Bio-PEPA

Jane Hillston and Federica Ciocchetta. LFCS, University of Edinburgh

5th June 2008

Process Calculi

Bio-PEPA

Outline

Process Calculi

Process Calculi

SPA

SPA for Systems Biology

Bio-PEPA

Model definition

The syntax and semantics

Equivalences and Analysis

Examples

Genetic network with negative feedback loop

Goldbeter's model

Conclusions

Bio-PEPA

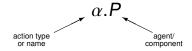
Outline

Process Calculi SPA

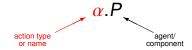
Equivalences and Analysis

Genetic network with negative feedback loop

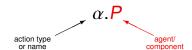
Models consist of agents which engage in actions.



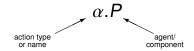
Models consist of agents which engage in actions.



Models consist of agents which engage in actions.



Models consist of agents which engage in actions.

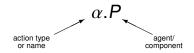


Bio-PEPA

The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Process Algebra

Models consist of agents which engage in actions.



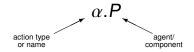
Bio-PEPA

The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Process algebra model

Process Algebra

Models consist of agents which engage in actions.



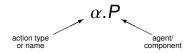
Bio-PEPA

The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Process algebra model

Process Algebra

Models consist of agents which engage in actions.



Bio-PEPA

The structured operational (interleaving) semantics of the language is used to generate a labelled transition system.

Process algebra model

Labelled transition system

Consider a web server which offers html pages for download:

Server = get.download.rel.Server

Example

Consider a web server which offers html pages for download:

Server = get.download.rel.Server

Bio-PFPA

Clients are web browsers, in a domain with a local cache of frequently requested pages. Thus any display request might result in an access to the server or in a page being loaded from the cache.

Browser = display.(cache.Browser + get.download.rel.Browser)

Consider a web server which offers html pages for download:

Server = get.download.rel.Server

Bio-PFPA

Clients are web browsers, in a domain with a local cache of frequently requested pages. Thus any display request might result in an access to the server or in a page being loaded from the cache.

Browser = display.(cache.Browser + get.download.rel.Browser)

A simple version of the Web can be considered to be the interaction of these components:

WEB = (Browser || Browser) | Server

Dynamic behaviour

Process Calculi

The behaviour of a model is dictated by the semantic rules governing the combinators of the language.

The behaviour of a model is dictated by the semantic rules governing the combinators of the language.

Bio-PEPA

The possible evolutions of a model are captured by applying these rules exhaustively, generating a labelled transition system.

The behaviour of a model is dictated by the semantic rules governing the combinators of the language.

Bio-PFPA

- The possible evolutions of a model are captured by applying these rules exhaustively, generating a labelled transition system.
- This can be viewed as a graph in which each node is a state of the model (comprised of the local states of each of the components) and the arcs represent the actions which can cause the move from one state to another.

The behaviour of a model is dictated by the semantic rules governing the combinators of the language.

Bio-PFPA

- The possible evolutions of a model are captured by applying these rules exhaustively, generating a labelled transition system.
- This can be viewed as a graph in which each node is a state of the model (comprised of the local states of each of the components) and the arcs represent the actions which can cause the move from one state to another.
- The language is also equipped with observational equivalence which can be used to compare models.

Browser = display.(cache.Browser + get.download.rel.Browser)

