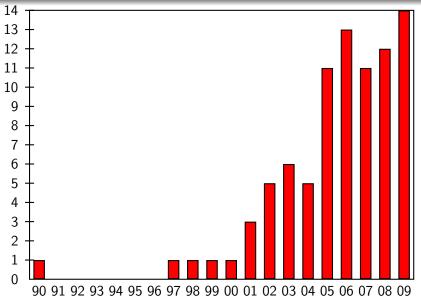
Overview of Part II: the rest of the nineties

Desharnais, Gupta, Jagadeesan and Panangaden generalized the behavioural pseudometric of Giacalone, Jou and Smolka to

- all PTSs and
- labelled Markov processes.

Approximate number of publications



An alternative definition

Josée Desharnais, Vineet Gupta, Radha Jagadeesan and Prakash Panangaden. The metric analogue of weak bisimulation for probabilistic processes.

In Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science, pages 413–422, Copenhagen, July 2002. IEEE.

The key ingredients

Tarski

Kantorovich

Theorem

Let X be a complete lattice. Let $f: X \to X$ be a monotone function. The set of fixed points of f forms a complete lattice. In particular, f has a least fixed point lfp(f). This least fixed point of f is also the least pre-fixed point of f, that is, $f(lfp(f)) \sqsubseteq lfp(f)$.

A. Tarski. A lattice-theoretic fixed point theorem and its applications.

Pacific Journal of Mathematics, 5(2):285 309, June 1955.

Theorem

Let X be a complete lattice. Let $f: X \to X$ be a monotone function. The set of fixed points of f forms a complete lattice. In particular, f has a least fixed point lfp(f). This least fixed point of f is also the least pre-fixed point of f, that is, $f(lfp(f)) \sqsubseteq lfp(f)$.

A. Tarski. A lattice-theoretic fixed point theorem and its applications.

Pacific Journal of Mathematics, 5(2):285 309, June 1955.

A complete lattice

Definition

Let X be a set. The set D(X) is defined by

$$D(X) = \{ d \in X \times X \rightarrow [0,1] \mid d \text{ is a 1-bounded pseudometric } \}.$$

The relation \sqsubseteq is defined by

$$d_1 \sqsubseteq d_2$$
 if $d_1(x_1, x_2) \le d_2(x_1, x_2)$ for all $x_1, x_2 \in S$.

Proposition

 $\langle D(X), \sqsubseteq \rangle$ is a complete lattice.

Kantorovich metric

Definition

Let X be a set and let d_X be a 1-bounded pseudometric on X. Let μ_1 and μ_2 be Borel probability measures on X.

$$d(\mu_1,\mu_2) = \sup \left\{ \int_X f \ d\mu_1 - \int_X f \ d\mu_2 \ \middle| \ f \in \langle X, d_X
angle \Rightarrow [0,1] \right\}.$$

L. Kantorovich. On the transfer of masses (in Russian).

Doklady Akademii Nauk, 37(2):227 229, 1942.

Related to Roberto's "transfer of masses."

A monotone function

Let $\langle S, T \rangle$ be a PTS. Let S be finite.

Definition

The function $\Delta_S:D(S)\to D(S)$ is defined by

$$\Delta_{S}(d)(s_{1}, s_{2}) = \max \left\{ \sum_{s \in S} f(s) \times (T(s_{1}, s) - T(s_{2}, s)) \mid f \in \langle S, d \rangle \Rightarrow [0, 1] \right\}$$

Proposition

 Δ_S is monotone.

Corollary

 Δ_S has a least fixed point Ifp(Δ_S).

Relating the logical and ordered approach

Recall that d_S is the behavioural pseudometric defined in terms of a logic.

Theorem

$$d_S = \mathsf{lfp}(\Delta_S)$$
.

Theorem

Let X be a complete lattice. Let $f: X \to X$ be a monotone function. The set of fixed points of f forms a complete lattice. In particular, f has a least fixed point: lfp(f). This least fixed point of f is also the least pre-fixed point of f, that is, $f(lfp(f)) \sqsubseteq lfp(f)$.

If you can read this, then you are sitting in one of the first few rows.

Theorem

Let X be a complete lattice. Let $f: X \to X$ be a monotone function. The set of fixed points of f forms a complete lattice. In particular, f has a least fixed point: lfp(f). This least fixed point of f is also the least pre-fixed point of f, that is, $f(lfp(f)) \sqsubseteq lfp(f)$.

Corollary

 d_S is the smallest distance function d such that

$$\Delta_{\mathcal{S}}(d) \sqsubseteq d$$
.

If you can read this, then you are sitting in one of the first few rows.

Corollary

 d_S is the smallest distance function d such that

$$\Delta_{S}(d) \sqsubseteq d$$
.

