Model Checking of Timed Systems

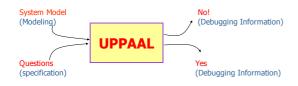
A UPPAAL Tutorial

Wang Yi Uppsala University, Sweden SFM 2010, Bertinoro

This is simple, simple, simple

LESLIE LAMPORT

UPPAAL A model checker for real-time systems



Developed by UPPsala Univ + AALborg Univ = UPPAAL

Main Authors/Contributors of UPPAAL

- Johan Bengtsson
- Gerd Behrman
- Alexandre David
- Kim Larsen
- Fredrik Larsson
- Paul Pettersson and
- Wang Yi

OUTLINE

- Model Checking in a Nutshell
- Timed automata and TCTL
- A UPPAAL Tutorial
 - Data stuctures & central algorithms
 - UPPAAL input languages

(Recent Work: Multi-core Timing Analysis)

Main references

Temporal Logics (CTL)

• Automatic Verification of Finite State Concurrent Systems Using Temporal Logic Specifications: A Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla, POPt. 1983: 117-126, also as "Automatic Verification of Finite-State Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2): 244-258 (1986)

Timed Systems (Timed Automata, TCTL)

• A Theory of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235 (1994)

- Timed Automata Semantics, Algorithms and Tools, a tutorial on timed automata Johan Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).
 On-line help of UPPAAL: www.uppaal.cm

Model-Checking

in a Nutshell

Merits of model checking ...

- Checking simple properties (e.g. deadlock-free) is already extremely useful! It is not to prove that a system is completely correct (bug-free)
- The goal is to have tools that can help a developer find errors and improve the quality of her/his design.
 - . It is to complement testing
- Now widely used in hardware design, protocol design, and hopefully soon,

History: Model-checking invented in 70's/80s

[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

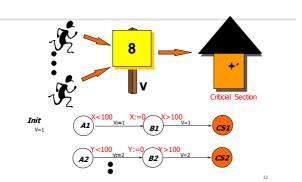
- Restrict attention to finite-state systems
 - Control skeleton + boolean (finite-domain) variables
 - Found in hardware design, communication protocols, process control
- Specification using CTL, LTL etc [Pnueli, Lamport, Clarke]
 - Safety, Progress/Liveness, Responsiveness etc
- BDD-based symbolic technique [Bryant 86]
 - SMV 1990 Clarke, McMillan et al, state-space 10²⁰
 - Now powerful tools used in hardware design
- On-the-fly enumerative technique [Holzman 89]
 - SPIN, COSPAN, CAESAR, KRONOS, IF/BIP, UPPAAL (since 1993) etc
- SAT-based techniques [Clarke et al ...]

History: Model checking for real time systems, started in the 80s/90s

- Models of timed systems
 - Timed automata, [Alur&Dill 1990]
 - Timed process algebras, Timed CSP, Timed CCS [Wang 1990]
- Extension of model checking to consider time quantities
 - Timed variants of temporal logics e.g TCTL
- - · KRONOS, Hytech: 1993 --

 - UPPAAL 1995 –
 TAB 1993/Prototype of UPPAAL [FORTE94, Wang et al]

Example: Fischer's Protocol



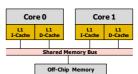
Example: the Vikings Problem

Real time scheduling

Multicore Challenges

Off-chip memory СРИ СРИ СРИ СРИ Bandwidth 11 11 11 11 (L2 Cache) L1 L1 L1 L1 CPU CPU CPU ¹³ 13 Shared Resources -- cpu's, caches, bandwidth, energy budget etc.

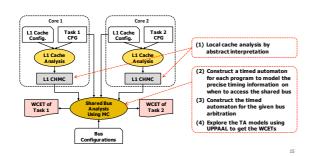
Worst-Case Execution Time Analysis of Concurrent Programs on Multicores



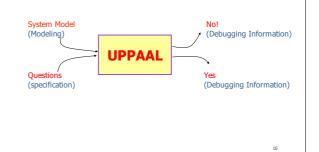
A duo-core processor with private L1 cache and shared memory bus

14

Combining Static Analysis & Model-Checking [RTSS 2010, submitted]



UPPAAL A model checker for real-time systems



MODELING

How to construct Model?

Modeling Real Time Systems

- Events
 - synchronization interrupts
 - Timing constraints
 - specifying event arrivalse.g. Periodic and sporadic

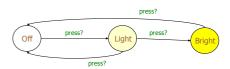
Modeling Real Time Systems

- Events
 - synchronizationinterrupts

 - Timing constraints
 - specifying event arrivals
 e.g. Periodic and sporadic
- Data variables & C-subset

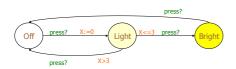
 - Guards
 - assignments

A Light Controller



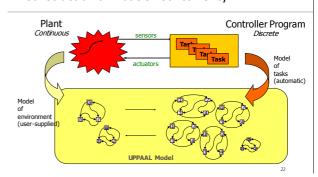
WANT: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

A Light Controller (with timer)



Solution: Add real-valued clock x

Construction of Models: Concurrency



SPECIFICATION

How to ask questions: Specs?

