

Automated Verification Techniques for Probabilistic Systems

Vojtěch Forejt Marta Kwiatkowska Gethin Norman Dave Parker

SFM-11:CONNECT Summer School, Bertinoro, June 2011

EU-FP7: CONNECT

LSCITS/PSS

VERIWARE

Overview

- Lecture 1 (9am-11am)
 - Introduction to Modelling and Quantitative Verification
 - Marta Kwiatkowska
- Invited lecture: Christel Baier
 - Component and Connector Modelling Formalisms
- Lecture 2 (2.30pm-4pm)
 - Quantitative Compositional Verification
 - Dave Parker
- Lab session (4.30pm-6pm)
 - Modelling and Compositional Verification of Probabilistic Component-Based Systems using PRISM
 - Dave Parker
- http://www.prismmodelchecker.org/courses/sfm11connect/

Part 1

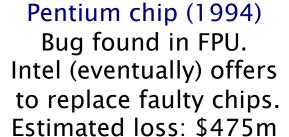
Introduction

Quantitative verification

- Formal verification...
 - is the application of rigorous, mathematics-based techniques to establish the correctness of computerised systems
- Quantitative verification
 - applies formal verification techniques to the modelling and analysing of non-functional aspects of system behaviour (e.g. probability, time, cost, ...)
- Probabilistic model checking...
 - is a an automated quantitative verification technique for systems that exhibit probabilistic behaviour

Why formal verification?

• Errors in computerised systems can be costly...

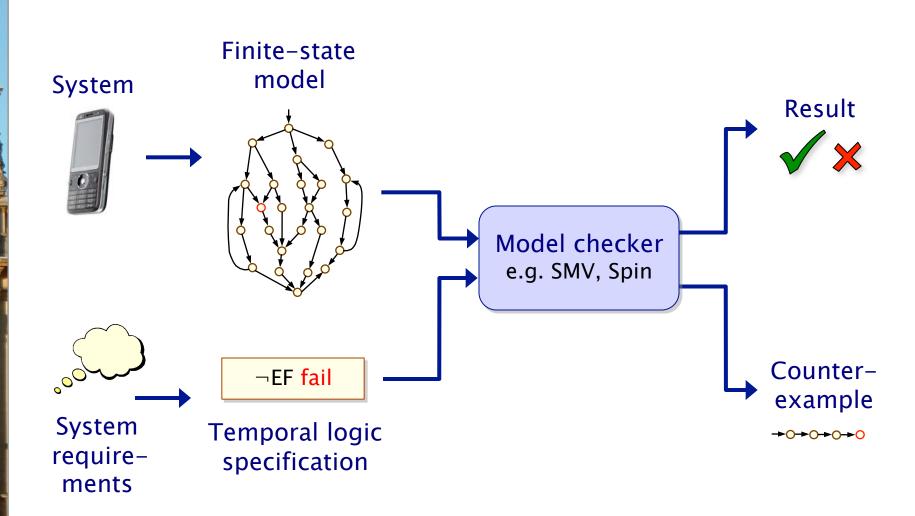


Ariane 5 (1996)
Self-destructs 37secs into maiden launch.
Cause: uncaught overflow exception.

Toyota Prius (2010)
Software "glitch"
found in anti-lock
braking system.
185,000 cars recalled.

- Why verify?
 - "Testing can only show the presence of errors, not their absence." [Edsger Dijstra]

Model checking



Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- Examples: real-world protocols featuring randomisation:
 - Randomised back-off schemes
 - · CSMA protocol, 802.11 Wireless LAN
 - Random choice of waiting time
 - IEEE1394 Firewire (root contention), Bluetooth (device discovery)
 - Random choice over a set of possible addresses
 - · IPv4 Zeroconf dynamic configuration (link-local addressing)
 - Randomised algorithms for anonymity, contract signing, ...

Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- Examples:
 - computer networks, embedded systems
 - power management policies
 - nano-scale circuitry: reliability through defect-tolerance

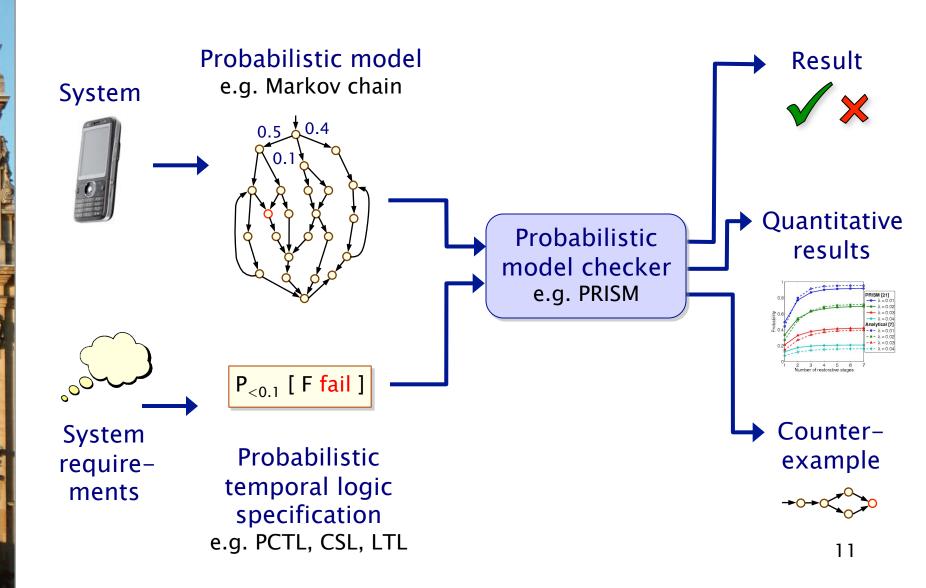
Why probability?

- Some systems are inherently probabilistic...
- Randomisation, e.g. in distributed coordination algorithms
 - as a symmetry breaker, in gossip routing to reduce flooding
- To model uncertainty and performance
 - to quantify rate of failures, express Quality of Service
- To model biological processes
 - reactions occurring between large numbers of molecules are naturally modelled in a stochastic fashion

Verifying probabilistic systems

- We are not just interested in correctness
- We want to be able to quantify non-functional properties:
 - security, privacy, trust, anonymity, fairness
 - safety, reliability, performance, dependability
 - resource usage, e.g. battery life
 - and much more...
- Quantitative, as well as qualitative requirements:
 - how reliable is the disaster service provider network?
 - how efficient is my phone's power management policy?
 - is my bank's web-service secure?
 - what is the expected long-run percentage of protein X?

Probabilistic model checking



CONNECTed probabilistic systems

- Many of the probabilistic systems that we want to verify are naturally decomposed into sub-systems
 - communication protocols, power management systems, ...
- Need modelling formalisms to capture this behaviour
 - Markov decision processes (probabilistic automata)
 - combine probabilistic and nondeterministic behaviour
 - analysis non-trivial need automated techniques and tools
- Component-based systems
 - offer opportunities to exploit their structure
 - compositional probabilistic verification: assume-guarantee
 - more generally, quantitative properties

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (CTMCs)	CTMDPs/IMCs
		Probabilistic timed automata (PTAs)

Overview

Lectures 1 and 2:

- 1 Introduction
- 2 Discrete-time Markov chains
- 3 Markov decision processes
- 4 Compositional probabilistic verification
- Course materials available here:
 - http://www.prismmodelchecker.org/courses/sfm11connect/
 - lecture slides, reference list, tutorial chapter, lab session

Part 2

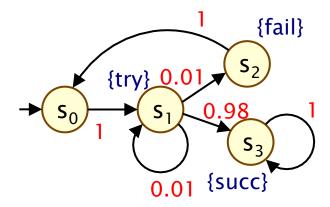
Discrete-time Markov chains

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

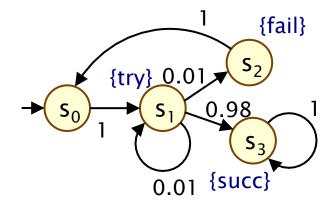
Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- States
 - discrete set of states representing possible configurations of the system being modelled
- Transitions
 - transitions between states occur in discrete time-steps
- Probabilities
 - probability of making transitions between states is given by discrete probability distributions



Discrete-time Markov chains

- Formally, a DTMC D is a tuple (S,s_{init},P,L) where:
 - S is a finite set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - P : S × S → [0,1] is the transition probability matrix where $\Sigma_{s' \in S}$ P(s,s') = 1 for all s ∈ S
 - L : S \rightarrow 2^{AP} is function labelling states with atomic propositions
- Note: no deadlock states
 - i.e. every state has at least one outgoing transition
 - can add self loops to represent final/terminating states



DTMCs: An alternative definition

- Alternative definition: a DTMC is:
 - a family of random variables $\{ X(k) \mid k=0,1,2,... \}$
 - X(k) are observations at discrete time-steps
 - i.e. X(k) is the state of the system at time-step k
- Memorylessness (Markov property)

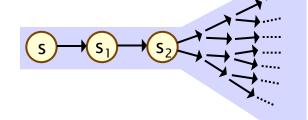
-
$$Pr(X(k)=s_k \mid X(k-1)=s_{k-1}, ..., X(0)=s_0)$$

= $Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$

- We consider homogenous DTMCs
 - transition probabilities are independent of time
 - $P(s_{k-1},s_k) = Pr(X(k)=s_k \mid X(k-1)=s_{k-1})$

Paths and probabilities

- A (finite or infinite) path through a DTMC
 - is a sequence of states $s_0s_1s_2s_3...$ such that $P(s_i,s_{i+1}) > 0 \ \forall i$
 - represents an execution (i.e. one possible behaviour) of the system which the DTMC is modelling
- To reason (quantitatively) about this system
 - need to define a probability space over paths
- Intuitively:
 - sample space: Path(s) = set of all infinite paths from a state s
 - events: sets of infinite paths from s
 - basic events: cylinder sets (or "cones")
 - cylinder set $C(\omega)$, for a finite path ω = set of infinite paths with the common finite prefix ω
 - for example: C(ss₁s₂)



Probability spaces

- Let Ω be an arbitrary non-empty set
- A σ -algebra (or σ -field) on Ω is a family Σ of subsets of Ω closed under complementation and countable union, i.e.:
 - if A ∈ Σ, the complement Ω \ A is in Σ
 - if A_i ∈ Σ for i ∈ \mathbb{N} , the union $\cup_i A_i$ is in Σ
 - the empty set \varnothing is in Σ
- Theorem: For any family F of subsets of Ω , there exists a unique smallest σ -algebra on Ω containing F
- Probability space (Ω, Σ, Pr)
 - $-\Omega$ is the sample space
 - Σ is the set of events: σ -algebra on Ω
 - Pr : Σ → [0,1] is the probability measure: $Pr(Ω) = 1 \text{ and } Pr(∪_i A_i) = Σ_i Pr(A_i) \text{ for countable disjoint } A_i$

Probability space over paths

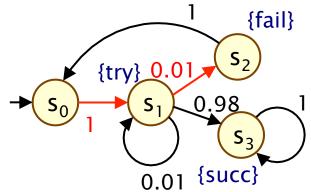
- Sample space Ω = Path(s)
 set of infinite paths with initial state s
- Event set $\Sigma_{Path(s)}$
 - the cylinder set $C(\omega) = \{ \omega' \in Path(s) \mid \omega \text{ is prefix of } \omega' \}$
 - $\Sigma_{Path(s)}$ is the least $\sigma\text{-algebra}$ on Path(s) containing $C(\omega)$ for all finite paths ω starting in s
- Probability measure Pr_s
 - define probability $P_s(\omega)$ for finite path $\omega = ss_1...s_n$ as:
 - $P_s(\omega) = 1$ if ω has length one (i.e. $\omega = s$)
 - $P_s(\omega) = P(s,s_1) \cdot ... \cdot P(s_{n-1},s_n)$ otherwise
 - · define $Pr_s(C(\omega)) = P_s(\omega)$ for all finite paths ω
 - Pr_s extends uniquely to a probability measure $Pr_s: \Sigma_{Path(s)} \rightarrow [0,1]$
- See [KSK76] for further details

Probability space - Example

- Paths where sending fails the first time
 - $-\omega = s_0 s_1 s_2$
 - $C(\omega) = all paths starting s_0 s_1 s_2...$

$$- P_{s0}(\omega) = P(s_0, s_1) \cdot P(s_1, s_2)$$
$$= 1 \cdot 0.01 = 0.01$$

$$- Pr_{s0}(C(\omega)) = P_{s0}(\omega) = 0.01$$



- Paths which are eventually successful and with no failures
 - $C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup ...$
 - $Pr_{s0}(C(s_0s_1s_3) \cup C(s_0s_1s_1s_3) \cup C(s_0s_1s_1s_1s_3) \cup ...)$
 - $= P_{s0}(s_0s_1s_3) + P_{s0}(s_0s_1s_1s_3) + P_{s0}(s_0s_1s_1s_1s_3) + \dots$
 - = 1.0.98 + 1.0.01.0.98 + 1.0.01.0.01.0.98 + ...
 - = 0.9898989898...
 - = 98/99

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

PCTL

- Temporal logic for describing properties of DTMCs
 - PCTL = Probabilistic Computation Tree Logic [HJ94]
 - essentially the same as the logic pCTL of [ASB+95]
- Extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- Example
 - send → $P_{>0.95}$ [true $U^{\leq 10}$ deliver]
 - "if a message is sent, then the probability of it being delivered within 10 steps is at least 0.95"

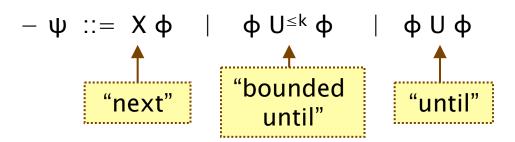
PCTL syntax

PCTL syntax:

ψ is true with probability ~p

 $- \varphi ::= true | a | \varphi \wedge \varphi | \neg \varphi | P_{\sim p} [\psi]$

(state formulas)



(path formulas)

- where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- A PCTL formula is always a state formula
 - path formulas only occur inside the P operator

PCTL semantics for DTMCs

- PCTL formulas interpreted over states of a DTMC
 - $-s \models \phi$ denotes ϕ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the DTMC (S,s_{init},P,L):

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$-s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

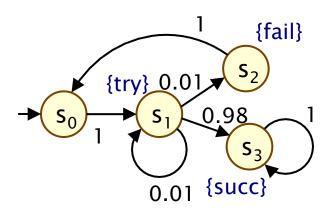
$$-s \models \neg \Phi$$

$$-s \models \neg \varphi \Leftrightarrow s \models \varphi \text{ is false}$$

Examples

$$- s_3 = succ$$

$$-s_1 \models try \land \neg fail$$



PCTL semantics for DTMCs

- Semantics of path formulas:
 - for a path $\omega = s_0 s_1 s_2 ...$ in the DTMC:

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

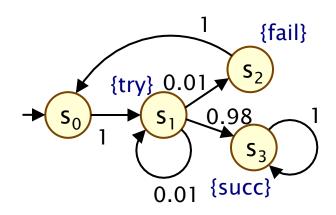
$$- \ \omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2 \quad \Leftrightarrow \quad \exists i \leq k \ such \ that \ s_i \vDash \varphi_2 \ and \ \forall j < i, \ s_j \vDash \varphi_1$$

- $-\omega \models \varphi_1 \cup \varphi_2 \quad \Leftrightarrow \exists k \geq 0 \text{ such that } \omega \models \varphi_1 \cup \varphi_2$
- Some examples of satisfying paths:

$$s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$$

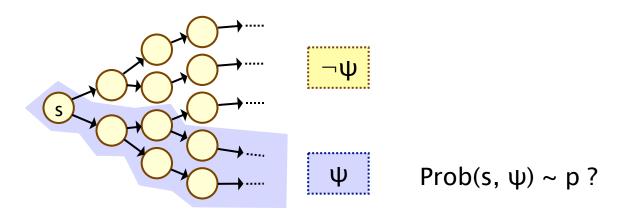
− ¬fail U succ

$$\{try\} \{try\} \{succ\} \{succ\}$$
 $s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \rightarrow \cdots$



PCTL semantics for DTMCs

- Semantics of the probabilistic operator P
 - informal definition: $s \models P_{\sim p} [\psi]$ means that "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ "
 - example: $s \models P_{<0.25}$ [X fail] \Leftrightarrow "the probability of atomic proposition fail being true in the next state of outgoing paths from s is less than 0.25"
 - formally: $s \models P_{\sim p} [\psi] \Leftrightarrow Prob(s, \psi) \sim p$
 - where: Prob(s, ψ) = Pr_s { $\omega \in Path(s) \mid \omega \models \psi$ }
 - (sets of paths satisfying ψ are always measurable [Var85])



More PCTL...