Dynamic behaviour

Browser = display.(cache.Browser + get.download.rel.Browser)

$$(\alpha, r).P \xrightarrow{(\alpha, r)} P$$

$$\frac{P \longrightarrow P'}{P + Q \stackrel{(\alpha,r)}{\longrightarrow} P'}$$

$$Q \xrightarrow{(\alpha,r)} Q'$$

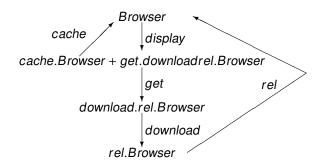
$$P + Q \xrightarrow{(\alpha,r)} Q'$$

Browser = display.(cache.Browser + get.download.rel.Browser)

$$\frac{P \xrightarrow{(\alpha,r)} P}{(\alpha,r).P \xrightarrow{(\alpha,r)} P}$$

$$\frac{P \xrightarrow{(\alpha,r)} P'}{P + Q \xrightarrow{(\alpha,r)} P'}$$

$$Q \xrightarrow{(\alpha,r)} Q'$$



Dynamic behaviour

Browser = display.(cache.Browser + get.download.rel.Browser)

$$(\alpha, r).P \xrightarrow{(\alpha, r)} P$$

$$cache \qquad display$$

$$cache.Browser + get.downloadrel.Browser$$

$$get \qquad rel$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$R + Q \xrightarrow{(\alpha, r)} Q'$$

$$rel.Browser$$

Dynamic behaviour

Browser = display.(cache.Browser + get.download.rel.Browser)

$$(\alpha, r).P \xrightarrow{(\alpha, r)} P$$

$$cache \qquad display$$

$$cache.Browser + get.downloadrel.Browser$$

$$get \qquad rel$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$P + Q \xrightarrow{(\alpha, r)} Q'$$

$$P + Q \xrightarrow{(\alpha, r)} Q'$$

$$rel.Browser$$

Dynamic behaviour

Browser = display.(cache.Browser + get.download.rel.Browser)

$$(\alpha, r).P \xrightarrow{(\alpha, r)} P$$

$$cache \qquad display$$

$$cache.Browser + get.downloadrel.Browser$$

$$p \xrightarrow{(\alpha, r)} P'$$

$$P + Q \xrightarrow{(\alpha, r)} Q'$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$P + Q \xrightarrow{(\alpha, r)} Q'$$

$$rel.Browser$$

$$(\alpha, r).P \xrightarrow{(\alpha, r)} P$$

$$cache \qquad display$$

$$cache.Browser + get.downloadrel.Browser$$

$$get \qquad rel$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$R + Q \xrightarrow{(\alpha, r)} Q'$$

$$rel.Browser$$

Dynamic behaviour

Browser = display.(cache.Browser + get.download.rel.Browser)

$$(\alpha, r).P \xrightarrow{(\alpha, r)} P$$

$$cache \qquad display$$

$$cache.Browser + get.downloadrel.Browser$$

$$get \qquad rel$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$Q \xrightarrow{(\alpha, r)} Q'$$

$$R + Q \xrightarrow{(\alpha, r)} Q'$$

$$rel.Browser$$

The labelled transition system underlying a process algebra model can be used for functional verification e.g.: reachability analysis, specification matching and model checking.

The labelled transition system underlying a process algebra model can be used for functional verification e.g.: reachability analysis, specification matching and model checking.

Bio-PEPA

Will the system arrive in a particular state?

Qualitative Analysis

The labelled transition system underlying a process algebra model can be used for functional verification e.g.: reachability analysis, specification matching and model checking.

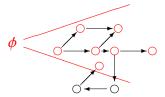
Bio-PEPA

Does system behaviour match its specification?

The labelled transition system underlying a process algebra model can be used for functional verification e.g.: reachability analysis, specification matching and model checking.

Bio-PEPA

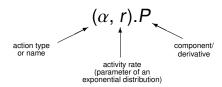
Does a given property ϕ hold within the system?



·0000000000000000

Stochastic Process Algebra

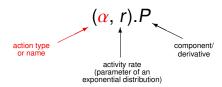
Models are constructed from components which engage in activities.



·0000000000000000

Stochastic Process Algebra

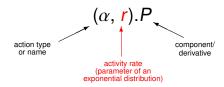
Models are constructed from components which engage in activities.



·0000000000000000

Stochastic Process Algebra

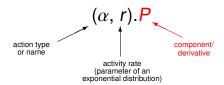
Models are constructed from components which engage in activities.