Specification=Requirement, Lamport 1977

- Safety
 - Something (bad) should not happen
- Liveness
 - Something (good) must happen/should be repeated

Computation Tree Logic, CTL

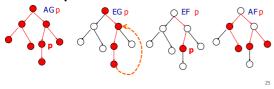
Clarke & Emerson 1980

Syntax

$\phi ::= P \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$

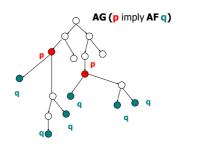
where $\mathbf{P} \in \mathsf{AP}$ (atomic propositions)

Derived Operators



Liveness: p - -> q

"p leads to q"



Specification: Examples

Safety

Invariant

- AG ¬(P1.CS1 & P2.CS2)
 AG (temp > 10 & speed < 120)

- Liveness
 - AF (speed >100)AG (P1.try imply AF P1.CS1)

Eventually Leads to

VERIFICATION

Model meets Specs?

Verification

- Semantics of a system
 - = all states + state transitions (all possible executions)
- Verification
 - = state space exploration + examination

Two basic verification algorithms

- Reachability analysis
 - Checking safety properties
- Loop detection
 - Checking liveness properties

OUTLINE

- Model Checking in a Nutshell
- Timed automata and TCTL
- A UPPAAL Tutorial
 - Data stuctures & central algorithms
 - UPPAAL input languages

Timed Automata: Syntax

(Recent Work: Multicore Timing Analysis)

Timed Automata, TCTL & Verification Problems

UPPAAL DEMO

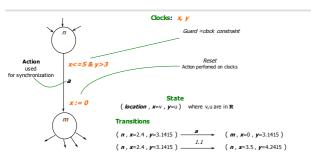
Clocks: x, y

Guard =clock constraint

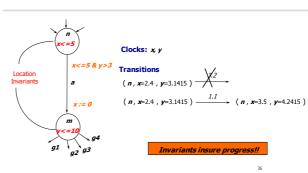
Reset
used
for synchronization

x := 0

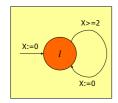
Timed Automata: Semantics



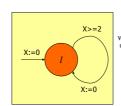
Timed Automata with *Invariants*

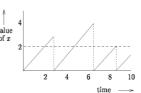


Timed Automata: Example



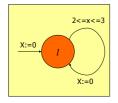
Timed Automata: Example

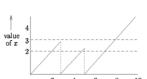




37

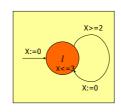
Timed Automata: Example

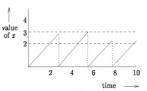




39

Timed Automata: Example





40

Timed Automata

=

Finite Automata + Clock Constraints + Clock resets

Clock Constraints

 $g ::= x \sim n \mid g \& g$

where

- x is a clock variable
- ~ ∈{<,>,≤,≥}
- n is a natural number and

Semantics (definition)

- <u>clock valuations</u>: V(C) $v: C \rightarrow R \ge 0$
- <u>state</u>: (l,v) where $l \in L$ and $v \in V(C)$
- <u>action transition</u>

$$(l,v) \xrightarrow{a} (l',v')$$
 iff $(l,v) \xrightarrow{g \ a \ r} (l',v')$ $(l,v) \xrightarrow{g \ a \ r} (l',v')$ and $(l,v) \xrightarrow{g \ a \ r} (l',v')$

delay Transition

$$(l,v) \xrightarrow{d} (l,v+d)$$
 iff
$$Inv(l)(v+d') \text{ whenever } d' \le d \in R \ge 0$$

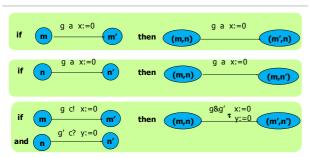
43

Modeling Concurrency

- Products of automata
- CCS Parallel composition
 - implemented in UPPAAL

44

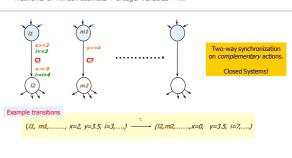
CCS Parallel Composition (implemented in UPPAAL)



where a is an action c! or c? or τ , and c is a channel name

The UPPAAL Model

= Networks of Timed Automata + Integer Variables +....



46

Location Reachability (def.)