Usual temporal logic equivalences:

$$-$$
 false $\equiv \neg$ true

$$- \ \varphi_1 \lor \varphi_2 \equiv \neg (\neg \varphi_1 \land \neg \varphi_2)$$

$$- \ \varphi_1 \rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2$$

$$- F \Phi \equiv \Diamond \Phi \equiv \text{true } U \Phi$$

$$- G \varphi \equiv \Box \varphi \equiv \neg (F \neg \varphi)$$

– bounded variants: $F^{\leq k}$ φ , $G^{\leq k}$ φ

(disjunction)

(implication)

(eventually, "future")

(always, "globally")

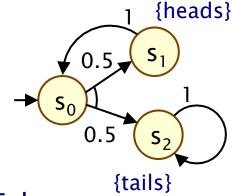
Negation and probabilities

$$- \text{ e.g. } \neg P_{>p} [\varphi_1 U \varphi_2] \equiv P_{\leq p} [\varphi_1 U \varphi_2]$$

$$-$$
 e.g. $P_{>p}$ [$G \varphi$] $\equiv P_{<1-p}$ [$F \neg \varphi$]

Qualitative vs. quantitative properties

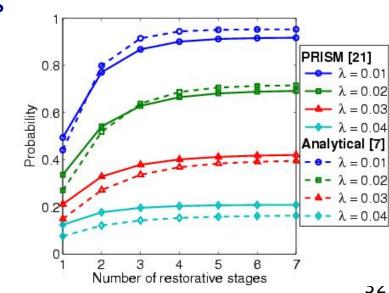
- P operator of PCTL can be seen as a quantitative analogue of the CTL operators A (for all) and E (there exists)
- A PCTL property $P_{\sim p}$ [ψ] is...
 - qualitative when p is either 0 or 1
 - quantitative when p is in the range (0,1)
- $P_{>0}$ [F ϕ] is identical to EF ϕ
 - there exists a finite path to a ϕ -state



- $P_{>1}$ [F ϕ] is (similar to but) weaker than AF ϕ
 - e.g. AF "tails" (CTL) \neq P_{>1} [F "tails"] (PCTL)

Quantitative properties

- Consider a PCTL formula P_{¬p} [ψ]
 - if the probability is unknown, how to choose the bound p?
- · When the outermost operator of a PTCL formula is P
 - we allow the form $P_{=?}$ [ψ]
 - "what is the probability that path formula ψ is true?"
- Model checking is no harder: compute the values anyway
- Useful to spot patterns, trends
- Example
 - $-P_{=2}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"



Some real PCTL examples

- NAND multiplexing system
 - $-P_{=?}$ [F err/total>0.1]
 - "what is the probability that 10% of the NAND gate outputs are erroneous?"
- Bluetooth wireless communication protocol
 - $P_{=?} [F^{\leq t} reply_count = k]$
 - "what is the probability that the sender has received k acknowledgements within t clock-ticks?"
- Security: EGL contract signing protocol
 - $P_{=?} [F (pairs_a=0 \& pairs_b>0)]$
 - "what is the probability that the party B gains an unfair advantage during the execution of the protocol?"

reliability

.

fairness

Overview (Part 2)

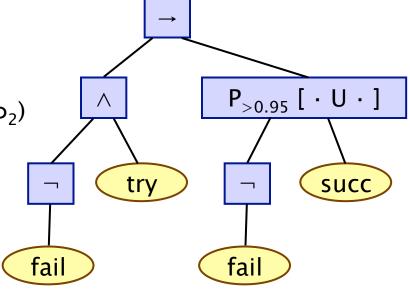
- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

PCTL model checking for DTMCs

- Algorithm for PCTL model checking [CY88,HJ94,CY95]
 - inputs: DTMC D= (S, s_{init}, P, L) , PCTL formula ϕ
 - output: $Sat(\phi) = \{ s \in S \mid s \models \phi \} = set \text{ of states satisfying } \phi$
- What does it mean for a DTMC D to satisfy a formula φ?
 - sometimes, want to check that $s \models \varphi \lor s \in S$, i.e. $Sat(\varphi) = S$
 - sometimes, just want to know if $s_{init} = \phi$, i.e. if $s_{init} \in Sat(\phi)$
- Sometimes, focus on quantitative results
 - e.g. compute result of P=? [F error]
 - e.g. compute result of P=? [$F^{\leq k}$ error] for $0 \leq k \leq 100$

PCTL model checking for DTMCs

- Basic algorithm proceeds by induction on parse tree of φ
 - example: $\phi = (\neg fail \land try) \rightarrow P_{>0.95}$ [¬fail U succ]
- For the non-probabilistic operators:
 - Sat(true) = S
 - Sat(a) = { s \in S | a \in L(s) }
 - $-\operatorname{Sat}(\neg \varphi) = \operatorname{S} \setminus \operatorname{Sat}(\varphi)$
 - $-\operatorname{Sat}(\varphi_1 \wedge \varphi_2) = \operatorname{Sat}(\varphi_1) \cap \operatorname{Sat}(\varphi_2)$
- For the $P_{\sim p}$ [ψ] operator
 - need to compute the probabilities $Prob(s, \psi)$ for all states $s \in S$
 - focus here on "until" case: $Ψ = Φ_1 U Φ_2$



PCTL until for DTMCs

- Computation of probabilities Prob(s, $\phi_1 \cup \phi_2$) for all $s \in S$
- First, identify all states where the probability is 1 or 0
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2])$
 - $S^{no} = Sat(P_{<0} [\varphi_1 U \varphi_2])$
- Then solve linear equation system for remaining states
- We refer to the first phase as "precomputation"
 - two algorithms: Prob0 (for S^{no}) and Prob1 (for S^{yes})
 - algorithms work on underlying graph (probabilities irrelevant)
- Important for several reasons
 - reduces the set of states for which probabilities must be computed numerically (which is more expensive)
 - gives exact results for the states in Syes and Sno (no round-off)
 - for $P_{-p}[\cdot]$ where p is 0 or 1, no further computation required

PCTL until - Linear equations

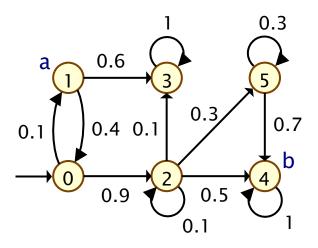
• Probabilities Prob(s, $\phi_1 \cup \phi_2$) can now be obtained as the unique solution of the following set of linear equations:

$$Prob(s,\,\varphi_1\,U\,\varphi_2) \ = \ \begin{cases} 1 & \text{if } s \in S^{yes} \\ 0 & \text{if } s \in S^{no} \\ \sum_{s' \in S} P(s,s') \cdot Prob(s',\,\varphi_1\,U\,\varphi_2) & \text{otherwise} \end{cases}$$

- can be reduced to a system in $|S^2|$ unknowns instead of |S| where $S^2 = S \setminus (S^{yes} \cup S^{no})$
- This can be solved with (a variety of) standard techniques
 - direct methods, e.g. Gaussian elimination
 - iterative methods, e.g. Jacobi, Gauss-Seidel, ...
 (preferred in practice due to scalability)

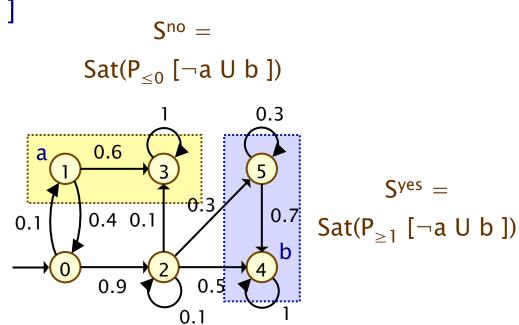
PCTL until – Example

Example: P_{>0.8} [¬a U b]



PCTL until – Example

• Example: $P_{>0.8}$ [¬a U b]



PCTL until – Example

- Example: $P_{>0.8}$ [¬a U b]
- Sat(P_{<0} [¬a U b])

 $S^{no} =$

- Let $x_s = Prob(s, \neg a \cup b)$
- Solve:

$$x_4 = x_5 = 1$$

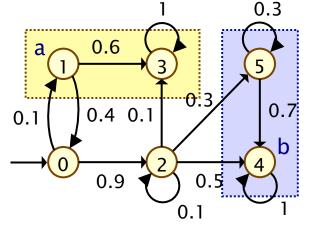
$$x_1 = x_3 = 0$$

$$x_0 = 0.1x_1 + 0.9x_2 = 0.8$$

$$x_2 = 0.1x_2 + 0.1x_3 + 0.3x_5 + 0.5x_4 = 8/9$$

$$\underline{\text{Prob}}(\neg a \ U \ b) = \underline{x} = [0.8, 0, 8/9, 0, 1, 1]$$

$$Sat(P_{>0.8} [\neg a U b]) = \{ s_2, s_4, s_5 \}$$



$$S^{yes} =$$
 $Sat(P_{\geq 1} [\neg a U b])$

PCTL model checking – Summary

- Computation of set Sat(Φ) for DTMC D and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 \cup \mathbb{I}^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - $-\Phi_1 \cup \Phi_2$: linear equation system, at most |S| variables, $O(|S|^3)$
- Complexity:
 - linear in |Φ| and polynomial in |S|

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

Limitations of PCTL

- · PCTL, although useful in practice, has limited expressivity
 - essentially: probability of reaching states in X, passing only through states in Y (and within k time-steps)
- More expressive logics can be used, for example:
 - LTL [Pnu77] (non-probabilistic) linear-time temporal logic
 - PCTL* [ASB+95,BdA95] which subsumes both PCTL and LTL
 - both allow path operators to be combined
 - (in PCTL, P_{p} [...] always contains a single temporal operator)
- Another direction: extend DTMCs with costs and rewards...

LTL – Linear temporal logic

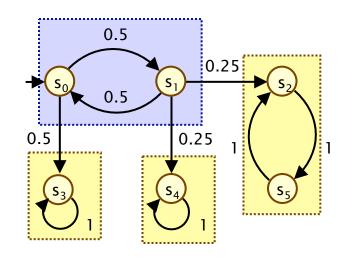
- LTL syntax (path formulae only)
 - $\psi ::= true | a | \psi \wedge \psi | \neg \psi | X \psi | \psi U \psi$
 - where $a \in AP$ is an atomic proposition
 - usual equivalences hold: $F \varphi \equiv \text{true } U \varphi$, $G \varphi \equiv \neg (F \neg \varphi)$
 - evaluated over paths of a model
- Examples
 - $(F tmp_fail_1) \wedge (F tmp_fail_2)$
 - "both servers suffer temporary failures at some point"
 - GF ready
 - "the server always eventually returns to a ready-state"
 - FG error
 - "an irrecoverable error occurs"
 - $G (req \rightarrow X ack)$
 - "requests are always immediately acknowledged"

LTL for DTMCs

- Same idea as PCTL: probabilities of sets of path formulae
 - for a state s of a DTMC and an LTL formula ψ :
 - $-\operatorname{Prob}(s, \psi) = \operatorname{Pr}_s \{ \omega \in \operatorname{Path}(s) \mid \omega \vDash \psi \}$
 - all such path sets are measurable [Var85]
- A (probabilistic) LTL specification often comprises an LTL (path) formula and a probability bound
 - e.g. $P_{\geq 1}$ [GF ready] "with probability 1, the server always eventually returns to a ready-state"
 - e.g. P_{<0.01} [FG error] "with probability at most 0.01, an irrecoverable error occurs"
- PCTL* subsumes both LTL and PCTL
 - e.g. $P_{>0.5}$ [GF crit₁] \wedge $P_{>0.5}$ [GF crit₂]

Fundamental property of DTMCs

- Strongly connected component (SCC)
 - maximally strongly connected set of states
- Bottom strongly connected component (BSCC)
 - SCC T from which no state outside T is reachable from T
- Fundamental property of DTMCs:
 - "with probability 1, a BSCC will be reached and all of its states visited infinitely often"



- Formally:
 - Pr_s { ω ∈ Path(s) | ∃ i≥0, ∃ BSCC T such that

 \forall j \geq i ω (i) \in T and

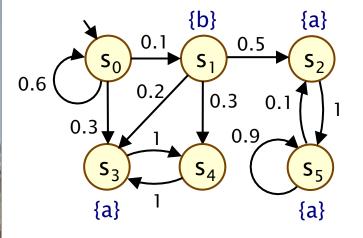
 \forall s' \in T $\omega(k) = s'$ for infinitely many k $\} = 1$

LTL model checking for DTMCs

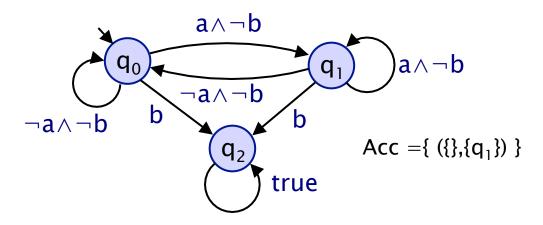
- Steps for model checking LTL property ψ on DTMC D
 - i.e. computing Prob^D(s, ψ)
- 1. Build a deterministic Rabin automaton (DRA) A for ψ
 - i.e. a DRA A over alphabet 2^{AP} accepting ψ -satisfying traces
- 2. Build the "product" DTMC D ⊗ A
 - records state of A for path through D so far
- 3. Identify states T_{acc} in "accepting" BSCCs of D \otimes A
 - i.e. those that meet the acceptance condition of A
- 4. Compute probability of reaching T_{acc} in $D \otimes A$
 - which gives $Prob^{D}(s, \psi)$, as required

Example: LTL for DTMCs

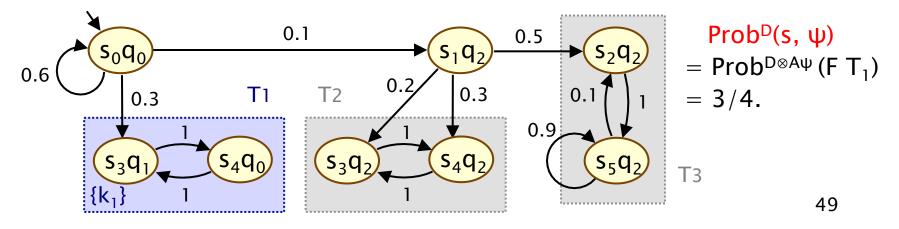
DTMC D



DRA A_{ω} for $\psi = G \neg b \wedge GF$ a



Product DTMC D ⊗ A_w



Costs and rewards

- We augment DTMCs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations

Some examples:

 elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit, ...

Costs? or rewards?