·0000000000000000

Stochastic Process Algebra

Models are constructed from components which engage in activities.

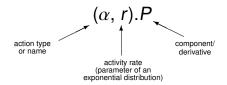


·0000000000000000

Stochastic Process Algebra

Models are constructed from components which engage in activities.

Bio-PEPA



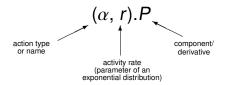
► The language is used to generate a CTMC for performance modelling.

·0000000000000000

Stochastic Process Algebra

Models are constructed from components which engage in activities.

Bio-PEPA



► The language is used to generate a CTMC for performance modelling.

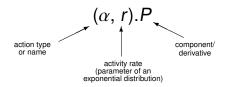
SPA **MODEL**

·0000000000000000

Stochastic Process Algebra

Models are constructed from components which engage in activities.

Bio-PEPA



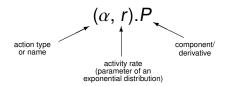
The language is used to generate a CTMC for performance modelling.

·0000000000000000

Stochastic Process Algebra

 Models are constructed from components which engage in activities.

Bio-PEPA



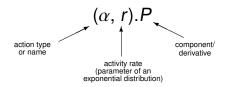
The language is used to generate a CTMC for performance modelling.

·0000000000000000

Stochastic Process Algebra

 Models are constructed from components which engage in activities.

Bio-PEPA



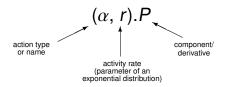
The language is used to generate a CTMC for performance modelling.

·0000000000000000

Stochastic Process Algebra

Models are constructed from components which engage in activities.

Bio-PEPA



The language is used to generate a CTMC for performance modelling.

SPA

PEPA

Process Calculi

$$S ::= (\alpha, r).S \mid S + S \mid A$$

 $P ::= S \mid P \bowtie_{L} P \mid P/L$

Bio-PEPA

SPA

PEPA

Process Calculi

0000000000000000

$$S ::= (\alpha, r).S \mid S + S \mid A$$

$$P ::= S | P \bowtie P | P/L$$

PREFIX: $(\alpha, r).S$ designated first action SPA

PEPA

Process Calculi

0000000000000000

$$S ::= (\alpha, r).S \mid S + S \mid A$$

Bio-PEPA

$$P ::= S | P \bowtie P | P/L$$

PREFIX: $(\alpha, r).S$ designated first action

CHOICE: S + S competing components (race policy)

SPA

PEPA

Process Calculi

0000000000000000

$$S ::= (\alpha, r).S \mid S + S \mid A$$

$$P ::= S \mid P \bowtie_{L} P \mid P/L$$

PREFIX: $(\alpha, r).S$ designated first action

CHOICE: S + S competing components

(race policy)

CONSTANT: $A \stackrel{def}{=} S$ assigning names

Bio-PEPA

SPA

PEPA

Process Calculi

0000000000000000

$$S ::= (\alpha, r).S \mid S + S \mid A$$

$$P ::= S | P \bowtie P | P/L$$

designated first action PREFIX: $(\alpha, r).S$

S + SCHOICE: competing components

(race policy)

 $A \stackrel{\text{def}}{=} S$ CONSTANT: assigning names

COOPERATION: $P \bowtie P$ $\alpha \notin L$ concurrent activity

(individual actions)

 $\alpha \in L$ cooperative activity

(shared actions)

PEPA

Process Calculi

0000000000000000

$$S ::= (\alpha, r).S \mid S + S \mid A$$

Bio-PEPA

$$P ::= S | P \bowtie P | P/L$$

designated first action PREFIX: $(\alpha, r).S$

S + SCHOICE: competing components

(race policy)

 $A \stackrel{\text{def}}{=} S$ CONSTANT: assigning names

COOPERATION: $P \bowtie P$ $\alpha \notin L$ concurrent activity

(individual actions)

