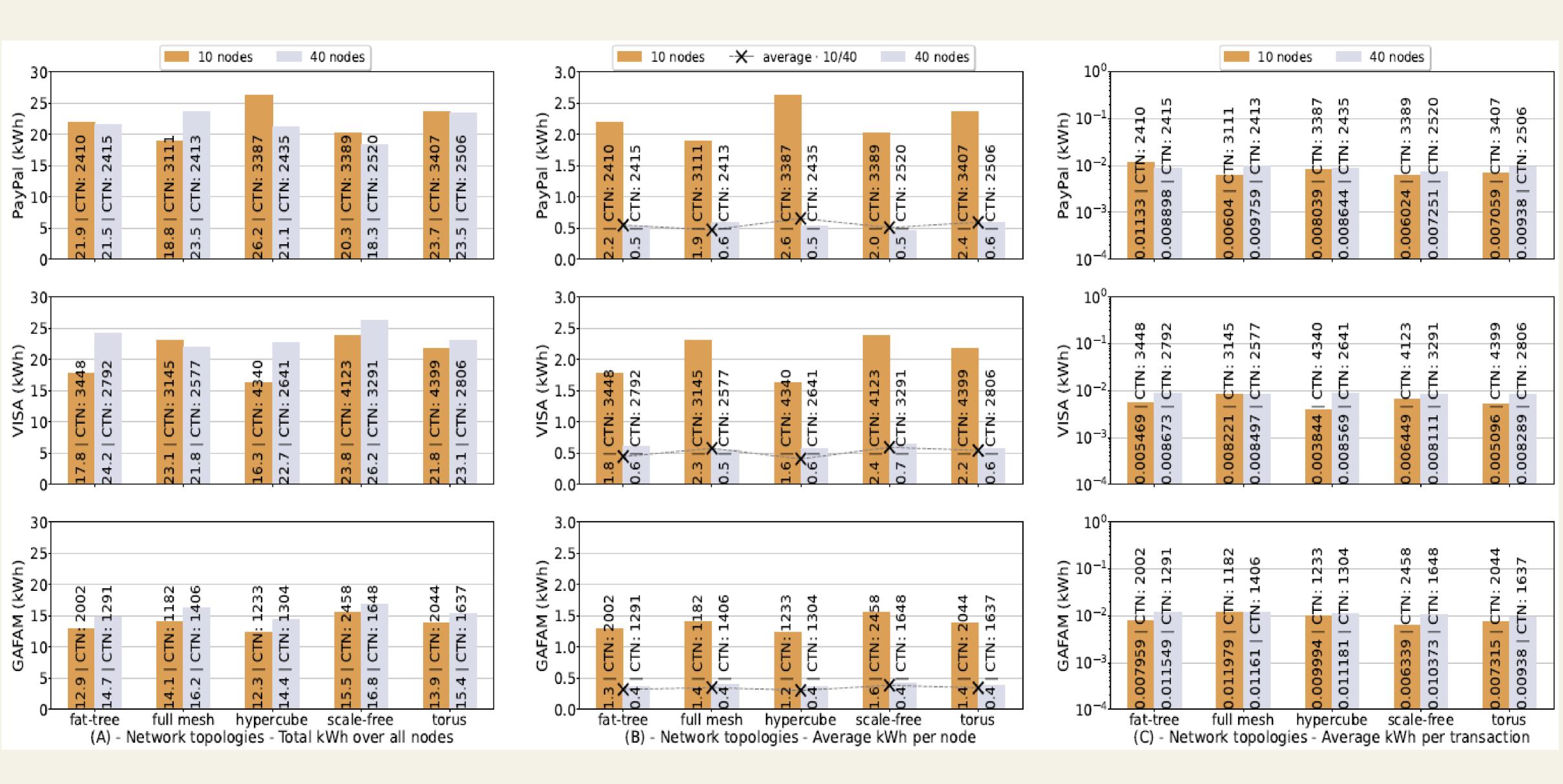

- Fat-tree and full mesh are the most energy-efficient topologies across all blockchains, particularly in handling intensive workloads.
- Hypercube performs well for transaction processing workloads, especially for Algorand and Diem, while scale-free and torus topologies show inefficiencies with certain types of transactions.
- **Torus** underperforms in energy efficiency, particularly in Ethereum Clique and Solana, due to conflicts with increasing network size.
- Algorand and Diem benefit significantly from topologies like full mesh and hypercube, maintaining low energy consumption per transaction.
- Ethereum Clique shows the highest energy consumption per transaction, regardless of the underlying topology.