Verification Problems

 \boldsymbol{n} is reachable from \boldsymbol{m} if there is a sequence of transitions:

 $(m, u) \longrightarrow * (n, v)$

48

(Timed) Language Inclusion, $L(A) \subseteq L(B)$

$$(a_0, t_0) (a_1, t_1) \dots \dots (a_n, t_n) \in L(A)$$

"A can perform a_0 at t_0 , a_1 at t_1 a_n at t_n " $(\textbf{I}_0,\textbf{u}_0) \overset{\textbf{t}_0}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} (\textbf{I}_0,\textbf{u}_0\!+\!\textbf{t}_0) \overset{\textbf{a}_0}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} (\textbf{I}_1,\textbf{u}_1) \ldots \ldots$

Verification Problems

- Timed Language Equivalence & Inclusion ⊗

 - 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
 1-clock, infinite traces & Buchi-conditions, undecidable [Abdula et al 05]
- Universality ⊗
- Untimed Language Inclusion ©
- (Un)Timed (Bi)simulation ©
- Reachability Analysis/Emptiness ©
- Optimal Reachability (synthesis problem) ©
 - If a location is reachable, what is the minimal delay before reaching the location?

Timed CTL = CTL + clock constraints

Note that the semantics of TA defines a transition system where each state has a Computation Tree

Computation Tree Logic, CTL

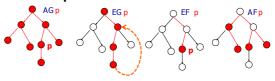
Clarke & Emerson 1980

Syntax

 $\phi ::= P \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$

where $\mathbf{P} \in \mathsf{AP}$ (atomic propositions)

Derived Operators



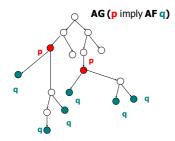
Liveness: p - -> q

"p leads to q"

Timed CTL (a simplified version)

Syntax

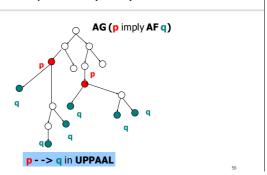
 $\varphi \, :: = \, \textcolor{red}{p} \mid \neg \, \varphi \mid \varphi \lor \varphi \mid \mathsf{EX} \, \varphi \mid \mathsf{E}[\varphi \, \mathsf{U} \, \varphi] \mid \mathsf{A}[\varphi \, \mathsf{U} \, \varphi]$ where $\boldsymbol{p} \in \mathsf{AP}$ (atomic propositions) $\boldsymbol{\mathsf{Or}}\;\; \boldsymbol{\mathsf{Clock}}\; \boldsymbol{\mathsf{constraint}}$



Timed CTL (a simplified version)

Syntax $\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$ where $p \in AP$ (atomic propositions) Of Clock constraint Derived Operators $AG p \qquad EG p \qquad EF p \qquad AF p$ $EC> P in UPPAAL \qquad AC> P in UPPAAL \qquad E[] P In UPPAAL \qquad AC> P i$

Derived Operators (cont.)

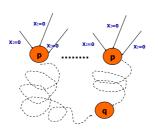


Bounded Liveness

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

Use extra clock x
Add x:=0 on all edges
leading to P



Bounded Liveness/Responsiveness

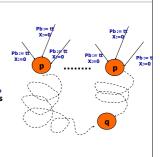
(reachability analysis, more efficient?)

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add $P_b := tt$ and x:=0 on all edges leading to location P



Bounded Liveness/Responsiveness

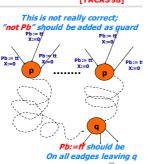
(reachability analysis, more efficient?)

[TACAS 98]

Verify: "whenver p is true, q should be true within 10 sec

AG ((P_b and x>10) imply q)

Use extra clock x and boolean P_b Add P_b := tt and x:=0 on all edges leading to location P



Problem with Zenoness/Time-stop

EXAMPLE

EXAMPLE

We want to specify "whenever P is true, Q should be true within 10 time units

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply Q)

62

EXAMPLE

Solution with UPPAAL

We want to specify "whenever P is true, Q should be true within 10 time units

AG ((P_b and x>10) imply q) is satisfied !!!

63

System || ZenoCheck A X<=1

Check Zeno-freeness by an extra observer

X=1 Check (yes means "no zeno loops")
x:=0 ZenoCheck.A - - > ZenoCheck.B

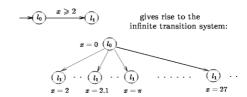
Committed location!

64

REACHABILITY ANALYSIS using Regions

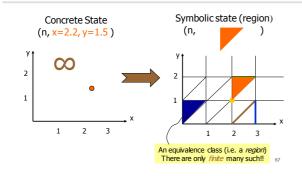
Infinite State Space!