 $\alpha \in L$ cooperative activity

(shared actions)

PEPA

Process Calculi

0000000000000000

$$S ::= (\alpha, r).S \mid S + S \mid A$$

$$P ::= S | P \bowtie P | P/L$$

designated first action PREFIX: $(\alpha, r).S$

S + SCHOICE: competing components

(race policy)

 $A \stackrel{\text{def}}{=} S$ CONSTANT: assigning names

COOPERATION: $P \bowtie P$ $\alpha \notin L$ concurrent activity

(individual actions)

 $\alpha \in L$ cooperative activity

(shared actions)

HIDING: P/Labstraction $\alpha \in L \Rightarrow \alpha \rightarrow \tau$ SPA

Process Calculi

000000000000000

Example revisited

The behaviour of the server is the same but now quantitative information is recorded for each operation:

Server
$$\stackrel{\text{def}}{=}$$
 (get, \top).(download, μ).(rel, \top).Server

000000000000000

Example revisited

The behaviour of the server is the same but now quantitative information is recorded for each operation:

Server
$$\stackrel{\text{def}}{=}$$
 (get, \top).(download, μ).(rel, \top).Server

Bio-PFPA

In addition to duration we also incorporate information about the relative frequencies of the different actions which take place after a display request:

```
Browser \stackrel{\text{def}}{=} (display, p_1\lambda).(cache, m).Browser + (display, p_2\lambda).(get, g).(download, \top).(rel, r).Browser
```

000000000000000

Example revisited

The behaviour of the server is the same but now quantitative information is recorded for each operation:

Server
$$\stackrel{\text{def}}{=}$$
 (get, \top).(download, μ).(rel, \top).Server

In addition to duration we also incorporate information about the relative frequencies of the different actions which take place after a display request:

$$Browser \stackrel{\text{def}}{=} (display, p_1 \lambda).(cache, m).Browser + \\ (display, p_2 \lambda).(get, g).(download, \top).(rel, r).Browser$$

The configuration is recorded as before; using the PEPA cooperation the actions which must be shared are explicitly named:

WEB $\stackrel{\text{def}}{=}$ (Browser || Browser) \bowtie Server $L = \{get, download, rel\}$

000000000000000

Example revisited

The behaviour of the server is the same but now quantitative information is recorded for each operation:

Server
$$\stackrel{\text{def}}{=}$$
 $(get, \top).(download, \mu).(rel, \top).Server$

In addition to duration we also incorporate information about the relative frequencies of the different actions which take place after a display request:

$$Browser \stackrel{\text{def}}{=} (display, p_1 \lambda).(cache, m).Browser + \\ (display, p_2 \lambda).(get, g).(download, \top).(rel, r).Browser$$

The configuration is recorded as before; using the PEPA cooperation the actions which must be shared are explicitly named:

WEB
$$\stackrel{\text{def}}{=}$$
 (Browser || Browser) \bowtie Server $L = \{get, download, rel\}$

SPA

Process Calculi

0000000000000000

Integrated analysis

Qualitative verification can now be complemented by quantitative verification:

0000000000000000

Integrated analysis

 Qualitative verification can now be complemented by quantitative verification:

Reachability analysis

Bio-PEPA

How long will it take for the system to arrive in a particular state?

0000000000000000

Integrated analysis

 Qualitative verification can now be complemented by quantitative verification:

Specification matching

Bio-PEPA

With what probability does system behaviour match its specification?

0000000000000000

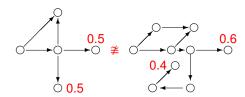
Integrated analysis

 Qualitative verification can now be complemented by quantitative verification:

Specification matching

Bio-PEPA

Does the "frequency profile" of the system match that of the specification?



0000000000000000

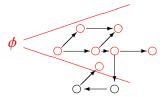
Integrated analysis

 Qualitative verification can now be complemented by quantitative verification:

Model checking

Bio-PEPA

Does a given property ϕ hold within the system with a given probability?