- mathematically, no distinction between rewards and costs
- when interpreted, we assume that it is desirable to minimise costs and to maximise rewards
- we will consistently use the terminology "rewards" regardless

Reward-based properties

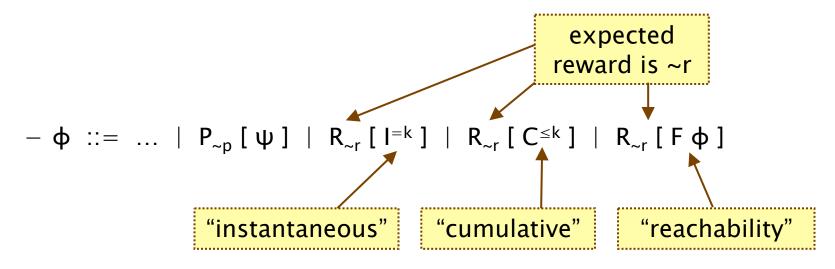
- Properties of DTMCs augmented with rewards
 - allow a wide range of quantitative measures of the system
 - basic notion: expected value of rewards
 - formal property specifications will be in an extension of PCTL
- More precisely, we use two distinct classes of property...
- Instantaneous properties
 - the expected value of the reward at some time point
- Cumulative properties
 - the expected cumulated reward over some period

DTMC reward structures

- For a DTMC (S, s_{init} , **P**,L), a reward structure is a pair (ρ , ι)
 - $-\underline{\rho}:S\to\mathbb{R}_{>0}$ is the state reward function (vector)
 - $-\iota: S \times S \to \mathbb{R}_{>0}$ is the transition reward function (matrix)
- Example (for use with instantaneous properties)
 - "size of message queue": $\underline{\rho}$ maps each state to the number of jobs in the queue in that state, ι is not used
- Examples (for use with cumulative properties)
 - "time-steps": $\underline{\rho}$ returns 1 for all states and ι is zero (equivalently, $\underline{\rho}$ is zero and ι returns 1 for all transitions)
 - "number of messages lost": $\underline{\rho}$ is zero and ι maps transitions corresponding to a message loss to 1
 - "power consumption": $\underline{\rho}$ is defined as the per-time-step energy consumption in each state and ι as the energy cost of each transition

PCTL and rewards

- Extend PCTL to incorporate reward-based properties
 - add an R operator, which is similar to the existing P operator



- where $r \in \mathbb{R}_{\geq 0}$, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
- R_{~r} [·] means "the expected value of · satisfies ~r"

Types of reward formulas

- Instantaneous: R_{~r} [I^{=k}]
 - "the expected value of the state reward at time-step k is ~r"
 - e.g. "the expected queue size after exactly 90 seconds"
- Cumulative: $R_{\sim r}$ [$C^{\leq k}$]
 - "the expected reward cumulated up to time-step k is ~r"
 - e.g. "the expected power consumption over one hour"
- Reachability: R_{~r} [F φ]
 - "the expected reward cumulated before reaching a state satisfying φ is ~r"
 - e.g. "the expected time for the algorithm to terminate"

Reward formula semantics

- Formal semantics of the three reward operators
 - based on random variables over (infinite) paths
- Recall:

$$-s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s \{ \omega \in Path(s) \mid \omega \models \psi \} \sim p$$

For a state s in the DTMC:

$$- s \models R_{\sim r} [I^{=k}] \Leftrightarrow Exp(s, X_{l=k}) \sim r$$

$$- s \models R_{\sim r} [C^{\leq k}] \Leftrightarrow Exp(s, X_{C \leq k}) \sim r$$

$$- s \models R_{\sim r} [F \Phi] \Leftrightarrow Exp(s, X_{F\Phi}) \sim r$$

where: Exp(s, X) denotes the expectation of the random variable

X : Path(s) $\rightarrow \mathbb{R}_{\geq 0}$ with respect to the probability measure Pr_s

Reward formula semantics

- Definition of random variables:
 - for an infinite path $\omega = s_0 s_1 s_2 ...$

$$X_{l=k}(\omega) = \rho(s_k)$$

$$X_{C \le k}(\omega) = \begin{cases} 0 & \text{if } k = 0 \\ \sum_{i=0}^{k-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) & \text{otherwise} \end{cases}$$

$$X_{F\varphi}(\omega) = \begin{cases} 0 & \text{if } s_0 \in Sat(\varphi) \\ \infty & \text{if } s_i \notin Sat(\varphi) \text{ for all } i \ge 0 \end{cases}$$
$$\sum_{i=0}^{k_{\varphi}-1} \underline{\rho}(s_i) + \iota(s_i, s_{i+1}) \text{ otherwise}$$

- where $k_{\varphi} = min\{ j \mid s_j \models \varphi \}$

Model checking reward properties

- Instantaneous: $R_{r} [I^{=k}]$
- Cumulative: $R_{r} [C^{\leq t}]$
 - variant of the method for computing bounded until probabilities
 - solution of recursive equations
- Reachability: R_{~r} [F φ]
 - similar to computing until probabilities
 - precomputation phase (identify infinite reward states)
 - then reduces to solving a system of linear equation
- For more details, see e.g. [KNP07a]

Overview (Part 2)

- Discrete-time Markov chains (DTMCs)
- PCTL: A temporal logic for DTMCs
- PCTL model checking
- Other properties: LTL, costs and rewards
- Case study: Bluetooth device discovery

The PRISM tool

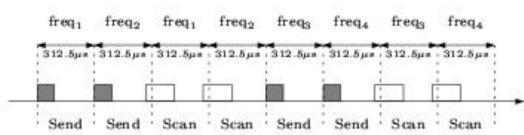
- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source (GPL), runs on all major OSs
- Support for:
 - discrete-/continuous-time Markov chains (D/CTMCs)
 - Markov decision processes (MDPs)
 - probabilistic timed automata (PTAs)
 - PCTL, CSL, LTL, PCTL*, costs/rewards, ...
- Multiple efficient model checking engines
 - mostly symbolic (BDDs) (up to 10^{10} states, 10^7 - 10^8 on avg.)
- Successfully applied to a wide range of case studies
 - communication protocols, security protocols, dynamic power management, cell signalling pathways, ...
- See: http://www.prismmodelchecker.org/

Bluetooth device discovery

- Bluetooth: short-range low-power wireless protocol
 - widely available in phones, PDAs, laptops, ...
 - open standard, specification freely available
- Uses frequency hopping scheme
 - to avoid interference (uses unregulated 2.4GHz band)
 - pseudo-random selection over 32 of 79 frequencies
- Formation of personal area networks (PANs)
 - piconets (1 master, up to 7 slaves)
 - self-configuring: devices discover themselves
- Device discovery
 - mandatory first step before any communication possible
 - relatively high power consumption so performance is crucial
 - master looks for devices, slaves listens for master

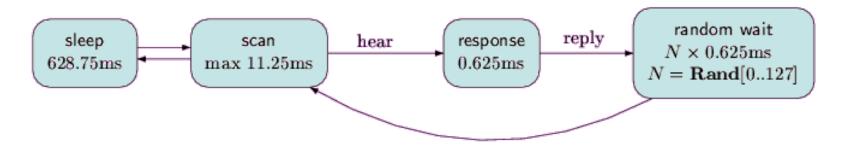
Master (sender) behaviour

- 28 bit free-running clock CLK, ticks every 312.5µs
- Frequency hopping sequence determined by clock:
 - freq = $[CLK_{16-12}+k+(CLK_{4-2,0}-CLK_{16-12}) \mod 16] \mod 32$
 - 2 trains of 16 frequencies (determined by offset k), 128 times each, swap between every 2.56s
- Broadcasts "inquiry packets" on two consecutive frequencies, then listens on the same two



Slave (receiver) behaviour

- Listens (scans) on frequencies for inquiry packets
 - must listen on right frequency at right time
 - cycles through frequency sequence at much slower speed (every 1.28s)



- On hearing packet, pause, send reply and then wait for a random delay before listening for subsequent packets
 - avoid repeated collisions with other slaves

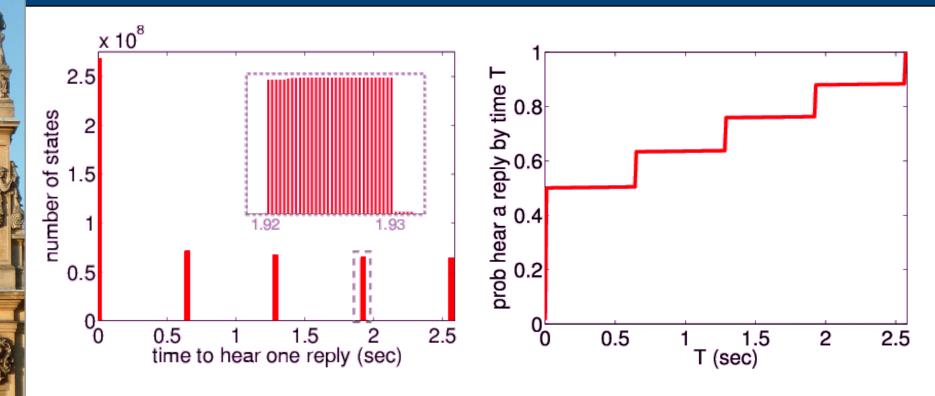
Bluetooth - PRISM model

- Modelled/analysed using PRISM model checker [DKNP06]
 - model scenario with one sender and one receiver
 - synchronous (clock speed defined by Bluetooth spec)
 - model at lowest-level (one clock-tick = one transition)
 - randomised behaviour so model as a DTMC
 - use real values for delays, etc. from Bluetooth spec
- Modelling challenges
 - complex interaction between sender/receiver
 - combination of short/long time-scales cannot scale down
 - sender/receiver not initially synchronised, so huge number of possible initial configurations (17,179,869,184)

Bluetooth - Results

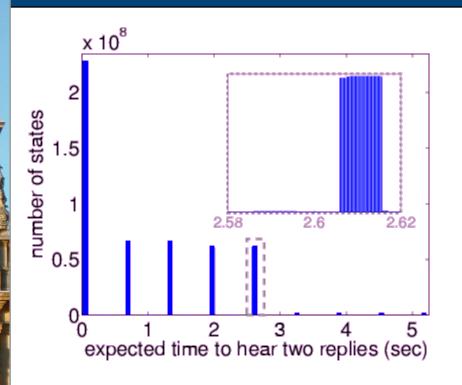
- Huge DTMC initially, model checking infeasible
 - partition into 32 scenarios, i.e. 32 separate DTMCs
 - on average, approx. 3.4×10^9 states (536,870,912 initial)
 - can be built/analysed with PRISM's MTBDD engine
- We compute:
 - R=? [F replies=K {"init"}{max}]
 - "worst-case expected time to hear K replies over all possible initial configurations"
- Also look at:
 - how many initial states for each possible expected time
 - cumulative distribution function (CDF) for time, assuming equal probability for each initial state

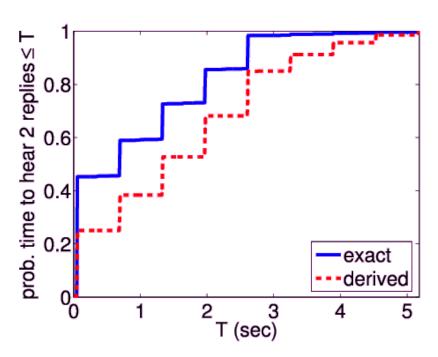
Bluetooth - Time to hear 1 reply



- Worst-case expected time = 2.5716 sec
 - in 921,600 possible initial states
 - best-case = 635 μ s

Bluetooth - Time to hear 2 replies





- Worst-case expected time = 5.177 sec
 - in 444 possible initial states
 - compare actual CDF with derived version which assumes times to reply to first/second messages are independent

Bluetooth - Results

- Other results: (see [DKNP06])
 - compare versions 1.2 and 1.1 of Bluetooth, confirm 1.1 slower
 - power consumption analysis (using costs + rewards)

Conclusions:

- successful analysis of complex real-life model
- detailed model, actual parameters used
- exhaustive analysis: best/worst-case values
 - · can pinpoint scenarios which give rise to them
 - not possible with simulation approaches
- model still relatively simple
 - consider multiple receivers?
 - · combine with simulation?

Summary (Parts 1 & 2)

- Probabilistic model checking
 - automated quantitative verification of stochastic systems
 - to model randomisation, failures, ...
- Discrete-time Markov chains (DTMCs)
 - state transition systems + discrete probabilistic choice
 - probability space over paths through a DTMC
- Property specifications
 - probabilistic extensions of temporal logic, e.g. PCTL, LTL
 - also: expected value of costs/rewards
- Model checking algorithms
 - combination of graph-based algorithms, numerical computation, automata constructions
- Next: Markov decision processes (MDPs)

Part 3

Markov decision processes

Overview

Lectures 1 and 2:

- 1 Introduction
- 2 Discrete-time Markov chains
- 3 Markov decision processes
- 4 Compositional probabilistic verification
- · Course materials available here:
 - http://www.prismmodelchecker.org/courses/sfm11connect/
 - lecture slides, reference list, tutorial chapter, lab session

Probabilistic models

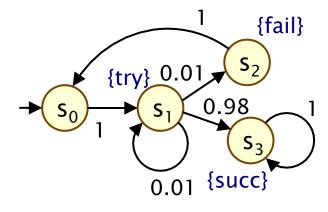
	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs) (probabilistic automata)
Continuous time	Continuous-time Markov chains (CTMCs)	Probabilistic timed automata (PTAs)
		CTMDPs/IMCs

Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Recap: Discrete-time Markov chains

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities
- Formally: DTMC D = (S, s_{init}, P, L) where:
 - S is a set of states and $s_{init} \in S$ is the initial state
 - $-P: S \times S \rightarrow [0,1]$ is the transition probability matrix
 - $-L:S \rightarrow 2^{AP}$ labels states with atomic propositions
 - define a probability space Pr_s over paths Path_s
- Properties of DTMCs
 - can be captured by the logic PCTL
 - e.g. send \rightarrow P_{≥0.95} [F deliver]
 - key question: what is the probability of reaching states T ⊆ S from state s?
 - reduces to graph analysis + linear equation system

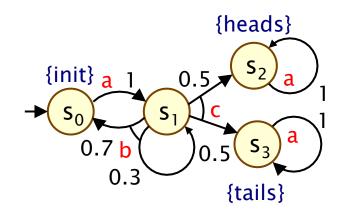


Nondeterminism

- Some aspects of a system may not be probabilistic and should not be modelled probabilistically; for example:
- Concurrency scheduling of parallel components
 - e.g. randomised distributed algorithms multiple probabilistic processes operating asynchronously
- Underspecification unknown model parameters
 - e.g. a probabilistic communication protocol designed for message propagation delays of between d_{min} and d_{max}
- Unknown environments
 - e.g. probabilistic security protocols unknown adversary

Markov decision processes

- Markov decision processes (MDPs)
 - extension of DTMCs which allow nondeterministic choice
- Like DTMCs:
 - discrete set of states representing possible configurations of the system being modelled
 - transitions between states occur in discrete time-steps
- Probabilities and nondeterminism
 - in each state, a nondeterministic choice between several discrete probability distributions over successor states

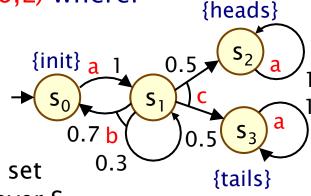


Markov decision processes

- Formally, an MDP M is a tuple $(S, s_{init}, \alpha, \delta, L)$ where:
 - S is a set of states ("state space")
 - $-s_{init} \in S$ is the initial state
 - $-\alpha$ is an alphabet of action labels
 - $-\delta \subseteq S \times \alpha \times Dist(S)$ is the transition probability relation, where Dist(S) is the set of all discrete probability distributions over S
 - $-L:S \rightarrow 2^{AP}$ is a labelling with atomic propositions

Notes:

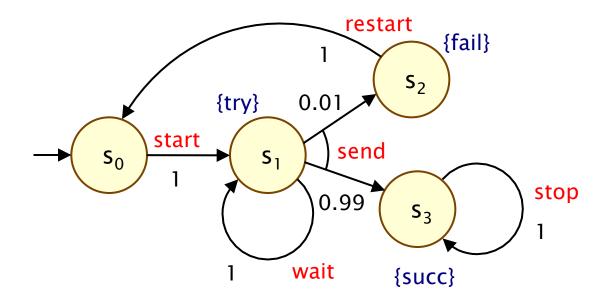
- we also abuse notation and use δ as a function
- − i.e. δ : S → $2^{\alpha \times Dist(S)}$ where δ(s) = { (a,μ) | (s,a,μ) ∈ δ }
- we assume δ (s) is always non-empty, i.e. no deadlocks
- MDPs, here, are identical to probabilistic automata [Segala]



Simple MDP example

A simple communication protocol

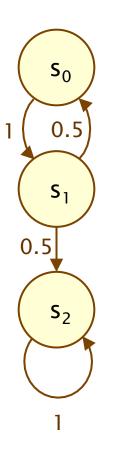
- after one step, process starts trying to send a message
- then, a nondeterministic choice between: (a) waiting a step because the channel is unready; (b) sending the message
- if the latter, with probability 0.99 send successfully and stop
- and with probability 0.01, message sending fails, restart