- Fat-tree and full mesh are the most energy-efficient topologies across all blockchains, particularly in handling intensive workloads.
- **Hypercube** performs well for transaction processing workloads, especially for Algorand and Diem, while **scale-free** and **torus** topologies show inefficiencies with certain types of transactions.
- **Torus** underperforms in energy efficiency, particularly in Ethereum Clique and Solana, due to conflicts with increasing network size.
- Algorand and Diem benefit significantly from topologies like full mesh and hypercube, maintaining low energy consumption per transaction.
- Ethereum Clique shows the highest energy consumption per transaction, regardless of the underlying topology.
- Quorum IBFT experiences increased energy consumption with more demanding workloads, especially under fat-tree, hypercube, and torus topologies.

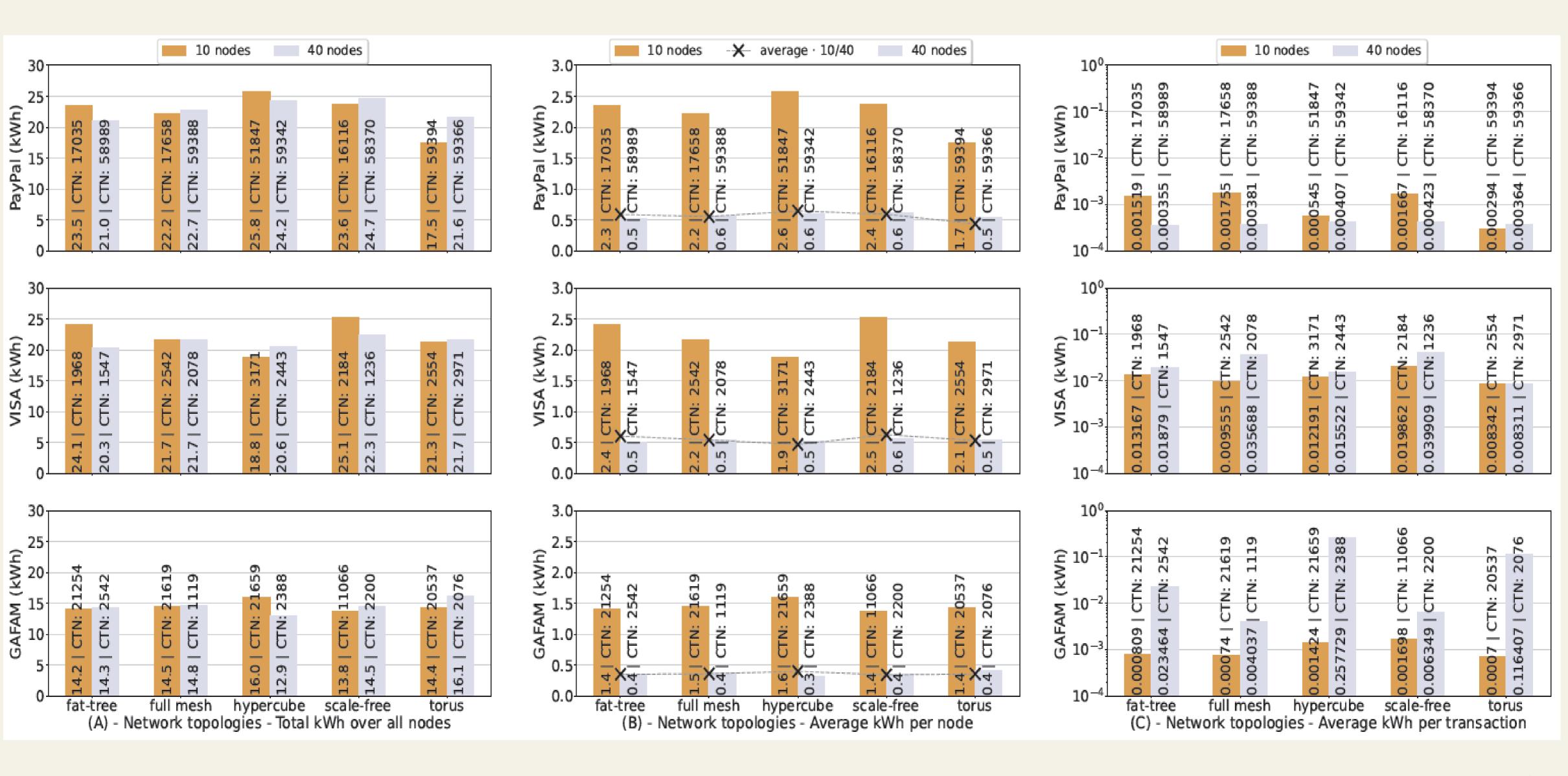
- Fat-tree and full mesh are the most energy-efficient topologies across all blockchains, particularly in handling intensive workloads.
- **Hypercube** performs well for transaction processing workloads, especially for Algorand and Diem, while **scale-free** and **torus** topologies show inefficiencies with certain types of transactions.
- **Torus** underperforms in energy efficiency, particularly in Ethereum Clique and Solana, due to conflicts with increasing network size.
- Algorand and Diem benefit significantly from topologies like full mesh and hypercube, maintaining low energy consumption per transaction.
- Ethereum Clique shows the highest energy consumption per transaction, regardless of the underlying topology.
- Quorum IBFT experiences increased energy consumption with more demanding workloads, especially under fat-tree, hypercube, and torus topologies.
- Solana demonstrates high energy demands and operational failures in larger node setups.