0000000000000000

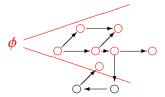
Integrated analysis

 Qualitative verification can now be complemented by quantitative verification:

Model checking

Bio-PEPA

For a given starting state how long is it until a given property ϕ holds?



Bio-PEPA

Conclusions

SPA

Process Calculi

0000000000000000

SPA Languages

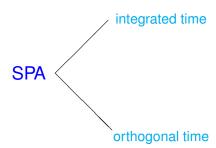
SPA

Bio-PEPA

Process Calculi

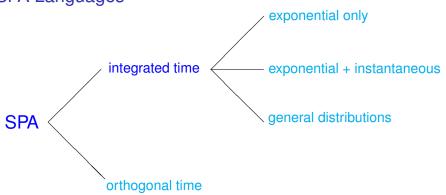
0000000000000000

SPA Languages



0000000000000000

SPA Languages

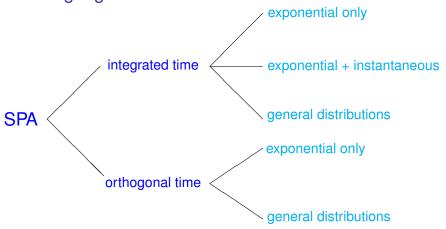


SPA

Process Calculi

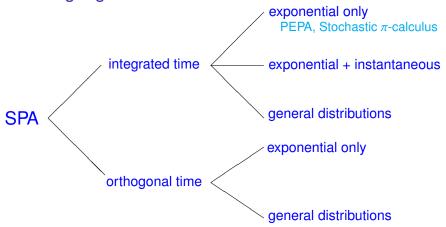
00000000000000000

SPA Languages



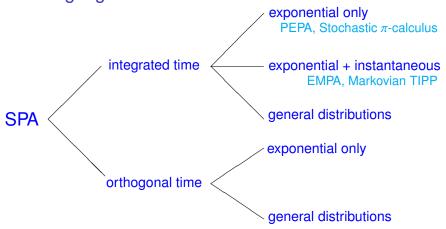
0000000000000000

SPA Languages



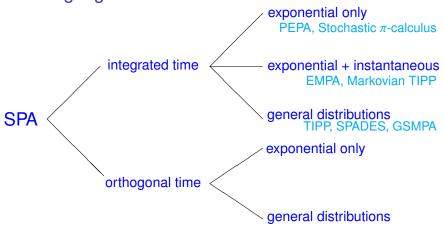
0000000000000000

SPA Languages



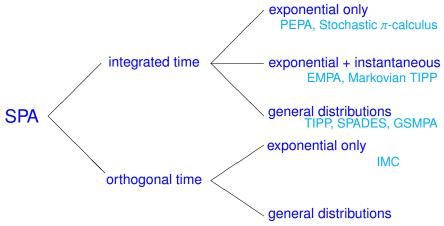
0000000000000000

SPA Languages



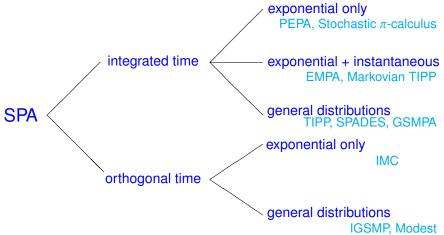
0000000000000000

SPA Languages



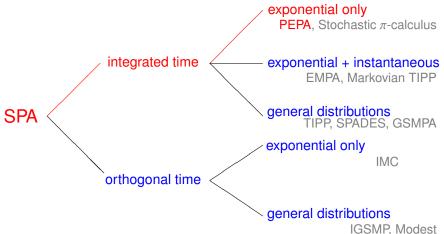
0000000000000000

SPA Languages



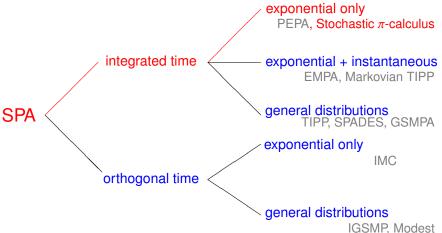
0000000000000000

SPA Languages



0000000000000000

SPA Languages



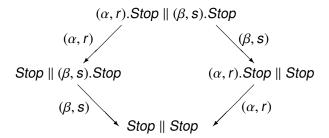
Bio-PEPA

SPA

Process Calculi

0000000000000000

The Importance of Being Exponential

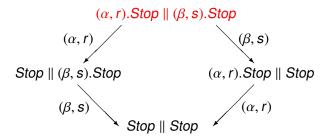


Bio-PEPA

Process Calculi

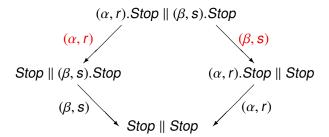
0000000000000000

The Importance of Being Exponential



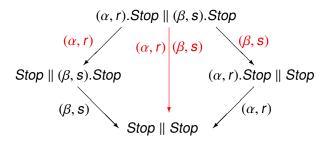
0000000000000000

The Importance of Being Exponential



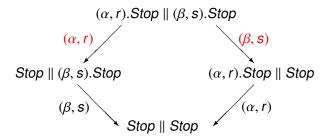
0000000000000000

The Importance of Being Exponential



0000000000000000

The Importance of Being Exponential



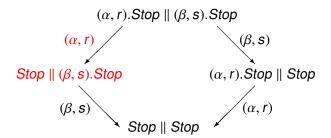
Bio-PEPA

SPA

Process Calculi

0000000000000000

The Importance of Being Exponential

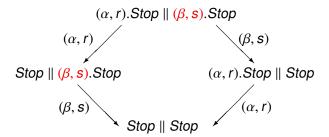


Bio-PEPA

Process Calculi