ZenoCheck

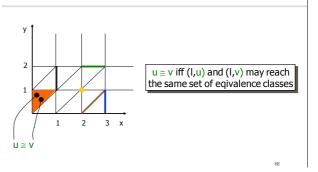


However, the reachability problem is decidable © Alur&Dill 1991

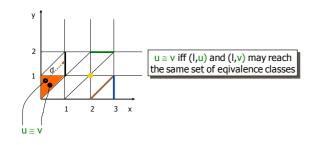
Region: From infinite to finite



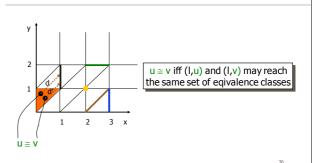
Region equivalence (Intuition)



Region equivalence (Intuition)



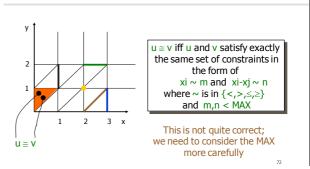
Region equivalence (Intuition)



Region equivalence [Alur and Dill 1990]

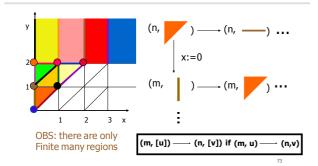
- u,v are clock assignments
- u≈v iff
 - For all clocks x,
 either (1) u(x)>Cx and v(x)>Cx
 or (2) \(\bu(x) \) \(\bu(x) \) \(\bu(x) \)
 - For all clocks x, if $u(x) \le Cx$, $\{u(x)\}=0$ iff $\{v(x)\}=0$
 - For all clocks x, y, if u(x) <= Cx and u(y) <= Cy $\{u(x)\} <= \{u(y)\}$ iff $\{v(x)\} <= \{v(y)\}$

Region equivalence (alternatively)



Region Graph

Finite-State Transition System!!



Theorem

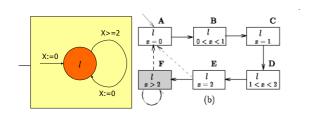
u≈v implies

- u(x:=0) ≈ v(x:=0)
- u+n ≈ v+n for all natural number n
 for all d<1: u+d ≈ v+d′ for some d′<1

"Region equivalence' is preserved by "addition" and reset. (also preserved by "subtraction" if clock values are "bounded")

74

Region graph of a simple timed automata



Fischers again

Untimed case

AI,A2,v=1

AI,B2,v=2

I < x,y

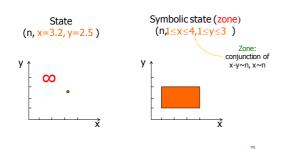
AI,B2,v=2

Problems with Region Construction

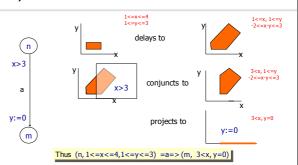
- Too many 'regions'
 - Sensitive to the maximal constants
 - e.g. x>1,000,000, y>1,000,000 as guards in TA
- The number of regions is highly exponential in the number of clocks and the maximal constants.

REACHABILITY ANALYSIS using ZONES

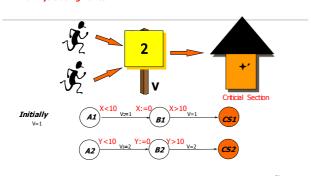
Zones: From infinite to finite



Symbolic Transitions



Fischer's Protocol



→ A1,CS2,v=2

→ B1,CS2,v=1

Fischers cont.

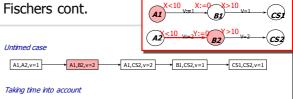
Taking time into account

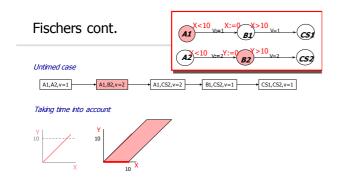
Untimed case

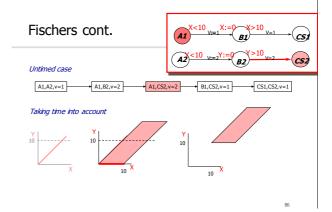
A1,A2,v=1

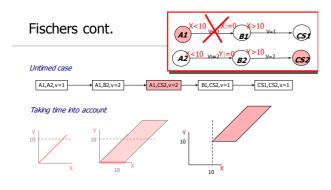
A1,A2,v=1

→ A1,B2,v=2









Zones = Conjuctive constraints

- A zone Z is a conjunctive formula: $g_1 \& g_2 \& ... \& g_n$ where g_i may be $x_i \sim b_i$ or $x_i \sim b_{ij}$
- Use a zero-clock x_0 (constant 0), we have $\{x_i - x_j \sim b_{ij} \mid \sim is < or \le, i,j \le n\}$
- This can be represented as a MATRIX, DBM (Difference Bound Matrices)

Solution set as semantics

- Let Z be a zone (a set of constraints)
- Let [Z]={u | u is a solution of Z}

(We shall simply write Z instead [Z])