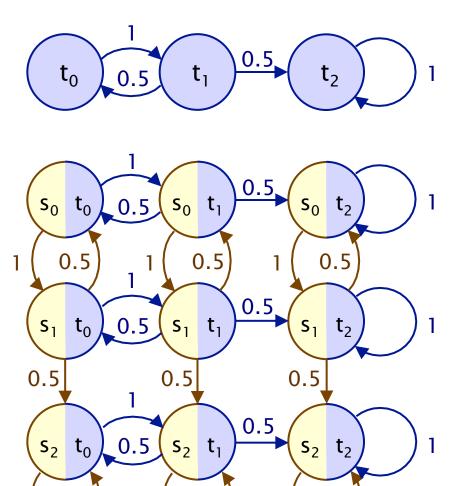


Example - Parallel composition

Asynchronous parallel composition of two 3-state DTMCs

Action labels omitted here





78

Paths and probabilities

- A (finite or infinite) path through an MDP M
 - is a sequence of states and action/distribution pairs
 - e.g. $s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2...$
 - such that $(a_i, \mu_i) \in \delta(s_i)$ and $\mu_i(s_{i+1}) > 0$ for all $i \ge 0$
 - represents an execution (i.e. one possible behaviour) of the system which the MDP is modelling
 - note that a path resolves both types of choices:
 nondeterministic and probabilistic
 - Path_{M,s} (or just Path_s) is the set of all infinite paths starting from state s in MDP M; the set of finite paths is PathFin_s
- To consider the probability of some behaviour of the MDP
 - first need to resolve the nondeterministic choices
 - ...which results in a DTMC
 - ...for which we can define a probability measure over paths

Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Adversaries

- An adversary resolves nondeterministic choice in an MDP
 - also known as "schedulers", "strategies" or "policies"
- Formally:
 - an adversary σ of an MDP is a function mapping every finite path $\omega = s_0(a_0, \mu_0)s_1...s_n$ to an element of $\delta(s_n)$
- Adversary or restricts the MDP to certain paths
 - Path_s $^{\sigma} \subseteq$ Path_s $^{\sigma}$ and PathFin_s $^{\sigma} \subseteq$ PathFin_s $^{\sigma}$
- Adversary σ induces a probability measure Pr_s^{σ} over paths
 - constructed through an infinite state DTMC (PathFin, o, s, P, o)
 - states of the DTMC are the finite paths of σ starting in state s
 - initial state is s (the path starting in s of length 0)
 - $-P_s^{\sigma}(\omega,\omega')=\mu(s)$ if $\omega'=\omega(a,\mu)s$ and $\sigma(\omega)=(a,\mu)$
 - $P_s^{\sigma}(\omega,\omega')=0$ otherwise

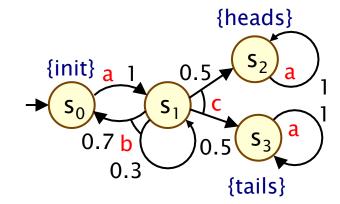
Adversaries – Examples

Consider the simple MDP below

- note that s_1 is the only state for which $|\delta(s)| > 1$
- i.e. s₁ is the only state for which an adversary makes a choice
- let μ_b and μ_c denote the probability distributions associated with actions **b** and **c** in state s_1

Adversary σ₁

- picks action c the first time
- $\sigma_1(s_0s_1) = (c, \mu_c)$

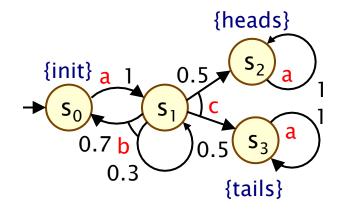


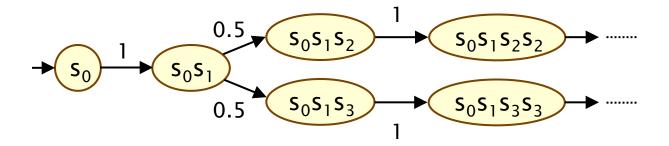
Adversary σ₂

- picks action b the first time, then c
- $-\sigma_2(s_0s_1)=(b,\mu_b), \sigma_2(s_0s_1s_1)=(c,\mu_c), \sigma_2(s_0s_1s_0s_1)=(c,\mu_c)$

Adversaries – Examples

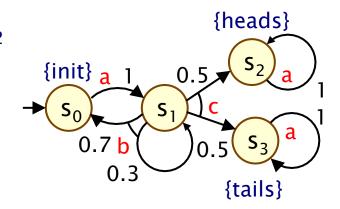
- Fragment of DTMC for adversary σ_1
 - $-\sigma_1$ picks action c the first time

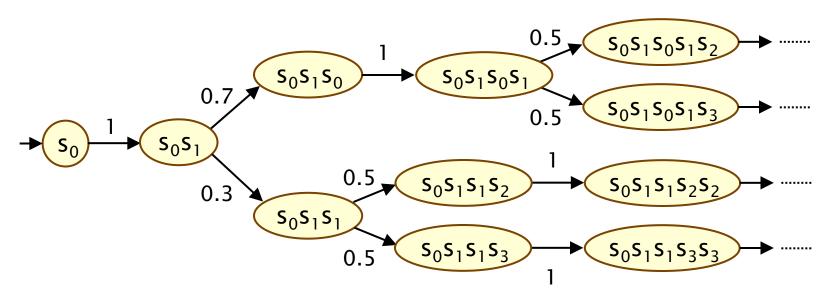




Adversaries – Examples

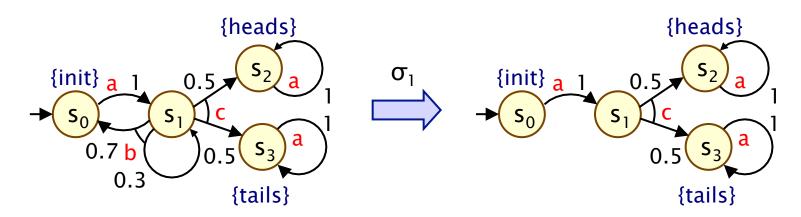
- Fragment of DTMC for adversary σ_2
 - $-\sigma_2$ picks action b, then c





Memoryless adversaries

- Memoryless adversaries always pick same choice in a state
 - also known as: positional, simple, Markov
 - formally, for adversary σ:
 - $-\sigma(s_0(a_0,\mu_0)s_1...s_n)$ depends only on s_n
 - resulting DTMC can be mapped to a |S|-state DTMC
- From previous example:
 - adversary σ_1 (picks c in s_1) is memoryless, σ_2 is not



Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

PCTL

- Temporal logic for properties of MDPs (and DTMCs)
 - extension of (non-probabilistic) temporal logic CTL
 - key addition is probabilistic operator P
 - quantitative extension of CTL's A and E operators
- PCTL syntax:
 - $\varphi ::= true \mid a \mid \varphi \land \varphi \mid \neg \varphi \mid P_{\neg p} [\psi]$ (state formulas)
 - $\psi ::= X \varphi | \varphi U^{\leq k} \varphi | \varphi U \varphi$ (path formulas)
 - where a is an atomic proposition, used to identify states of interest, $p \in [0,1]$ is a probability, $\sim \in \{<,>,\leq,\geq\}$, $k \in \mathbb{N}$
 - Example: send $\rightarrow P_{>0.95}$ [true U $^{\leq 10}$ deliver]

PCTL semantics for MDPs

- PCTL formulas interpreted over states of an MDP
 - $-s \models \varphi$ denotes φ is "true in state s" or "satisfied in state s"
- Semantics of (non-probabilistic) state formulas:
 - for a state s of the MDP (S, s_{init} , α , δ , L):

$$-s \models a$$

$$-s \models a \Leftrightarrow a \in L(s)$$

$$- s \models \varphi_1 \land \varphi_2$$

$$-s \models \varphi_1 \land \varphi_2 \Leftrightarrow s \models \varphi_1 \text{ and } s \models \varphi_2$$

$$-s \models \neg \varphi$$

$$-s \models \neg \varphi \Leftrightarrow s \models \varphi \text{ is false}$$

- Semantics of path formulas:
 - for a path $\omega = s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2...$ in the MDP:

$$-\omega \models X \varphi \Leftrightarrow s_1 \models \varphi$$

$$\Leftrightarrow s_1 \models \varphi$$

$$- \omega \models \varphi_1 U^{\leq k} \varphi_2$$

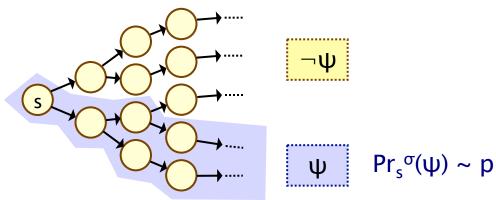
$$-\omega \models \varphi_1 \cup \varphi_2 \Leftrightarrow \exists i \leq k \text{ such that } s_i \models \varphi_2 \text{ and } \forall j \leq i, s_i \models \varphi_1$$

$$- \omega \models \varphi_1 \cup \varphi_2$$

$$- \ \omega \vDash \varphi_1 \ U \ \varphi_2 \qquad \Leftrightarrow \ \exists k \geq 0 \ \text{such that} \ \omega \vDash \varphi_1 \ U^{\leq k} \ \varphi_2$$

PCTL semantics for MDPs

- Semantics of the probabilistic operator P
 - can only define probabilities for a specific adversary σ
 - $s \models P_{\sim p}$ [ψ] means "the probability, from state s, that ψ is true for an outgoing path satisfies $\sim p$ for all adversaries σ "
 - formally $s \models P_{\sim p} [\psi] \Leftrightarrow Pr_s^{\sigma}(\psi) \sim p$ for all adversaries σ
 - where we use $Pr_s^{\sigma}(\psi)$ to denote $Pr_s^{\sigma}\{\omega \in Path_s^{\sigma} \mid \omega \models \psi\}$



Some equivalences:

$$- F \varphi \equiv \Diamond \varphi \equiv \text{true U } \varphi$$
 (eventually, "future")

$$- G \varphi \equiv \Box \varphi \equiv \neg (F \neg \varphi)$$
 (always, "globally")

Minimum and maximum probabilities

Letting:

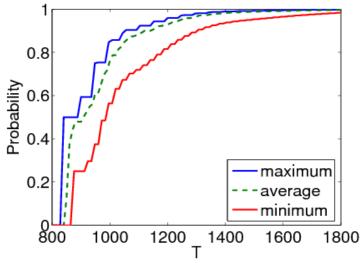
- $Pr_s^{max}(\psi) = sup_{\sigma} Pr_s^{\sigma}(\psi)$
- $\operatorname{Pr}_{s}^{\min}(\psi) = \inf_{\sigma} \operatorname{Pr}_{s}^{\sigma}(\psi)$

We have:

- $\text{ if } \textbf{\sim} \in \{ \geq, > \} \text{, then } \textbf{s} \vDash P_{\textbf{\sim}p} \text{ [} \psi \text{]} \iff Pr_{\textbf{s}}^{min}(\psi) \textbf{\sim} p$
- if ~ ∈ {<,≤}, then s \models P_{~p} [ψ] \Leftrightarrow Pr_s^{max}(ψ) ~ p
- Model checking $P_{\sim p}[\psi]$ reduces to the computation over all adversaries of either:
 - the minimum probability of ψ holding
 - the maximum probability of ψ holding
- Crucial result for model checking PCTL on MDPs
 - memoryless adversaries suffice, i.e. there are always memoryless adversaries σ_{min} and σ_{max} for which:
 - $-\operatorname{Pr}_{s}^{\sigma_{\min}}(\psi) = \operatorname{Pr}_{s}^{\min}(\psi) \text{ and } \operatorname{Pr}_{s}^{\sigma_{\max}}(\psi) = \operatorname{Pr}_{s}^{\min}(\psi)$

Quantitative properties

- For PCTL properties with P as the outermost operator
 - quantitative form (two types): $P_{min=?}$ [ψ] and $P_{max=?}$ [ψ]
 - i.e. "what is the minimum/maximum probability (over all adversaries) that path formula ψ is true?"
 - corresponds to an analysis of best-case or worst-case behaviour of the system
 - model checking is no harder since compute the values of $Pr_s^{min}(\Psi)$ or $Pr_s^{max}(\Psi)$ anyway
 - useful to spot patterns/trends
- Example: CSMA/CD protocol
 - "min/max probability that a message is sent within the deadline"



Other classes of adversary

- A more general semantics for PCTL over MDPs
 - parameterise by a class of adversaries Adv
- Only change is:
 - $-s \models_{\mathsf{Adv}} \mathsf{P}_{\sim \mathsf{p}} [\psi] \Leftrightarrow \mathsf{Pr}_{\mathsf{s}}^{\sigma}(\psi) \sim \mathsf{p} \text{ for all adversaries } \sigma \in \mathsf{Adv}$
- Original semantics obtained by taking Adv to be the set of all adversaries for the MDP
- Alternatively, take Adv to be the set of all fair adversaries
 - path fairness: if a state is occurs on a path infinitely often,
 then each non-deterministic choice occurs infinite often
 - see e.g. [BK98]

Some real PCTL examples

- Byzantine agreement protocol
 - $-P_{min=?}$ [F (agreement ∧ rounds ≤ 2)]
 - "what is the minimum probability that agreement is reached within two rounds?"
- CSMA/CD communication protocol
 - P_{max=?} [F collisions=k]
 - "what is the maximum probability of k collisions?"
- Self-stabilisation protocols
 - $-P_{min=?}$ [$F^{\leq t}$ stable]
 - "what is the minimum probability of reaching a stable state within k steps?"

Overview (Part 3)

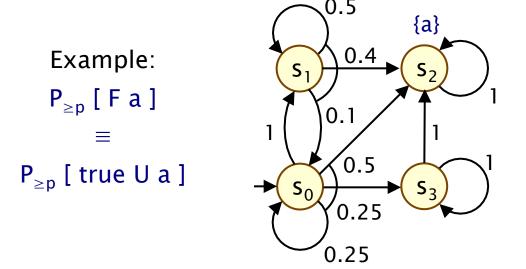
- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

PCTL model checking for MDPs

- Algorithm for PCTL model checking [BdA95]
 - inputs: MDP M=(S,s_{init}, α , δ ,L), PCTL formula ϕ
 - output: Sat(ϕ) = { s ∈ S | s $\models \phi$ } = set of states satisfying ϕ
- Basic algorithm same as PCTL model checking for DTMCs
 - proceeds by induction on parse tree of φ
 - non-probabilistic operators (true, a, \neg , \land) straightforward
- Only need to consider $P_{\sim p}$ [ψ] formulas
 - reduces to computation of $Pr_s^{min}(\psi)$ or $Pr_s^{max}(\psi)$ for all $s \in S$
 - dependent on whether \sim ∈ {≥,>} or \sim ∈ {<,≤}
 - these slides cover the case $Pr_s^{min}(\varphi_1 \cup \varphi_2)$, i.e. $\sim \in \{\geq, >\}$
 - case for maximum probabilities is very similar
 - next (X ϕ) and bounded until (ϕ_1 U^{$\leq k$} ϕ_2) are straightforward extensions of the DTMC case

PCTL until for MDPs

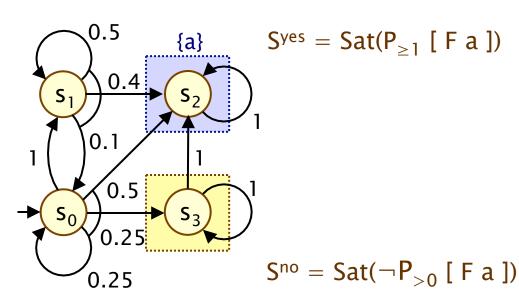
- Computation of probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for all $s \in S$
- First identify all states where the probability is 1 or 0
 - "precomputation" algorithms, yielding sets Syes, Sno
- Then compute (min) probabilities for remaining states (S?)
 - either: solve linear programming problem
 - or: approximate with an iterative solution method
 - or: use policy iteration



PCTL until - Precomputation

- Identify all states where $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ is 1 or 0
 - $S^{yes} = Sat(P_{\geq 1} [\varphi_1 U \varphi_2]), S^{no} = Sat(\neg P_{>0} [\varphi_1 U \varphi_2])$
- Two graph-based precomputation algorithms:
 - algorithm Prob1A computes Syes
 - for all adversaries the probability of satisfying $\phi_1 \cup \phi_2$ is 1
 - algorithm Prob0E computes Sno
 - there exists an adversary for which the probability is 0

Example: $P_{\geq p}$ [F a]