RESULTS #1

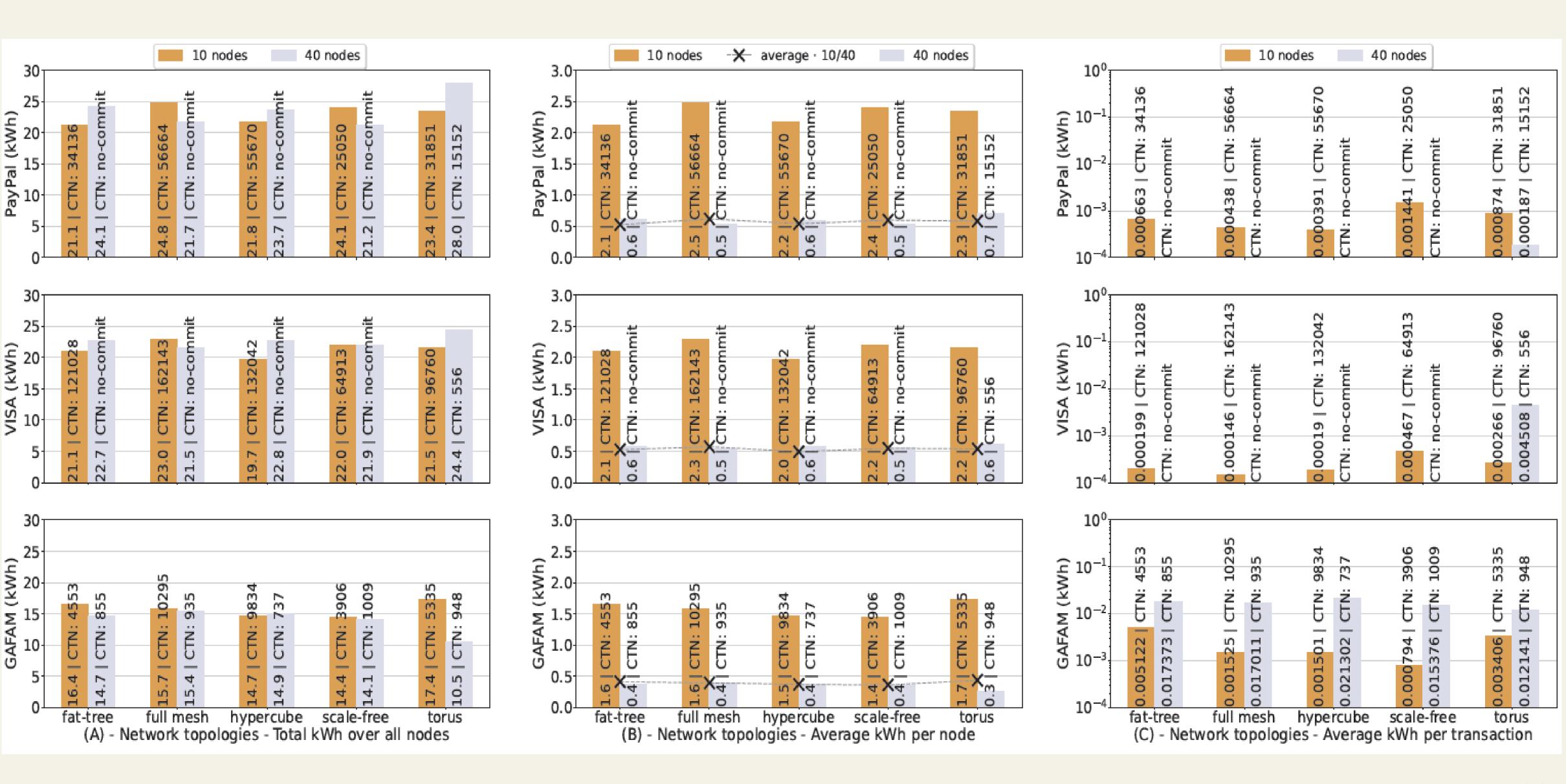
Algorand energy consumption (kWh)