Operations on Zones

- Post-condition (Delay): SP(Z) or Z↑
 - $[Z\uparrow] = \{u+d| d \in R, u \in [Z]\}$
- Pre-condition: WP(Z) or Z↓ (the dual of Z↑)
 [Z↓] = {u| u+d∈[Z] for some d∈R}
- Reset: {x}Z or Z(x:=0)
 - $[\{x\}Z] = \{u[0/x] \mid u \in [Z]\}$
- Conjunction
 - [Z&g]=[Z]∩[g]

Two more operations on Zones

- Inclusion checking: $Z_1 \subseteq Z_2$
 - solution sets
- Emptiness checking: Z = Ø
 - no solution

Theorem on Zones

The set of zones is closed under all zone operations

- That is, the result of the operations on a zone is a zone
- Thus, there will be a zone to represent the sets: $[Z^{\uparrow}]$, $[Z^{\downarrow}]$, $[\{x\}Z]$

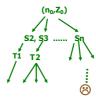
One-step reachability: Si Sj

- Delay: $(n,Z) \rightarrow (n,Z')$ where $Z'=Z^{\uparrow} \wedge inv(n)$
- Action: $(n,Z) \rightarrow (m,Z')$ where $Z' = \{x\}(Z \land g)$

if
$$n \xrightarrow{g} x := 0$$
 m

- Reach: $(n,Z) \sim (m,Z')$ if $(n,Z) \rightarrow (m,Z')$

Now, we have a search problem



EF 🕾

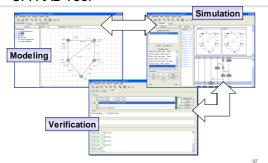
OUTLINE

- Model Checking in a Nutshell
- Timed automata and TCTL
- A UPPAAL Tutorial
 - Data stuctures & central algorithms
 - UPPAAL input languages

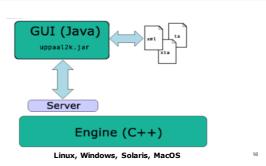
(Recent Work: Multicore Timing Analysis)

What's inside UPPAAL

UPPAAL Tool



Architecture of UPPAAL



Inside the UPPAAL tool

- Data Structures
 - DBM's (Difference Bounds Matrices)
 - Canonical and Minimal Constraints
- Algorithms
 - Reachability analysis
 - Liveness checking
- Verification Options

All Operations on Zones

(needed for verification)

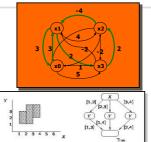
- Transformation
 - Conjunction
 - Post condition (delay)
 - Reset
- Consistency Checking
 - Inclusion
 - Emptiness

Zones = Conjuctive constraints

- A zone Z is a conjunctive formula: $g_1 \ \& \ g_2 \ \& \dots \ \& \ g_n$ where g_i may be $x_i \sim b_i$ or $x_i \sim x_j \sim b_{ij}$
- Use a zero-clock x_0 (constant 0), we have $\{x_i x_i \sim b_{\bar{i}} \mid \sim \text{is} < \text{or} \leq, i, j \leq n\}$
- This can be represented as a MATRIX, DBM (Difference Bound Matrices)

Datastructures for Zones in UPPAAL

- Difference Bounded Matrices [Bellman58, Dil89]
- Minimal Constraint Form [RTSS97]
- Clock Difference Diagrams [CAV99]

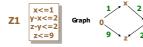


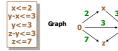
Canonical Datastructures for Zones

Difference Bounded Matrices

Bellman 1958, Dill 1989

Inclusion





Canonical Dastructures for Zones Bellman 1958, Dill 1989

Difference Bounded Matrices

Inclusion

Z2

Canonical Datastructures for Zones

Difference Bounded Matrices

Bellman 1958, Dill 1989

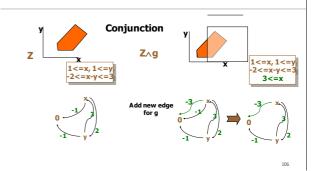
Emptiness

Z

ative Cycle empty solution set

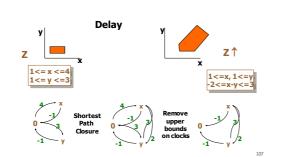
Canonical Datastructures for Zones

Difference Bounded Matrices



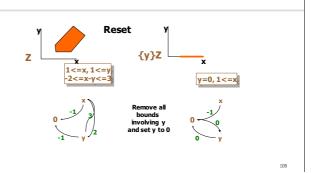
Canonical Dastructures for Zones

Difference Bounded Matrices



Canonical Datastructures for Zones

Difference Bounded Matrices

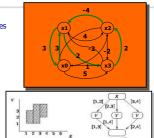


COMPLEXITY

- Computing the shortest path closure, the cannonical form of a zone: O(n³) [Dijkstra's alg.]
- Run-time complexity, mostly in O(n)
 (when we keep all zones in cannonical form)