Method 1 – Linear programming

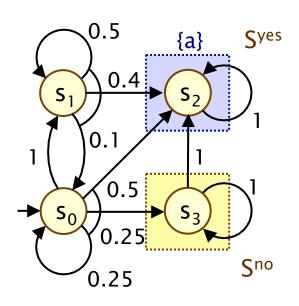
• Probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ for remaining states in the set $S^? = S \setminus (S^{yes} \cup S^{no})$ can be obtained as the unique solution of the following linear programming (LP) problem:

maximize $\sum_{s \in S^7} x_s$ subject to the constraints:

$$X_s \leq \sum_{s' \in S^?} \mu(s') \cdot X_{s'} + \sum_{s' \in S^{yes}} \mu(s')$$

for all $s \in S^{?}$ and for all $(a, \mu) \in \delta(s)$

- Simple case of a more general problem known as the stochastic shortest path problem [BT91]
- This can be solved with standard techniques
 - e.g. Simplex, ellipsoid method, branch-and-cut

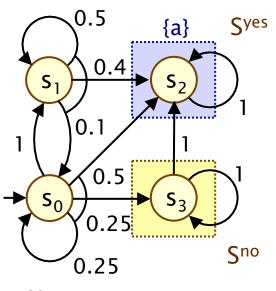


Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

•
$$x_0 \le x_1$$

• $x_0 \le 0.25 \cdot x_0 + 0.5$
• $x_1 \le 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$



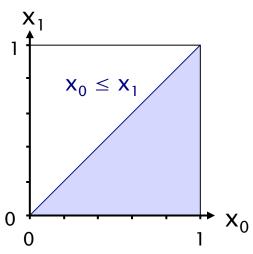
Let
$$x_i = Pr_{s_i}^{min}(F a)$$

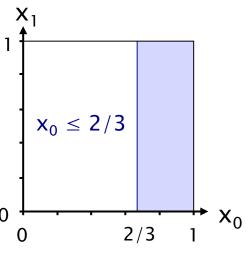
 S^{yes} : $x_2=1$, S^{no} : $x_3=0$
For $S^? = \{x_0, x_1\}$:

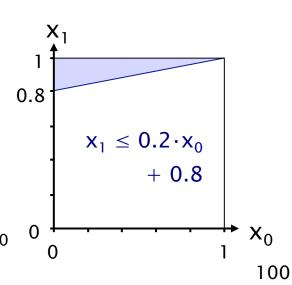
•
$$X_0 \le X_1$$

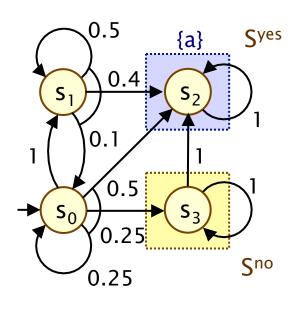
•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$









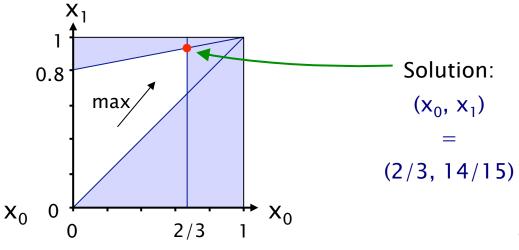
Let
$$x_i = Pr_{s_i}^{min}(F a)$$

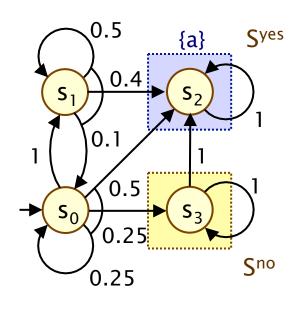
 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$





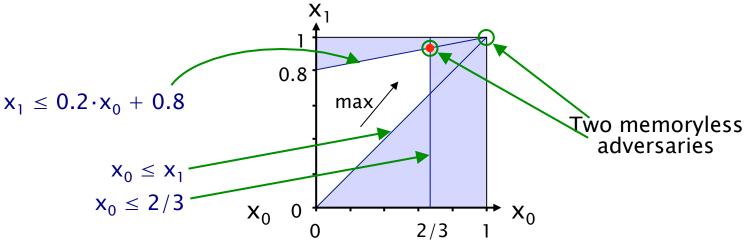
Let
$$x_i = Pr_{s_i}^{min}(F a)$$

 $S^{yes}: x_2=1, S^{no}: x_3=0$
For $S^? = \{x_0, x_1\}:$

•
$$X_0 \le X_1$$

•
$$x_0 \le 2/3$$

•
$$x_1 \le 0.2 \cdot x_0 + 0.8$$



Method 2 - Value iteration

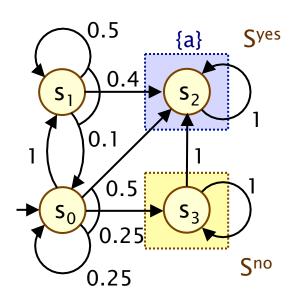
- For probabilities $Pr_s^{min}(\varphi_1 \cup \varphi_2)$ it can be shown that:
 - $Pr_s^{min}(\varphi_1 \cup \varphi_2) = Iim_{n\to\infty} x_s^{(n)}$ where:

$$X_s^{(n)} = \begin{cases} & 1 & \text{if } s \in S^{yes} \\ & 0 & \text{if } s \in S^{no} \\ & 0 & \text{if } s \in S^? \text{ and } n = 0 \end{cases}$$

$$\min_{(a,\mu) \in Steps(s)} \left(\sum_{s' \in S} \mu(s') \cdot X_{s'}^{(n-1)} \right) \text{ if } s \in S^? \text{ and } n > 0$$

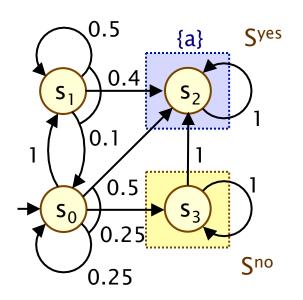
- This forms the basis for an (approximate) iterative solution
 - iterations terminated when solution converges sufficiently

Example - PCTL until (value iteration)



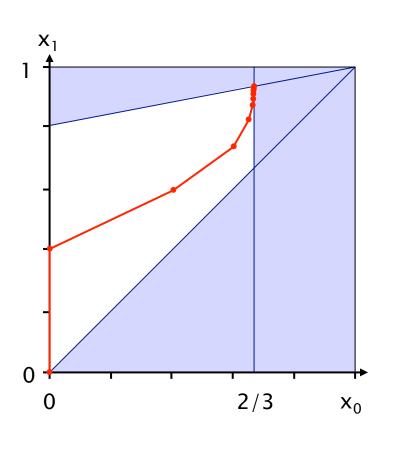
```
Compute: Pr_{si}^{min}(F a)
S^{yes} = \{x_2\}, S^{no} = \{x_3\}, S^? = \{x_0, x_1\}
            [X_0^{(n)}, X_1^{(n)}, X_2^{(n)}, X_3^{(n)}]
        n=0: [0, 0, 1, 0]
  n=1: [min(0,0.25·0+0.5),
            0.1 \cdot 0 + 0.5 \cdot 0 + 0.4, 1, 0
              = [0, 0.4, 1, 0]
           [ min(0.4,0.25\cdot0+0.5),
n=2:
           0.1 \cdot 0 + 0.5 \cdot 0.4 + 0.4, 1, 0
             = [0.4, 0.6, 1, 0]
              n=3: ...
```

Example - PCTL until (value iteration)



```
[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
         [0.000000, 0.000000, 1, 0]
n=0:
n=1:
         [0.000000, 0.400000, 1, 0]
         [0.400000, 0.600000, 1, 0]
n=2:
         [ 0.600000, 0.740000, 1, 0 ]
n=3:
         [0.650000, 0.830000, 1, 0]
n=4:
n=5:
         [ 0.662500, 0.880000, 1, 0 ]
n=6:
         [0.665625, 0.906250, 1, 0]
         [ 0.666406, 0.919688, 1, 0 ]
n=7:
n=8:
         [ 0.666602, 0.926484, 1, 0 ]
         [ 0.666650, 0.929902, 1, 0 ]
n=9:
         [ 0.666667, 0.933332, 1, 0 ]
n=20:
n=21:
         [ 0.666667, 0.933332, 1, 0 ]
           \approx [2/3, 14/15, 1, 0]
```

Example - Value iteration + LP



```
[x_0^{(n)}, x_1^{(n)}, x_2^{(n)}, x_3^{(n)}]
         [0.000000, 0.000000, 1, 0]
n=0:
n=1:
         [0.000000, 0.400000, 1, 0]
         [0.400000, 0.600000, 1, 0]
n=2:
         [ 0.600000, 0.740000, 1, 0 ]
n=3:
n=4:
         [ 0.650000, 0.830000, 1, 0 ]
n=5:
         [ 0.662500, 0.880000, 1, 0 ]
n=6:
         [0.665625, 0.906250, 1, 0]
         [0.666406, 0.919688, 1, 0]
n=7:
n=8:
         [ 0.666602, 0.926484, 1, 0 ]
         [ 0.666650, 0.929902, 1, 0 ]
n=9:
n=20:
         [ 0.666667, 0.933332, 1, 0 ]
n = 21:
         [ 0.666667, 0.933332, 1, 0 ]
           \approx [2/3, 14/15, 1, 0]
```

Method 3 – Policy iteration

- Value iteration:
 - iterates over (vectors of) probabilities
- Policy iteration:
 - iterates over adversaries ("policies")
- 1. Start with an arbitrary (memoryless) adversary σ
- 2. Compute the reachability probabilities $Pr^{\sigma}(F a)$ for σ
- 3. Improve the adversary in each state
- 4. Repeat 2/3 until no change in adversary
- Termination:
 - finite number of memoryless adversaries
 - improvement in (minimum) probabilities each time

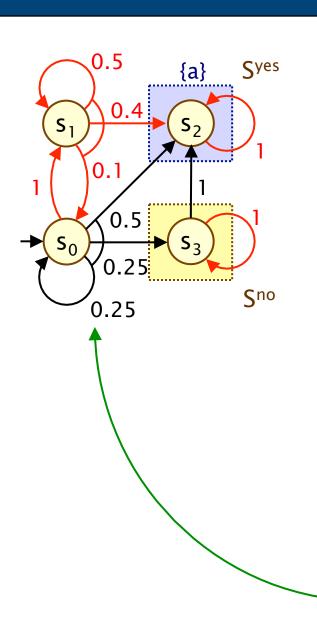
Method 3 – Policy iteration

- 1. Start with an arbitrary (memoryless) adversary σ
 - pick an element of $\delta(s)$ for each state $s \in S$
- 2. Compute the reachability probabilities $Pr^{\sigma}(F a)$ for σ
 - probabilistic reachability on a DTMC
 - i.e. solve linear equation system
- 3. Improve the adversary in each state

$$\sigma'(s) = \operatorname{argmin} \left\{ \sum_{s' \in S} \mu(s') \cdot \operatorname{Pr}_{s'}^{\sigma}(Fa) \mid (a, \mu) \in \delta(s) \right\}$$

4. Repeat 2/3 until no change in adversary

Example - Policy iteration



Arbitrary adversary o:

Compute: $\underline{Pr}^{\sigma}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma}(F a)$$

$$x_2 = 1$$
, $x_3 = 0$ and:

•
$$x_0 = x_1$$

$$\cdot x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

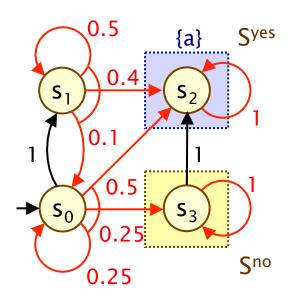
$$Pr^{\sigma}(F a) = [1, 1, 1, 0]$$

Refine σ in state s_0 :

$$min\{1(1), 0.5(1)+0.25(0)+0.25(1)\}$$

$$= min\{1, 0.75\} = 0.75$$

Example - Policy iteration



Refined adversary o':

Compute: $\underline{Pr}^{\sigma'}(F a)$

Let
$$x_i = Pr_{s_i}^{\sigma'}(F a)$$

$$x_2=1$$
, $x_3=0$ and:

•
$$x_0 = 0.25 \cdot x_0 + 0.5$$

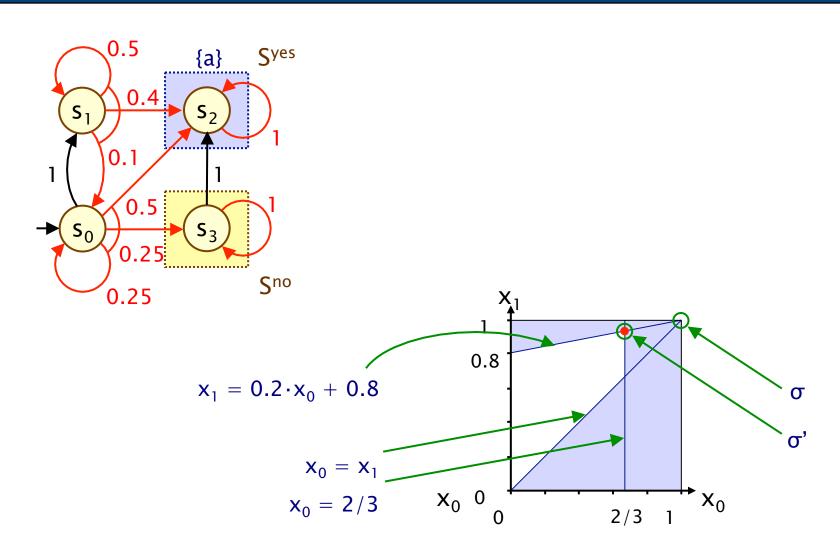
•
$$x_1 = 0.1 \cdot x_0 + 0.5 \cdot x_1 + 0.4$$

Solution:

$$Pr^{\sigma'}(F a) = [2/3, 14/15, 1, 0]$$

This is optimal

Example – Policy iteration



PCTL model checking – Summary

- Computation of set Sat(Φ) for MDP M and PCTL formula Φ
 - recursive descent of parse tree
 - combination of graph algorithms, numerical computation
- Probabilistic operator P:
 - $X \Phi$: one matrix-vector multiplication, $O(|S|^2)$
 - $-\Phi_1 U^{\leq k} \Phi_2$: k matrix-vector multiplications, $O(k|S|^2)$
 - Φ₁ U Φ₂ : linear programming problem, polynomial in |S| (assuming use of linear programming)
- Complexity:
 - linear in |Φ| and polynomial in |S|
 - S is states in MDP, assume $|\delta(s)|$ is constant

Costs and rewards for MDPs

- We can augment MDPs with rewards (or, conversely, costs)
 - real-valued quantities assigned to states and/or transitions
 - these can have a wide range of possible interpretations
- Some examples:
 - elapsed time, power consumption, size of message queue, number of messages successfully delivered, net profit
- Extend logic PCTL with R operator, for "expected reward"
 - as for PCTL, either R_{r} [...], $R_{min=?}$ [...] or $R_{max=?}$ [...]
- Some examples:
 - $R_{min=?} [I^{=90}], R_{max=?} [C^{\le 60}], R_{max=?} [F"end"]$
 - "the minimum expected queue size after exactly 90 seconds"
 - "the maximum expected power consumption over one hour"
 - the maximum expected time for the algorithm to terminate

Overview (Part 3)

- Markov decision processes (MDPs)
- Adversaries & probability spaces
- Properties of MDPs: The temporal logic PCTL
- PCTL model checking for MDPs
- Case study: Firewire root contention

Case study: FireWire protocol

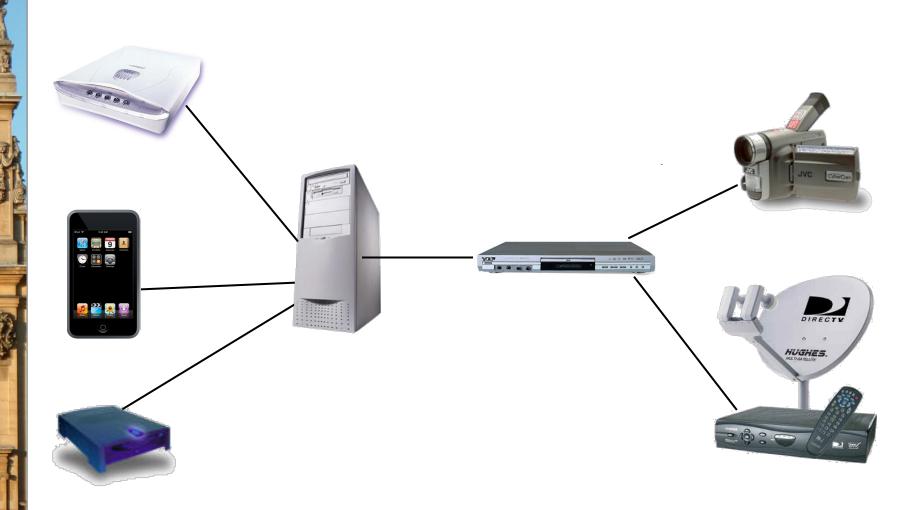
FireWire (IEEE 1394)