Corollary

 d_S is the smallest distance function d such that

$$\Delta_S(d) \sqsubseteq d$$
.

Corollary

 $d_S(s_1, s_2) \leq \epsilon$

iff

 $\exists d: d \text{ is a 1-bounded pseudometric } \land$

 $\Delta_S(d) \sqsubseteq d \wedge d(s_1, s_2) \leq \epsilon.$

Tarski's decision procedure

Theorem

The first order theory over reals is decidable.

A. Tarski. A decision method for elementary algebra and geometry. University of California Press, Berkeley, 1951.

Tarski's decision procedure

$\mathsf{Theorem}$

The first order theory over reals is decidable.

A. Tarski. A decision method for elementary algebra and geometry. University of California Press, Berkeley, 1951.

Corollary

 $d_S(s_1, s_2) \le \epsilon$ is decidable iff

 $\exists d: d \text{ is a 1-bounded pseudometric } \land$

 $\Delta_{\mathcal{S}}(d) \sqsubseteq d \wedge d(s_1, s_2) \leq \epsilon$

can be expressed in the first order theory over reals.

 $\exists d$: d is a 1-bounded pseudometric $\land \Delta_S(d) \sqsubseteq d \land d(s_1, s_2) \le \epsilon$

 $\exists d: d$ is a 1-bounded pseudometric $\land \Delta_S(d) \sqsubseteq d \land d(s_1, s_2) \le \epsilon$ $\exists d: \ldots \Delta_S(d) \sqsubseteq d \ldots$

```
\exists d: d is a 1-bounded pseudometric \land \Delta_S(d) \sqsubseteq d \land d(s_1, s_2) \le \epsilon
\exists d: \ldots \Delta_S(d) \sqsubseteq d \ldots
\exists d: \ldots \max \ldots \sqsubseteq d \ldots
```

```
\exists d: d is a 1-bounded pseudometric \land \Delta_S(d) \sqsubseteq d \land d(s_1, s_2) \le \epsilon
\exists d: \ldots \Delta_S(d) \sqsubseteq d \ldots
\exists d: \ldots \max \ldots \sqsubseteq d \ldots
\exists d: \ldots \forall \ldots \sqsubseteq d \ldots
```

Kantorovich-Rubinstein duality theorem

$\mathsf{Theorem}$

Let X be a compact metric space. Let μ_1 and μ_2 be Borel probability measures on X.

$$\sup \left\{ \int_{X} f \ d\mu_{1} - \int_{X} f \ d\mu_{2} \ \bigg| \ f \in X \Longrightarrow [0,1] \right\}$$

$$= \inf \left\{ \int_{X^{2}} d_{X} \ d\mu \ \bigg| \ \mu \in \mu_{1} \otimes \mu_{2} \right\}.$$

L.V. Kantorovich and G.Sh. Rubinstein. On the space of completely additive functions (in Russian).

Vestnik Leningradskogo Universiteta, 3(2):52 59, 1958.

Related to Roberto's "transfer of masses."

```
\exists d: d is a 1-bounded pseudometric \land \Delta_S(d) \sqsubseteq d \land d(s_1, s_2) \le \epsilon
\exists d: \ldots \Delta_S(d) \sqsubseteq d \ldots
\exists d: \ldots \max \ldots \sqsubseteq d \ldots
```

```
\exists d: d is a 1-bounded pseudometric \land \Delta_S(d) \sqsubseteq d \land d(s_1, s_2) \le \epsilon

\exists d: \ldots \Delta_S(d) \sqsubseteq d \ldots

\exists d: \ldots \max \ldots \sqsubseteq d \ldots

\exists d: \ldots \min \ldots \sqsubseteq d \ldots
```

```
\exists d: d is a 1-bounded pseudometric \land \Delta_S(d) \sqsubseteq d \land d(s_1, s_2) \le \epsilon

\exists d: \ldots \Delta_S(d) \sqsubseteq d \ldots

\exists d: \ldots \max \ldots \sqsubseteq d \ldots

\exists d: \ldots \min \ldots \sqsubseteq d \ldots

\exists d: \ldots \exists \sqsubseteq < d \ldots
```

Approximating the behavioural pseudometric

Corollary

 $d_S(s_1, s_2) \leq \epsilon$ is decidable.

Hence, we can use binary search to approximate $d_S(s_1, s_2)$.

Franck van Breugel, Babita Sharma, and James Worrell. Approximating a behavioural pseudometric without discount.

In H. Seidl, editor, *Proceedings of the 10th International Conference on Foundations of Software Science and Computation Structures*, volume 4423 of *Lecture Notes in Computer Science*, pages 123–137, Braga, March 2007. Springer-Verlag.

Biggest system