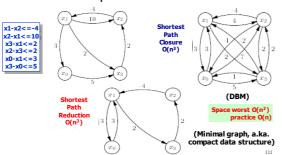
Datastructures for Zones in UPPAAL

- Difference Bounded Matrices [Bellman58, Dill89]
- Minimal Constraint Form [RTSS97]
- Clock Difference Diagrams
 [CAV99]

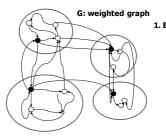


109

Minimal Graph

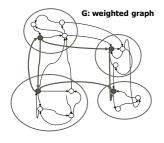


Graph Reduction Algorithm



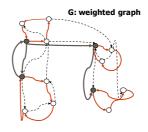
1. Equivalence classes based on 0-cycles.

Graph Reduction Algorithm



- 1. Equivalence classes based on 0-cycles.
- 2. Graph based on representatives. Safe to remove redundant edges

Graph Reduction Algorithm



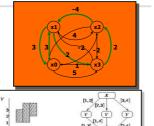
- 1. Equivalence classes based on 0-cycles.
 - 2. Graph based on representatives. Safe to remove redundant edges
- 3. Shortest Path Reduction

One cycle pr. class

Removal of redundant edges between classes 114

Datastructures for Zones in UPPAAL

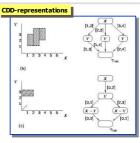
- Difference Bounded Matrices [Bellman58, Dill89]
- Minimal Constraint Form [RTSS97]
- Clock Difference Diagrams [CAV99]



1 2 3 4 5 6 X

Other Symbolic Datastructures

- NDD's Maler et. al.
- CDD's UPPAAL/CAV99
- DDD's Møller, Lichtenberg
- Polyhedra HyTech

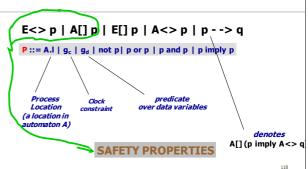


Inside the UPPAAL tool

- Data Structures
 - DBM's (Difference Bounds Matrices)
 - Canonical and Minimal Constraints
- Algorithms

 - Reachability analysis Liveness checking
 - Verification Options

Timed CTL in UPPAAL

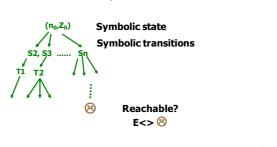


Timed CTL (a simplified version)

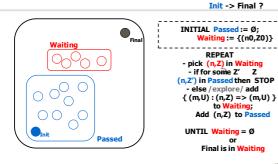
Syntax

Derived Operators

We have a search problem



Forward Reachability



Forward Reachability

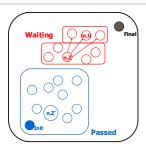
Init -> Final ?

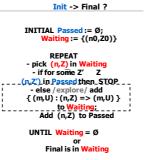
INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick (n,Z) in Waiting
- if for some Z' Z
(n,Z') in Passed then STOP
- else (explore) add
{(m,U): (n,Z) => (m,U)}
to Waiting;
Add (n,Z) to Passed

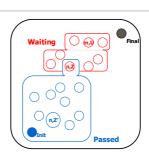
UNTIL Waiting = Ø
or
Final is in Waiting

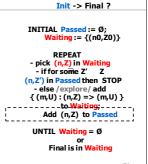
Forward Reachability



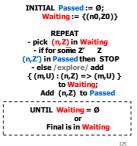


Forward Reachability





Forward Reachability



Init -> Final ?

Further question

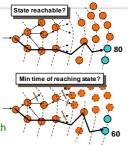
Can we find the path with shortest delay, leading to P? (i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems can be phrased naturally as reachability problems for timed automata.

Verification vs. Optimization

- Verification Algorithms:
 - Checks a logical property of the entire state-space of a model.
 - Efficient Blind search.
- Optimization Algorithms:
 - Finds (near) optimal solutions.
 - Uses techniques to avoid nonoptimal parts of the state-space (e.g. Branch and Bound).
- Goal: solve opt. problems with verification.

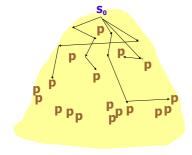


OPTIMAL REACHABILITY

The maximal and minimal delay problem

128

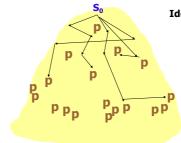
Find the trace leading to P with min delay



There may be a lot of pathes leading to P

Which one with the shortest delay?

Find the trace leading to P with min delay



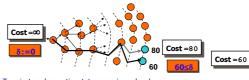
Idea: delay as "Cost" to reach a state, thus cost increases with time at rate 1

Example (min delay to reach G)



An Simple Algorithm for minimal-cost reachability

- State-Space Exploration + Use of global variable ${\tt Cost}$ and global clock ${\tt \delta}$
- Update Cost whenever goal state with min(C) < Cost is found:



Terminates when entire state-space is explored.
 Problem: The search may never terminate!