- high-performance serial bus for networking multimedia devices; originally by Apple
- "hot-pluggable" add/remove devices at any time
- no requirement for a single PC (need acyclic topology)

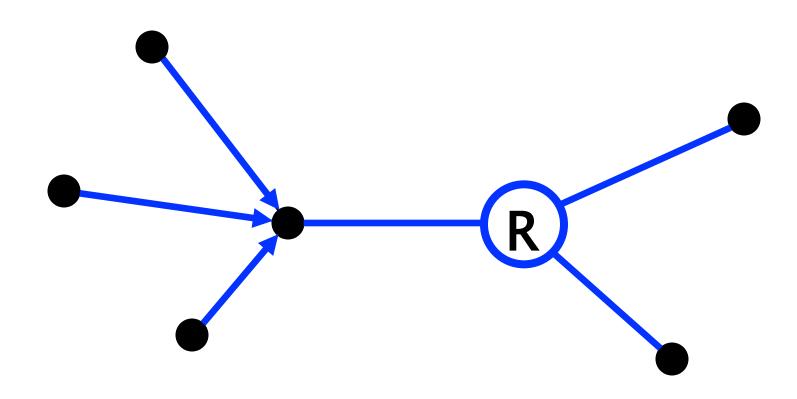
Root contention protocol

- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses electronic coin tossing and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

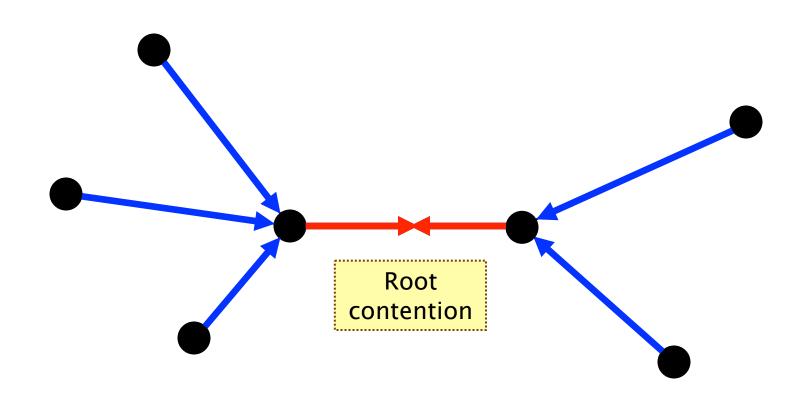
FireWire example



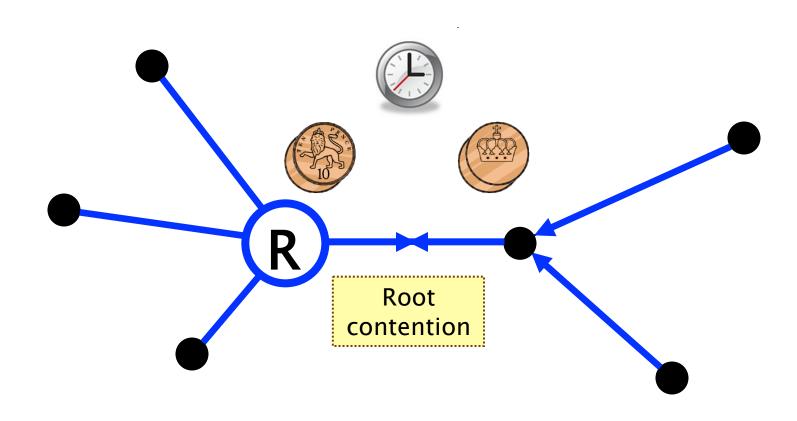
FireWire leader election



FireWire root contention



FireWire root contention



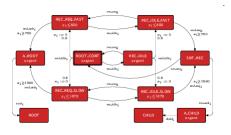
FireWire analysis

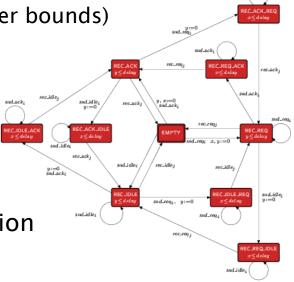
Probabilistic model checking

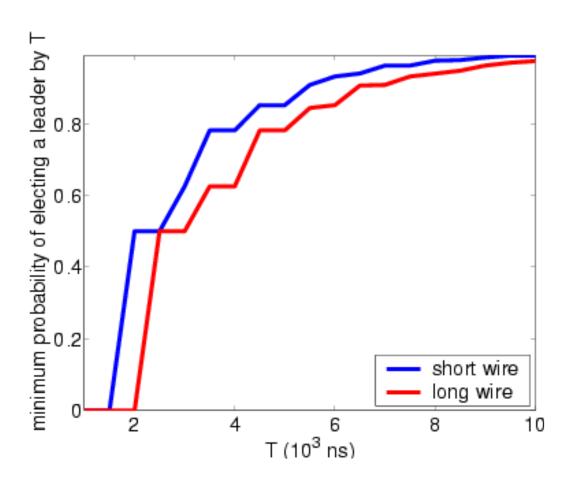
- model constructed and analysed using PRISM
- timing delays taken from standard
- model includes:
 - concurrency: messages between nodes and wires
 - underspecification of delays (upper/lower bounds)
- max. model size: 170 million states

Analysis:

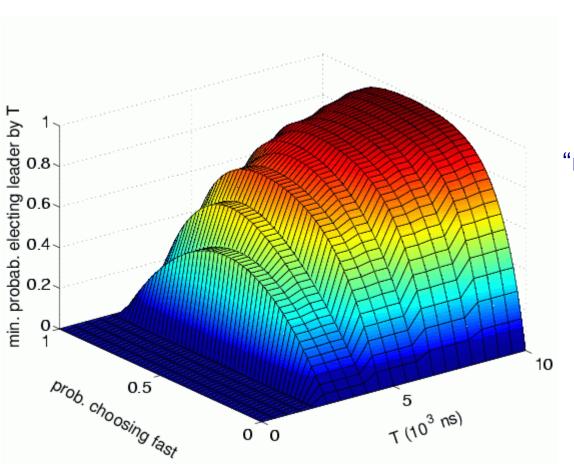
- verified that root contention always resolved with probability 1
- investigated time taken for leader election
- and the effect of using biased coin
 - · based on a conjecture by Stoelinga







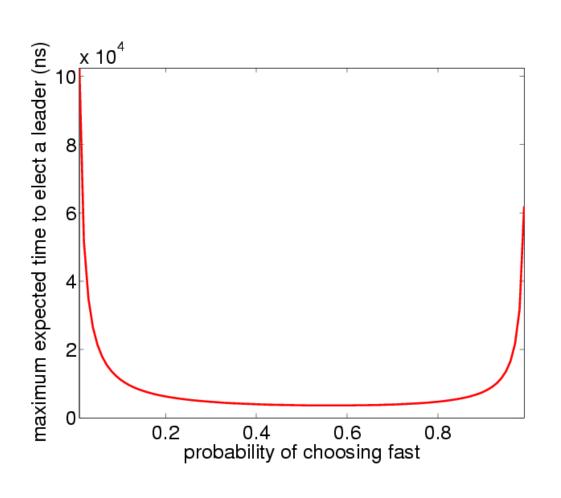
"minimum probability of electing leader by time T"



"minimum probability of electing leader by time T"

(short wire length)

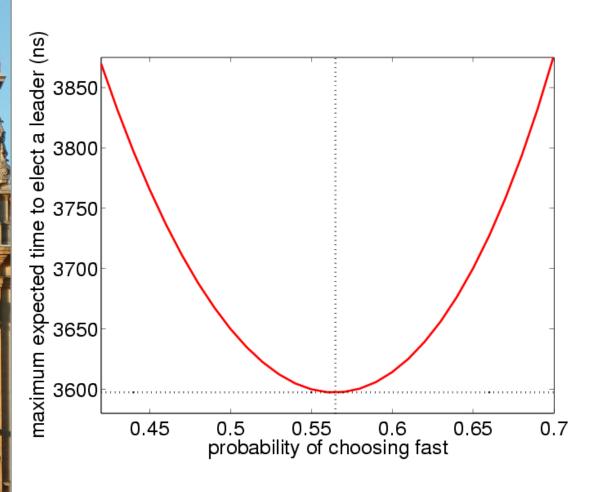
Using a biased coin



"maximum expected time to elect a leader"

(short wire length)

Using a biased coin



"maximum expected time to elect a leader"

(short wire length)

Using a biased coin is beneficial!

Summary (Part 3)

- Markov decision processes (MDPs)
 - extend DTMCs with nondeterminism
 - to model concurrency, underspecification, ...
- Adversaries resolve nondeterminism in an MDP
 - induce a probability space over paths
 - consider minimum/maximum probabilities over all adversaries
- Property specifications
 - PCTL: exactly same syntax as for DTMCs
 - but quantify over all adversaries
- Model checking algorithms
 - covered three basic techniques for MDPs: linear programming, value iteration, or policy iteration
- Next: Compositional probabilistic verification

Part 4

Compositional probabilistic verification

Overview

- Lectures 1 and 2:
 - 1 Introduction
 - 2 Discrete-time Markov chains
 - 3 Markov decision processes
 - 4 Compositional probabilistic verification
- PRISM lab session (4.30pm)
 - PC lab downstairs or install PRISM on your own laptop
- Course materials available here:
 - http://www.prismmodelchecker.org/courses/sfm11connect/
 - lecture slides, reference list, tutorial chapter, lab session

Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Compositional verification

- Goal: scalability through modular verification
 - e.g. decide if $M_1 \mid\mid M_2 \models G$
 - by analysing M₁ and M₂ separately
- Assume-guarantee (AG) reasoning
 - use assumption A about the context of a component M₂
 - $-\langle A \rangle M_2 \langle G \rangle$ "whenever M_2 is part of a system satisfying A, then the system must also guarantee G"
 - example of asymmetric (non-circular) A/G rule:

AG rules for probabilistic systems

How to formulate AG rules for MDPs?

$$\begin{array}{c} \mathsf{M}_1 \vDash \mathsf{A} \\ & \langle \mathsf{A} \rangle \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle \\ \hline & \mathsf{M}_1 \; || \; \mathsf{M}_2 \vDash \mathsf{G} \end{array}$$

- Key questions:
 - 1. What form do assumptions A take?
 - · needs to be compositional
 - · needs to be efficient to check
 - needs to allow compact assumptions
 - 2. How do we generate suitable assumptions?
 - preferably in a fully automated fashion
 - 3. Can we get "quantitative" results?
 - i.e. numerical values, rather than "yes"/"no"

AG rules for probabilistic systems

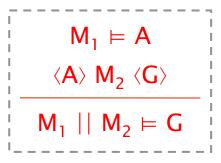
How to formulate AG rules for MDPs?

$$\begin{array}{c}
 M_1 \vDash A \\
 \langle A \rangle M_2 \langle G \rangle \\
\hline
 M_1 \mid M_2 \vDash G
 \end{array}$$

- Key questions:
 - 1. What form do assumptions A take?
 - · needs to be compositional
 - needs to be efficient to check
 - needs to allow compact assumptions
 - > various compositional relations exist
 - e.g. strong/weak (probabilistic) (bi)simulation
 - but these are either too fine (difficult to get small assumptions) or expensive to check
 - - · less expressive, but compact and efficient
 - · (see also generalisation to liveness/rewards [TACAS'11])

AG rules for probabilistic systems

How to formulate AG rules for MDPs?



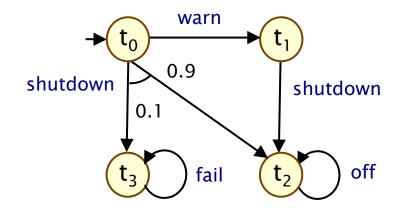
- Key questions:
 - 2. How do we generate suitable assumptions?
 - · preferably in a fully automated fashion
 - ▷ algorithmic learning (based on L* algorithm)
 adapt techniques for (non-probabilistic) assumptions
 - 3. Can we get "quantitative" results?
 - i.e. numerical values, rather than "yes"/"no"
 - > yes: generate lower/upper bounds on probabilities

Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Recap: Markov decision processes

- Markov decision processes (MDPs)
 - model probabilistic and nondeterministic behaviour
- An MDP is a tuple $M = (S, s_{init}, \alpha_M, \delta_M, L)$:
 - S is the state space
 - $-s_{init} \in S$ is the initial state
 - $-\alpha_{M}$ is the action alphabet
 - $-\delta_{M} \subseteq S \times (\alpha_{M} \cup T) \times Dist(S)$ is the transition probability relation
 - L:S → 2^{AP} labels states with atomic propositions



Notes:

- $-\alpha_{\rm M}$, $\delta_{\rm M}$ have subscripts to avoid confusion with other automata
- transitions can also be labelled with a "silent"
 ⊤ action
- we write s^{-a} →μ as shorthand for $(s,a,\mu) \in \delta_M$
- MDPs, here, are identical to probabilistic automata [Segala] 134

Recap: Model checking for MDPs

- An adversary σ resolves the nondeterminism in an MDP M
 - make a (possibly randomised) choice, based on history
 - induces probability measure Pr_M^o over (infinite) paths Path_M^o
 - can compute probability of some measurable property
 - e.g. F err $\equiv \Diamond$ err "an error eventually occurs"
 - or automata over action labels (see later)
- Property specifications: quantify over all adversaries
 - e.g. PCTL: $M \models P_{\geq p}[\varphi] \Leftrightarrow Pr_{M}^{\sigma}(\varphi) \geq p$ for all adv.s $\sigma \in Adv_{M}$
 - corresponds to best-/worst-case behaviour analysis
 - requires computation of $Pr_{M}^{min}(\phi)$ or $Pr_{M}^{max}(\phi)$
 - or in a more quantitative fashion:
 - just ask e.g. $P_{min=?}(\phi)$ or $P_{max=?}(\phi)$
 - also extends to (min/max) expected costs & rewards

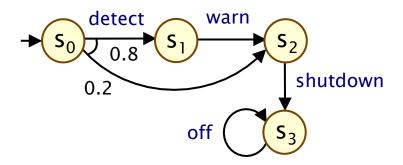
Parallel composition for MDPs

- The parallel composition of M_1 and M_2 is denoted $M_1 \parallel M_2$
 - CSP style: synchronise over all common (non-τ) actions
 - when synchronising, transition probabilities are multiplied
- Formally, if $M_i = (S_i, s_{init,i}, \alpha_{M_i}, \delta_{M_i}, L_i)$ for i=1,2, then:
- $M_1||M_2 = (S_1 \times S_2, (s_{init,1}, s_{init,2}), \alpha_{M_1} \cup \alpha_{M_2}, \delta_{M_1||M_2}, L_{12})$ where:
 - $L_{12}(s_1,s_2) = L_1(s_1) \cup L_2(s_2)$
 - $-\delta_{M_1||M_2}$ is defined such that $(s_1,s_2)^{-a} \rightarrow \mu_1 \times \mu_2$ iff one of:
 - $s_1^{-a} \rightarrow \mu_1$, $s_2^{-a} \rightarrow \mu_2$ and $a \in \alpha_{M_1} \cap \alpha_{M_2}$ (synchronous)
 - $s_1^{-a} \rightarrow \mu_1$, $\mu_2 = \eta_{s_2}$ and $a \in (\alpha_{M_1} \setminus \alpha_{M_2}) \cup \{\tau\}$ (asynchronous)
 - $s_2^{-a} \rightarrow \mu_2$, $\mu_1 = \eta_{s_1}$ and $a \in (\alpha_{M_2} \setminus \alpha_{M_1}) \cup \{\tau\}$ (asynchronous)
 - where $\mu_1 \times \mu_2$ denotes the product of distributions μ_1 , μ_2
 - and $\eta_s \in \text{Dist}(S)$ is the Dirac (point) distribution on $s \in S$

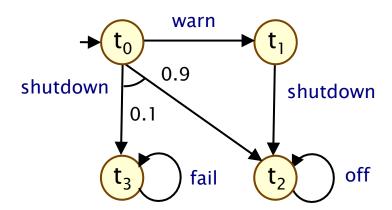
Running example

- Two components, each a Markov decision process:
 - M₁: controller which shuts down devices (after warning first)
 - $-M_2$: device to be shut down (may fail if no warning sent)