RESULTS #2

Diem energy consumption (kWh)


RESULTS #3

Ethereum Clique energy consumption (kWh)


RESULTS #4

Quorum IBFT energy consumption (kWh)

RESULTS #5

Solana energy consumption (kWh)

 Network topology drives blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.

- Network topology drives blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.
- Aligning blockchain architectures with efficient network topologies impact scalability and sustainability.

- Network topology drives blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.
- Aligning blockchain architectures with efficient network topologies impact scalability and sustainability.
- Scale up the network size by leveraging multiple clusters and a more heterogeneous set of machines for additional energy assessments.

- Network topology drives Collect more runs. blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.
- Aligning blockchain architectures with efficient network topologies impact scalability and sustainability.
- Scale up the network size by leveraging multiple clusters and a more heterogeneous set of machines for additional energy assessments.

- Network topology drives blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.
- Aligning blockchain architectures with efficient network topologies impact scalability and sustainability.
- Scale up the network size by leveraging multiple clusters and a more heterogeneous set of machines for additional energy assessments.

- Collect more runs.
 - Enable energy measurements at the containers level.

- Network topology drives blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.
- Aligning blockchain architectures with efficient network topologies impact scalability and sustainability.
- Scale up the network size by leveraging multiple clusters and a more heterogeneous set of machines for additional energy assessments.

- Collect more runs.
- Enable energy measurements at the containers level.
- Include economic impact analysis and assess the environmental impact beyond energy consumption.

- Network topology drives blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.
- Aligning blockchain architectures with efficient network topologies impact scalability and sustainability.
- Scale up the network size by leveraging multiple clusters and a more heterogeneous set of machines for additional energy assessments.

- Collect more runs.
- Enable energy measurements at the containers level.
- Include economic impact analysis and assess the environmental impact beyond energy consumption.
- Experiments with network dynamics that simulate real-world events such as node churn and connectivity changes.

- Network topology drives blockchain efficiency: full mesh and fat-tree structures with protocols like Algorand ensure low energy use under load.
- Aligning blockchain architectures with efficient network topologies impact scalability and sustainability.
- Scale up the network size by leveraging multiple clusters and a more heterogeneous set of machines for additional energy assessments.

- Collect more runs.
- Enable energy measurements at the containers level.
- Include economic impact analysis and assess the environmental impact beyond energy consumption.
- Experiments with network dynamics that simulate real-world events such as node churn and connectivity changes.
- Implement and compare other (potentially new) blockchain protocol as well as topologies and workloads.

Thanks for your attention

References

Vincent Gramoli, Rachid Guerraoui, Andrei Lebedev, Chris Natoli, and Gauthier Voron. 2023. *Diablo: A Benchmark Suite for Blockchains*. In *Proceedings of the Eighteenth European Conference on Computer Systems* (EuroSys '23). Association for Computing Machinery, New York, NY, USA, 540-556. https://doi.org/10.1145/3552326.3567482

P. Gouveia, J. Neves, C. Segarra, L. Liechti, S. Issa, V. Schiavoni, and M. Matos. 2020. *Kollaps: Decentralized and Dynamic Topology Emulation. In Proceedings of the Fifteenth European Conference on Computer Systems (EuroSys '20)*. Association for Computing Machinery, New York, NY, USA, Article 23, 16 pages. https://doi.org/10.1145/3342195.3387540