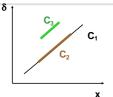
Priced-Zone

- Cost = minimal total time
- C can be represented as the zone Z⁸, where:
 Z⁸ original (ordinary) DBM plus...
 - δ clock keeping track of the cost/time.
- Delay, Reset, Conjunction etc. on Z are the standard DBM-operations
- Delay-Cost is incremented by Delay-operation on Z8.

133

Priced-Zone

- Cost = min total time
- C can be represented as the zone Z⁸, where:
 Z⁸ is the original zone Z extended with the global clock δ keeping track of the cost/time.
- Delay, Reset, Conjunction etc. on C are the standard DBM-operations
- But inclusion-checking will be different



Then: $C_3 \sqsubseteq C_2 \sqsubseteq C_1$ But: $C_3 \not\subseteq C_2 \subseteq C_1$

Solution: ()[†]-widening operation

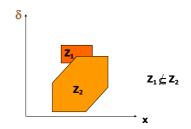
()[†] removes upper bound on the δ-clock:

 $\begin{array}{ccc}
\mathbf{C}_{5} & \mathbf{C}_{2} & \mathbf{C}_{1} \\
\mathbf{C}_{3}^{\dagger} & \mathbf{C}_{2}^{\dagger} & \mathbf{C}_{1}^{\dagger}
\end{array}$

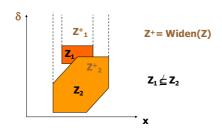
- In the Algorithm:
 - Delay(C[†]) = (Delay(C[†]))[†]
 - Reset(x,C[†]) = (Reset(x,C[†]))[†]
 - $C_1^{\dagger} \wedge g = (C_1^{\dagger} \wedge g)^{\dagger}$

It is suffices to apply ()[†] to the initial state (I₀,C₀).

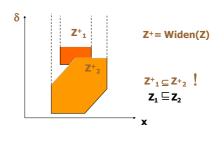
Example (widening for Min)



Example (widening for Min)



Example (widening for Min)



An Algorithm (Min)

```
\begin{split} & \text{Cost:=}\varnothing, \text{ Pass := } \{\}, \text{ Wait := } \{(1_0, C_0)\} \\ & \text{while Wait } \neq \{\} \text{ do} \\ & \text{ select } (1, C) \text{ from Wait } \\ & \text{ if } (1, C) \models P \text{ and Min(C)} < \text{Cost then Cost:= Min(C)} \\ & \text{ if } (1, C) \sqsubseteq (1, C') \text{ for some } (1, C') \text{ in Pass then skip } \\ & \text{ otherwise add } (1, C) \text{ to Pass } \\ & \text{ and forall } (m, C') \text{ such that } (1, C) & \text{ } (m, C'): \\ & \text{ add } (m, C') \text{ to Wait } \end{split} Return Cost
```

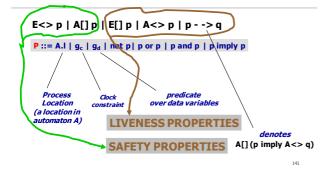
Output: Cost =the min cost of a found trace satisfying P.

Inside the UPPAAL tool

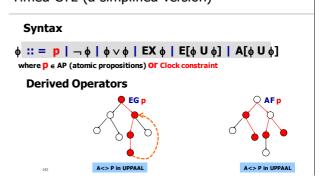
- Data Structures
 - DBM's (Difference Bounds Matrices)
 - Canonical and Minimal Constraints
- Algorithms
 - Reachability analysis
 - Liveness checking
- Verification Options

140

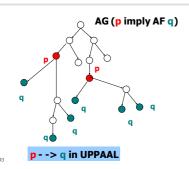
Timed CTL in UPPAAL



Timed CTL (a simplified version)



Derived Operators (cont.)



Question

Note that

A<> P

"P will be true for sure in future"

NO !!!! there is a path: $(m_t, x=0) \rightarrow (m_t, x=1) \rightarrow (m_t, 2) \dots (m_t, x=k) \dots$ Idling forever in location m

Note that

A<> P

"P will be true for sure in future"

A<> P

This automaton satisfies AFP

Question: Time bound synthesis

Algorithm for checking A<> P Eventually P

Bouajjani, Tripakis, Yovine'97 On-the-fly symbolic model checking of TCTL

There is no cycle containing only states where p is false

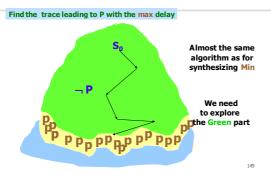
"P will be true eventually " But no time bound is given.