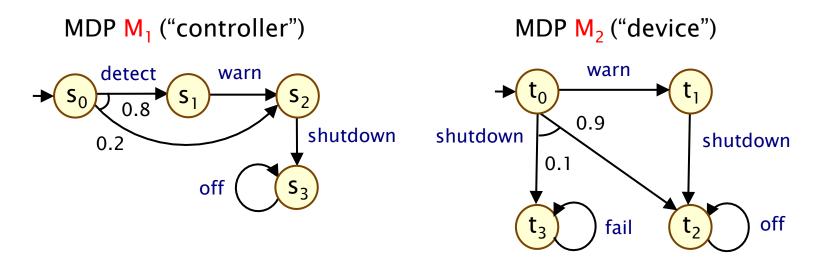
MDP M₁ ("controller")



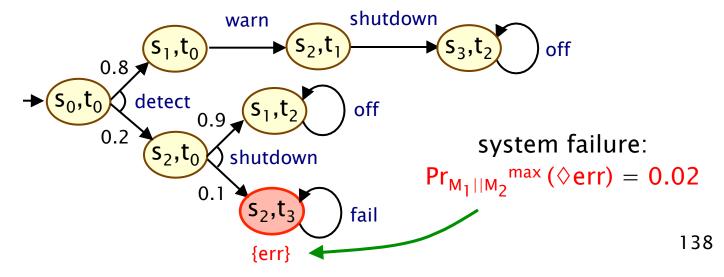
MDP M₂ ("device")



Running example

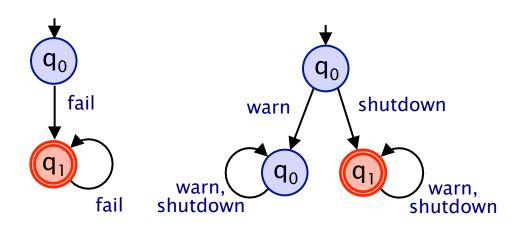


Parallel composition: $M_1 \parallel M_2$



Safety properties

- Safety property: language of infinite words (over actions)
 - characterised by a set of "bad prefixes" (or "finite violations")
 - i.e. finite words of which any extension violates the property
- Regular safety property
 - bad prefixes are represented by a regular language
 - property A stored as deterministic finite automaton (DFA) Aerr



"at most 2 time steps pass before termination"

end

end

time

time

 q_2

end

time,

end

time,

end

"a fail action never occurs"

"warn occurs before shutdown"

Probabilistic safety properties

- A probabilistic safety property $P_{\geq p}$ [A] comprises
 - a regular safety property A + a rational probability bound p
 - "the probability of satisfying A must be at least p"
 - $-M \models P_{>p}[A] \Leftrightarrow Pr_M^{\sigma}(A) \ge p \text{ for all } \sigma \in Adv_M \Leftrightarrow Pr_M^{\min}(A) \ge p$

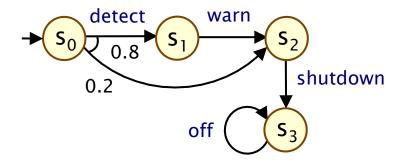
Examples:

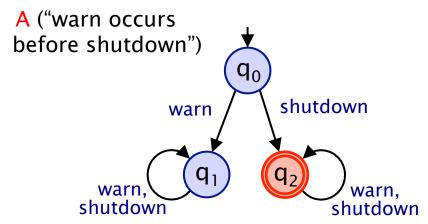
- "warn occurs before shutdown with probability at least 0.8"
- "the probability of a failure occurring is at most 0.02"
- "probability of terminating within k time-steps is at least 0.75"
- Model checking: $Pr_{M}^{min}(A) = 1 Pr_{M \otimes A_{err}}^{max}(\lozenge err_{A})$
 - where err_A denotes "accept" states for DFA A
 - i.e. construct (synchronous) MDP-DFA product M⊗A_{err}
 - then compute reachability probabilities on product MDP

Running example

• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?

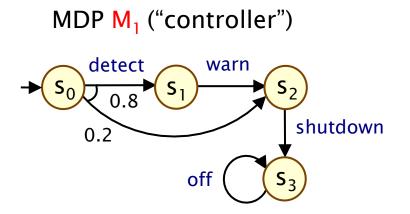
MDP M₁ ("controller")

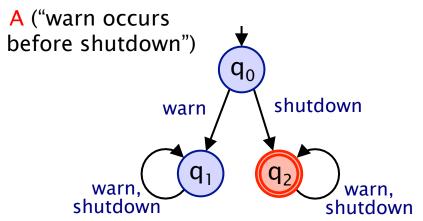




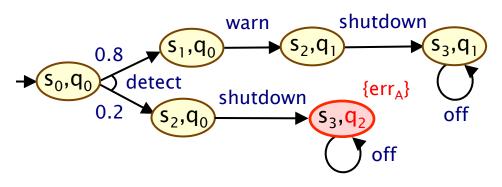
Running example

• Does probabilistic safety property $P_{\geq 0.8}$ [A] hold in M_1 ?





Product MDP M₁⊗A_{err}



$$Pr_{M_1}^{min}(A)$$

$$= 1 - Pr_{M_1 \otimes A_{err}}^{max}(\lozenge err_A)$$

$$= 1 - 0.2$$

$$= 0.8$$

$$\rightarrow M_1 \models P_{\geq 0.8}[A]$$
142

Multi-objective MDP model checking

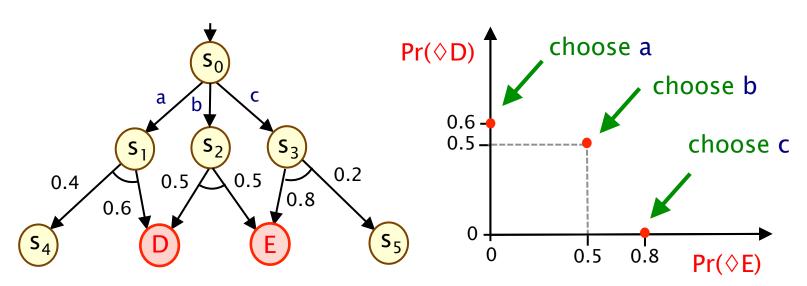
- Consider multiple (linear-time) objectives for an MDP M
 - LTL formulae $\Phi_1, ..., \Phi_k$ and probability bounds $\sim_1 p_1, ..., \sim_k p_k$
 - question: does there exist an adversary $\sigma \in Adv_M$ such that:

$$Pr_{M}^{\sigma}(\varphi_{1}) \sim_{1} p_{1} \wedge ... \wedge Pr_{M}^{\sigma}(\varphi_{k}) \sim_{k} p_{k}$$

- Motivating example:
 - $-\Pr_{M}^{\sigma}(\Box(queue_size<10)) > 0.99 \land \Pr_{M}^{\sigma}(\Diamond flat_battery) < 0.01$
- Multi-objective MDP model checking [EKVY07]
 - construct product of automata for M, Φ_1, \dots, Φ_k
 - then solve linear programming (LP) problem
 - the resulting adversary or can obtained from LP solution
 - note:
 o may be randomised (unlike the single objective case)

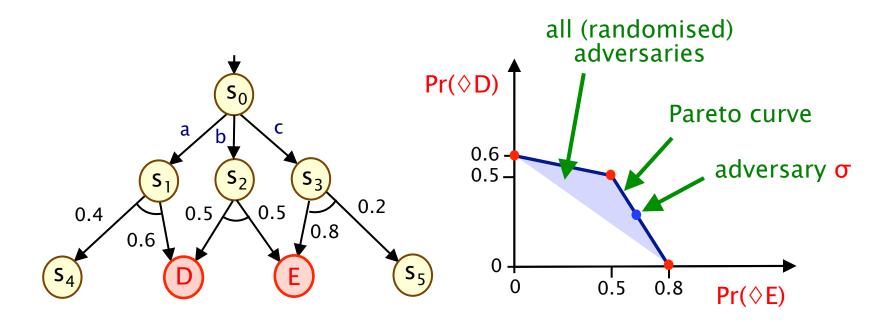
Multi-objective MDP model checking

- Consider the two objectives ◇D and ◇E in the MDP below
 - i.e. the trade-off between the probabilities $Pr(\lozenge D)$ and $Pr(\lozenge E)$
 - an adversary resolves the choice between a/b/c
 - increasing the probability of reaching one target decreases the probability of reaching the other



Multi-objective MDP model checking

- Need to consider all randomised adversaries
 - for example, is there an adversary σ such that:
 - $\Pr(\lozenge D) > 0.2 \land \Pr(\lozenge E) > 0.6$



Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Probabilistic assume guarantee

- Assume-guarantee triples $\langle A \rangle_{\geq p_{G}} M \langle G \rangle_{\geq p_{G}}$ where:
 - M is an MDP
 - $-P_{\geq p_A}[A]$ and $P_{\geq p_G}[G]$ are probabilistic safety properties

Informally:

- "whenever M is part of a system satisfying A with probability at least p_A , then the system is guaranteed to satisfy G with probability at least p_G "

Formally:

- $\forall \sigma \in Adv_{M'}$ ($Pr_{M'}^{\sigma}(A) \ge p_{A} \rightarrow Pr_{M'}^{\sigma}(G) \ge p_{G}$)
- where M' is M with its alphabet extended to include α_A
- reduces to multi-objective model checking on M'
- look for adversary satisfying assumption but not guarantee
- i.e. can check $\langle A \rangle_{\geq p_{\Delta}} M \langle G \rangle_{\geq p_{C}}$ efficiently via LP problem

An assume-guarantee rule

- The following asymmetric proof rule holds
 - (asymmetric = uses one assumption about one component)

$$\begin{array}{c} M_{1} \vDash P_{\geq p_{A}}[A] \\ \hline \langle A \rangle_{\geq p_{A}} M_{2} \langle G \rangle_{\geq p_{G}} \\ \hline M_{1} \mid \mid M_{2} \vDash P_{\geq p_{G}}[G] \end{array} \tag{ASYM}$$

- So, verifying $M_1 \mid | M_2 \models P_{\geq p_G}[G]$ requires:
 - premise 1: $M_1 \models P_{\geq p_A}[A]$ (standard model checking)
 - premise 2: $\langle A \rangle_{\geq p_A} M_2 \langle G \rangle_{\geq p_G}$ (multi-objective model checking)
- Potentially much cheaper if |A| much smaller than $|M_1|$

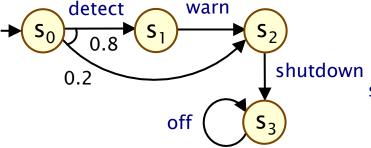
• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

MDP M₁ ("controller") G ("a fail action MDP M₂ ("device") never occurs") detect warn warn shutdown 0.2 0.9 shutdown shutdown fail 0.1 off off fail t_2

fail

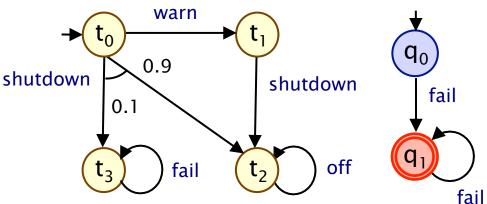
• Does probabilistic safety property $P_{\geq 0.98}$ [G] hold in $M_1 || M_2$?

MDP M₁ ("controller")



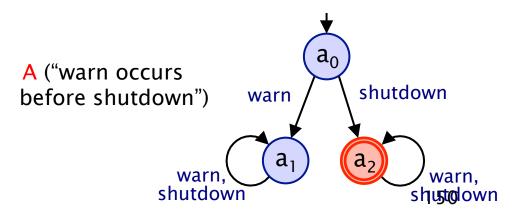
MDP M₂ ("device")

G ("a fail action never occurs")

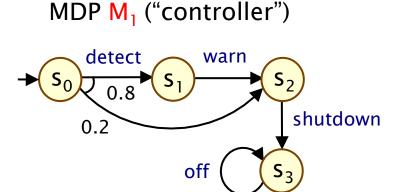


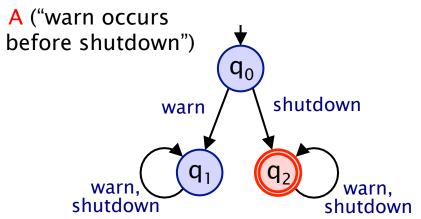
Use AG with assumption
 ⟨A⟩_{≥0.8} about M₁

$$\begin{array}{c|c} \langle true \rangle \ M_1 \ \langle A \rangle_{\geq 0.8} \\ \hline \langle A \rangle_{\geq 0.8} \ M_2 \ \langle G \rangle_{\geq 0.98} \\ \hline \langle true \rangle \ M_1 \ || \ M_2 \ \langle G \rangle_{\geq 0.98} \end{array}$$

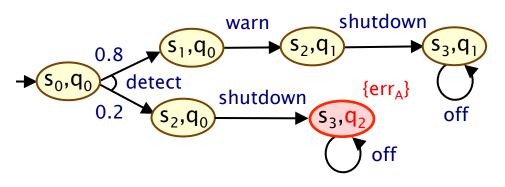


• Premise 1: Does $M_1 = P_{\geq 0.8}$ [A] hold? (same as earlier ex.)





Product MDP M₁⊗A_{err}



$$Pr_{M_1}^{min}(A)$$

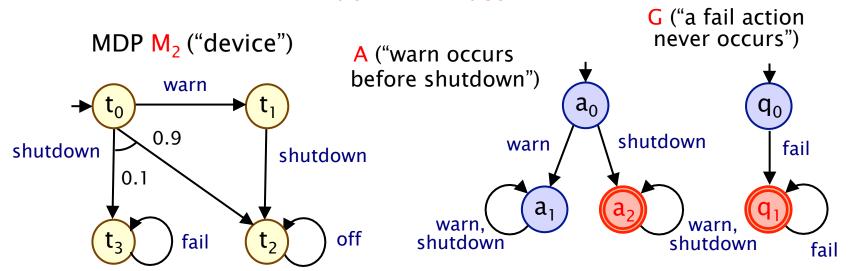
$$= 1 - Pr_{M_1 \otimes A_{err}}^{max}(\lozenge err_A)$$

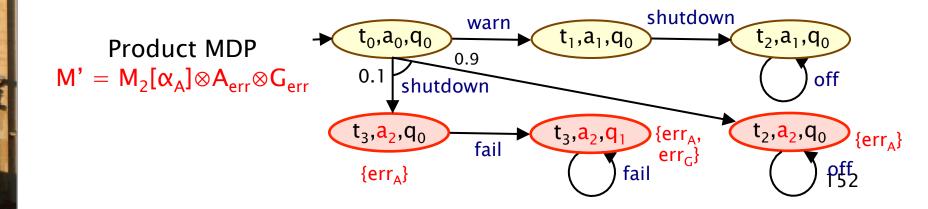
$$= 1 - 0.2$$

$$= 0.8$$

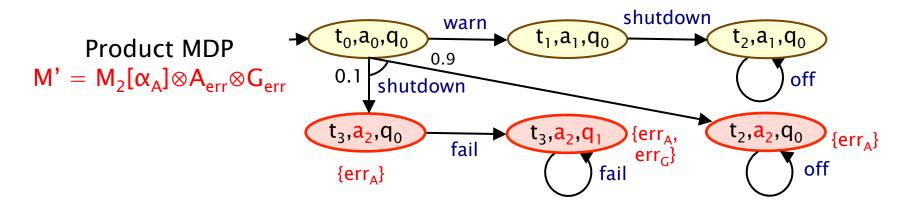
$$\rightarrow M_1 \models P_{\geq 0.8}[A]$$
151

• Premise 2: Does $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98}$ hold?





• Premise 2: Does $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98}$ hold?