Assume AF P is satisfied by an automaton A. Can we calculate the Max time bound?

OBS: we know how to calculate the Min!

not available in the distributed version of UPPAAL

Assume A<>P is satisfied



An Algorithm (Max)

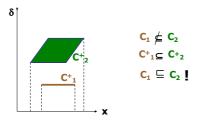
 ${\tt Cost:=0,\ Pass} \; := \; \{\} \;, \; {\tt Wait} \; := \; \{\; ({\tt l_0}\,, {\tt C_0}) \; \}$ while Wait ≠ {} do
 select (1,C) from Wait if (1,C) = P and Max(C) > Cost then Cost := Max(C)else if forall (1,C') in Pass: C $\not\sqsubseteq$ C' then add (1,C) to Pass forall (m,C') such that (1,C) (m,C'): add (m,C') to Wait One-step reachability relation Return Cost

Output: Cost =the max cost of a found trace satisfying P. BUT: ☐ is defined on zones where the lower bound of "cost" is removed

Zone-Widening operation for Max

$C_1 \not \subseteq C_2$

Zone-Widening operation for Max



Inside the UPPAAL tool

- Data Structures
 DBM's (Difference Bounds Matrices)
 Canonical and Minimal Constraints
- Algorithms
 - Reachability analysis
 - Liveness checking

• Diagnostic Trace PO PO PICO (Viking).safe | Vicinity Reduction |

Vicinity Reduction | Vicinity Reduction |

Vicinity Reduction | Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction |

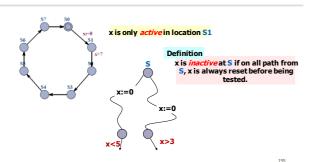
Vicinity Reduction |

Vicinity Reduction |

Vicinity Reduction

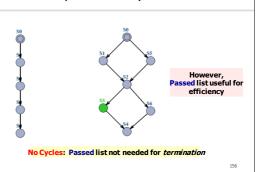
• Breadth-First • Depth-First Local Reduction Active-Clock Reduction Re-Use State-Space Over-ApproximationUnder-Approximation

Inactive (passive) Clock Reduction



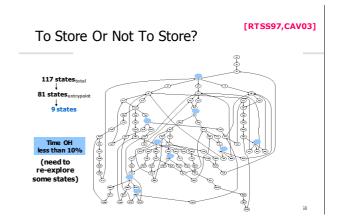
Global Reduction

(When to store symbolic state)

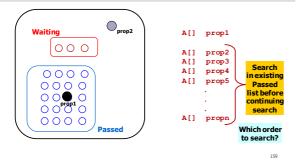


Global Reduction (When to store symbolic state) Cycles: Only symbolic states involving loop-entry points need to be saved on Passed list

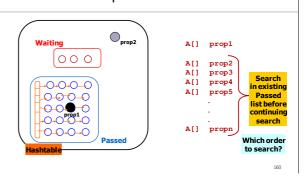
157



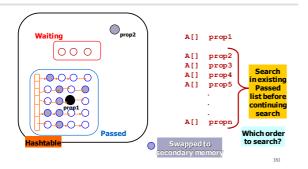
Reuse of State Space



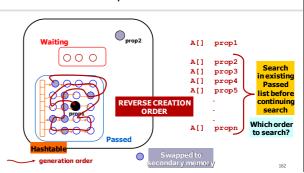
Reuse of State Space



Reuse of State Space



Reuse of State Space

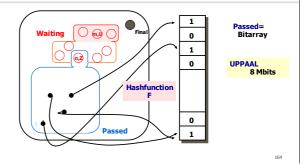


Under-approximation

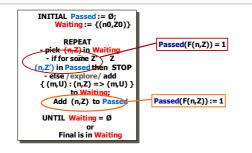
Bitstate Hashing (Holzman, SPIN)

Under-approximation

Bitstate Hashing



Bit-state Hashing



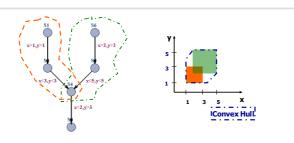
Under Approximation

(good for finding Bugs quickly, debugging)

- Possitive answer is safe (you can trust)
 - You can trust your tool if it tells:
 a state is reachable (it means Reachable!)
- Negative answer is Inconclusive
 - You should not trust your tool if it tells: a state is non-reachable
 - Some of the branch may be terminated by conflict (the same hashing value of two states)

Over-approximation

Convex Hull



Over-Approximation

(good for safety property-checking)

- Possitive answer is Inconclusive
 - a state is reachable means Nothing (you should not trust your tool when it says so)
 - Some of the transitions may be enabled by Enlarged zones
- Negative answer is safe
 - a state is not reachable means Non-reachable (you can trust your tool when it says so)

Now, you can go home

- Download and use UPPAAL or
- Start to implement your own model checker