- \exists an adversary of M_2 satisfying $Pr_M^{\sigma}(A) \ge 0.8$ but not $Pr_M^{\sigma}(G) \ge 0.98$?
- \exists an an adversary of M' with $Pr_{M'}^{\sigma'}(\Diamond err_{A}) \leq 0.2$ and $Pr_{M'}^{\sigma'}(\Diamond err_{G}) > 0.02$?
- To satisfy $\Pr_{M'}^{\sigma'}(\lozenge err_A) \le 0.2$, adversary σ' must choose shutdown in initial state with probability ≤ 0.2 , which means $\Pr_{M'}^{\sigma'}(\lozenge err_G) \le 0.02$
- So, there is no such adversary and $\langle A \rangle_{\geq 0.8} M_2 \langle G \rangle_{\geq 0.98} does$ hold

Other assume-guarantee rules

Multiple assumptions:

Multiple components (chain):

$$\begin{array}{c} \mathsf{M}_1 \vDash \mathsf{P}_{\geq p_1}[\mathsf{A}_1] \wedge \ldots \wedge \mathsf{P}_{\geq p_k}[\mathsf{A}_k] \\ \\ \frac{\langle \mathsf{A}_1, \ldots, \mathsf{A}_k \rangle_{\geq p_1, \ldots, p_k} \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq p_G}}{\mathsf{M}_1 \; || \; \mathsf{M}_2 \vDash \mathsf{P}_{\geq p_G}[\mathsf{G}]} & (\mathsf{ASYM-MULT}) \\ \\ \frac{\langle \mathsf{A}_1, \ldots, \mathsf{A}_k \rangle_{\geq p_1, \ldots, p_k} \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq p_G}}{\mathsf{M}_1 \; || \; \mathsf{M}_2 \vDash \mathsf{P}_{\geq p_G}[\mathsf{G}]} & (\mathsf{ASYM-MULT}) \\ \\ \frac{\langle \mathsf{A}_1 \rangle_{\geq p_1} \; \mathsf{M}_2 \; \langle \mathsf{A}_2 \rangle_{\geq p_2}}{\mathsf{M}_1 \; || \; \mathsf{M}_n \; || \; \mathsf{A}_1 \rangle_{\geq p_G}[\mathsf{G}]} \\ \\ \frac{\langle \mathsf{A}_n \rangle_{\geq p_n} \; \mathsf{M}_n \; \langle \mathsf{G} \rangle_{\geq p_G}[\mathsf{G}]}{\mathsf{M}_1 \; || \; \ldots \; || \; \mathsf{M}_n \; || \; \mathsf{P}_{\geq p_G}[\mathsf{G}]} \end{array}$$

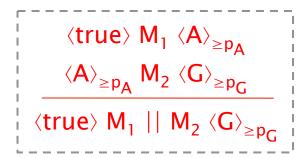
Circular rule:

$$\begin{array}{c} \mathsf{M}_2 \vDash \mathsf{P}_{\geq \mathsf{p}_2}[\mathsf{A}_2] \\ \langle \mathsf{A}_2 \rangle_{\geq \mathsf{p}_2} \; \mathsf{M}_1 \; \langle \mathsf{A}_1 \rangle_{\geq \mathsf{p}_1} \\ \langle \mathsf{A}_1 \rangle_{\geq \mathsf{p}_1} \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq \mathsf{p}_G} \\ \hline \\ \mathsf{M}_1 \; || \; \mathsf{M}_2 \vDash \mathsf{P}_{\geq \mathsf{p}_G}[\mathsf{G}] \end{array} \tag{CIRC}$$

Asynchronous components:

A quantitative approach

- For (non-compositional) probabilistic verification
 - prefer quantitative properties: $Pr_{M}^{min}(G)$, not $M \models P_{\geq p_{C}}[G]$
 - can we do this for compositional verification?
- Consider, for example, AG rule (ASym)
 - this proves $Pr_{M_1 \parallel M_2}^{min}(G) \ge p_G$ for certain values of p_G
 - i.e. gives lower bound for $Pr_{M_1||M_2}^{min}(G)$



- for a fixed assumption A, we can compute the maximal lower bound obtainable, through a simple adaption of the multiobjective model checking problem
- we can also compute upper bounds using generated adversaries as witnesses
- furthermore: can explore trade-offs in parameterised models by approximating Pareto curves

Implementation + Case studies

- Prototype extension of PRISM model checker
 - already supports LTL for Markov decision processes
 - automata can be encoded in modelling language
 - added support for multi-objective LTL model checking, using LP solvers (ECLiPSe/COIN-OR CBC)
- Two large case studies
 - randomised consensus algorithm (Aspnes & Herlihy)
 - minimum probability consensus reached by round R
 - Zeroconf network protocol
 - · maximum probability network configures incorrectly
 - minimum probability network configured by time T

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
Dandamica d	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
	4	313,541	103.9	20,927	21.9
ZeroConf [K]	6	811,290	275.2	40,258	54.8
[14]	8	1,892,952	592.2	66,436	107.6
	2, 10	65,567	46.3	62,188	89.0
ZeroConf time-bounded [K, T]	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
ZeroConf [K]	4	313,541	103.9	20,927	21.9
	6	811,290	275.2	40,258	54.8
	8	1,892,952	592.2	66,436	107.6
ZeroConf time-bounded [K, T]	2, 10	65,567	46.3	62,188	89.0
	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

[•] Faster than conventional model checking in a number of cases

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
	4	313,541	103.9	20,927	21.9
ZeroConf [K]	6	811,290	275.2	40,258	54.8
	8	1,892,952	592.2	66,436	107.6
ZeroConf time-bounded [K, T]	2, 10	65,567	46.3	62,188	89.0
	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

• Verified instances where conventional model checking is infeasible

Case study [parameters]		Non-compositional		Compositional	
		States	Time (s)	LP size	Time (s)
	3, 2	1,418,545	18,971	40,542	29.6
Randomised consensus	3, 20	39,827,233	time-out	40,542	125.3
(3 processes)	4, 2	150,487,585	78,955	141,168	376.1
[R,K]	4, 20	2,028,200,209	mem-out	141,168	471.9
ZeroConf [K]	4	313,541	103.9	20,927	21.9
	6	811,290	275.2	40,258	54.8
	8	1,892,952	592.2	66,436	107.6
ZeroConf time-bounded [K, T]	2, 10	65,567	46.3	62,188	89.0
	2, 14	106,177	63.1	101,313	170.8
	4, 10	976,247	88.2	74,484	170.8
	4, 14	2,288,771	128.3	166,203	430.6

[•] LP problem generally much smaller than full state space (but still the limiting factor)

Overview (Part 4)

- Compositional verification
 - assume-guarantee reasoning
- Markov decision processes
 - probabilistic safety properties
 - multi-objective model checking
- Probabilistic assume guarantee
 - semantics, model checking
 - assume-guarantee proof rules
 - quantitative approaches
 - implementation & experimental results
 - assumption generation with learning

Generating assumptions

- Can model check $M_1 || M_2$ compositionally
 - but this relies on the existence of a suitable assumption $P_{\geq p_A}[A]$

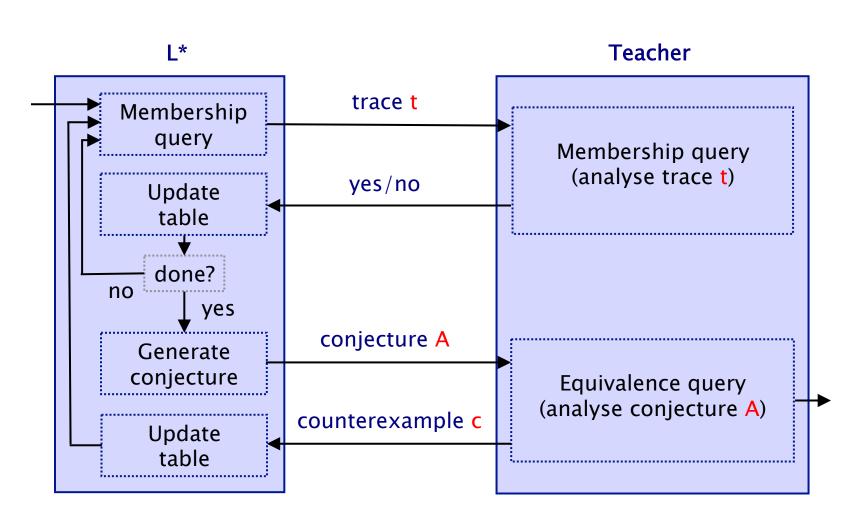
$$\begin{aligned} & \mathsf{M}_1 \vDash \mathsf{P}_{\geq \mathsf{p}_\mathsf{A}}[\mathsf{A}] \\ & \frac{\langle \mathsf{A} \rangle_{\geq \mathsf{p}_\mathsf{A}} \; \mathsf{M}_2 \; \langle \mathsf{G} \rangle_{\geq \mathsf{p}_\mathsf{G}}}{\mathsf{M}_1 \; || \; \mathsf{M}_2 \vDash \mathsf{P}_{\geq \mathsf{p}_\mathsf{G}}[\mathsf{G}]} \end{aligned}$$

- 1. Does such an assumption always exist?
- 2. When it does exist, can we generate it automatically?
- Our approach: use algorithmic learning techniques
 - inspired by non-probabilistic AG work of [Pasareanu et al.]
 - uses L* algorithm to learn finite automata for assumptions
 - we use a modified version of L*
 - to learn probabilistic assumptions for rule (Asym) [QEST'10]

The L* learning algorithm

- The L* algorithm [Angluin]
 - learns an unknown regular language L, as a (minimal) DFA
- Based on "active" learning
 - relies on existence of a "teacher" to guide the learning
 - answers two type of queries: "membership" and "equivalence"
 - membership: "is trace (word) t in the target language L?"
 - stores results of membership queries in observation table
 - based on these, generates conjectures A for the automata
 - equivalence: "does automata A accept the target language L"?
 - · if not, teacher must return counterexample c
 - (c is a word in the symmetric difference of L and L(A))

The L* learning algorithm



L* for assume-guarantee

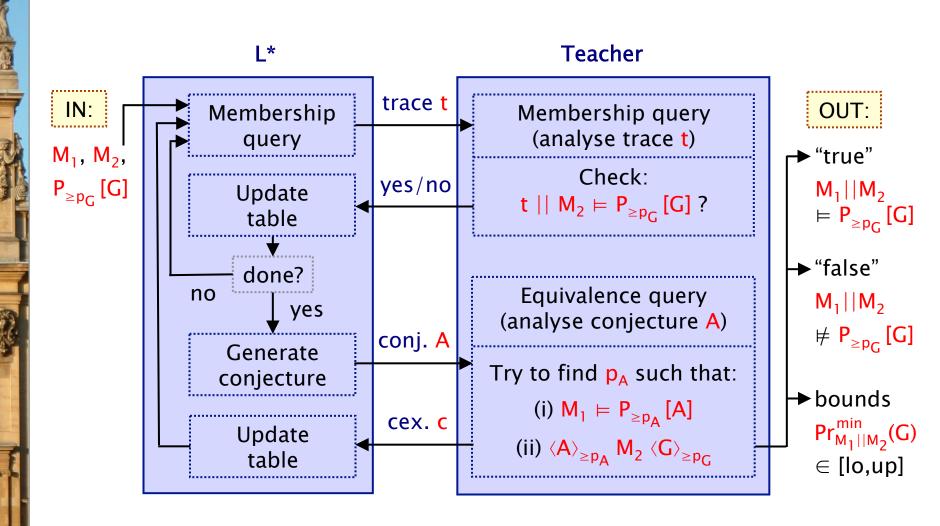
- Breakthrough in automated compositional verification
 - use of L* to learn assumptions for A/G reasoning
 - [Pasareanu/Giannakopoulou/et al.]
 - uses notion of "weakest assumption" about a component that suffices for compositional verification (always exists)
 - weakest assumption is the target regular language
- Fully automated L* learning loop
 - model checker plays role of teacher, returns counterexamples
 - in practice, can usually stop early: either with a simpler (stronger) assumption or by refuting the property
- Successfully applied to several large case studies
 - does particularly well when assumption/alphabet are small
 - much recent interest in learning for verification...

Probabilistic assumption generation

- Goal: automate A/G rule (Asym)
 - generate probabilistic assumption P_{≥p_A} [A]
 - for checking property $P_{\geq p_c}[G]$ on $M_1 \parallel M_2$
- Reduce problem to generation of non-probabilistic assumption A

- $\begin{aligned} \mathbf{M}_{1} &\models \mathbf{P}_{\geq p_{A}}[\mathbf{A}] \\ &\frac{\langle \mathbf{A} \rangle_{\geq p_{A}} \mathbf{M}_{2} \langle \mathbf{G} \rangle_{\geq p_{G}}}{\mathbf{M}_{1} \mid\mid \mathbf{M}_{2} \models \mathbf{P}_{\geq p_{G}}[\mathbf{G}]} \end{aligned}$
- then (if possible) find lowest p_A such that premises 1 & 2 hold
- in fact, for fixed A, we can generate lower and upper bounds on $\Pr_{M_1||M_2}^{\min}(G)$, which may suffice to verify/refute $\Pr_{p_c}[G]$
- Use adapted L* to learn non-probabilistic assumption A
 - note: there is no "weakest assumption" (AG rule is incomplete)
 - but can generate sequence of conjectures for A in similar style
 - "teacher" based on a probabilistic model checker (PRISM), feedback is from probabilistic counterexamples [Han/Katoen]
 - three outcomes of loop: "true", "false", lower/upper bounds

Probabilistic assumption generation



Implementation + Case studies

- Implemented using:
 - extension of PRISM model checker
 - libalf learning library [Bollig et al.]
- Several case studies
 - client-server (A/G model checking benchmark + failures)
 - · minimum probability mutual exclusion not violated
 - randomised consensus algorithm [Aspnes & Herlihy]
 - minimum probability consensus reached by round R
 - sensor network [QEST'10]
 - minimum probability of processor error occurring
 - Mars Exploration Rovers (MER) [NASA]
 - · minimum probability mutual exclusion not violated in k cycles

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional	
		$ M_2{\otimes}G_{err} $	$ M_1 $	A ^{err}	Time (s)
Client-server	3	229	16	5	6.6
(N failures)	4	1,121	25	6	26.1
[N]	5	5,397	36	7	191.1
Randomised	2, 3, 20	391	3,217	6	24.2
consensus [N,R,K]	2, 4, 4	573	431,649	12	413.2
	3, 3, 20	8,843	38,193	11	438.9
Sensor network [N]	2	42	1,184	3	3.7
	3	42	10,662	3	4.6
MER [N R]	2, 5	5,776	427,363	4	31.8
	3, 2	16,759	171	4	210.5

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional		
		$ M_2 \otimes G_{err} $	$ M_1 $	A ^{eri}	r	Time (s)
Client-server	3	229	16		5	6.6
(N failures)	4	1,121	25		6	26.1
[N]	5	5,397	36		7	191.1
Randomised consensus [N,R,K]	2, 3, 20	391	3,217		6	24.2
	2, 4, 4	573	431,649		12	413.2
	3, 3, 20	8,843	38,193		11	438.9
Sensor	2	42	1,184		3	3.7
network [N]	3	42	10,662		3	4.6
MER [N R]	2, 5	5,776	427,363		4	31.8
	3, 2	16,759	171		4	210.5

[•] Successfully learnt (small) assumptions in all cases

Experimental results (learning)

Case study [parameters]		Component sizes		Compositional	
		$ M_2{\otimes}G_{err} $	$ M_1 $	A err	Time (s)
Client-server	3	229	16	5	6.6
(N failures)	4	1,121	25	6	26.1
[N]	5	5,397	36	7	191.1
Randomised consensus [N,R,K]	2, 3, 20	391	3,217	6	24.2
	2, 4, 4	573	431,649	12	413.2
	3, 3, 20	8,843	38,193	11	438.9
Sensor	2	42	1,184	3	3.7
network [N]	3	42	10,662	3	4.6
MER [N R]	2, 5	5,776	427,363	4	31.8
	3, 2	16,759	171	4	210.5

[•] In some cases, learning + compositional verification is faster (than non-compositional verification, using PRISM) 171

Summary (Part 4)

- Compositional verification, e.g. assume-guarantee
 - decompose verification problem based on system structure
- Compositional probabilistic verification based on:
 - Markov decision processes, with arbitrary parallel composition
 - assumptions/guarantees are probabilistic safety properties
 - reduction to multi-objective model checking
 - multiple proof rules; adapted to quantitative approach
 - automatic generation of assumptions: L* learning
- Can work well in practice
 - verified safety/performance on several large case studies
 - cases where infeasible using non-compositional verification
- For further detail, see [KNPQ10], [FKP10], [FKN+11]
- Next: PRISM lab session...

Thanks for your attention

More info here: www.prismmodelchecker.org