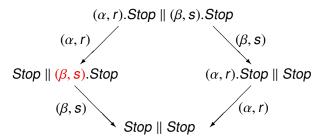
0000000000000000

The Importance of Being Exponential



0000000000000000

The Importance of Being Exponential



Bio-PEPA

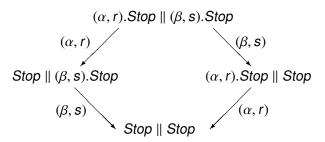
The memoryless property of the negative exponential distribution means that residual times do not need to be recorded.

Bio-PEPA

Process Calculi

0000000000000000

The Importance of Being Exponential



We retain the expansion law of classical process algebra:

$$(\alpha, r).Stop \parallel (\beta, s).Stop =$$

 $(\alpha, r).(\beta, s).(Stop \parallel Stop) + (\beta, s).(\alpha, r).(Stop \parallel Stop)$

only if the negative exponential distribution is assumed.

Hillston and Ciocchetta. LFCS, University of Edinburgh.

0000000000000000

Parallel Composition

 Parellel composition is the basis of the compositionality in a process algebra

SPA

Process Calculi

0000000000000000

Parallel Composition

 Parellel composition is the basis of the compositionality in a process algebra — it defines which components interact and how.

0000000000000000

Parallel Composition

- Parellel composition is the basis of the compositionality in a process algebra — it defines which components interact and how.
- In classical process algebra is it often associated with communication.

0000000000000000

Parallel Composition

Parellel composition is the basis of the compositionality in a process algebra — it defines which components interact and how.

Bio-PFPA

- In classical process algebra is it often associated with communication.
- When the activities of the process algebra have a duration the definition of parallel composition becomes more complex.

SPA

Process Calculi

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

Bio-PEPA

Process Calculi

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

CCS-style

Actions are partitioned into input and output pairs.

Bio-PEPA

Process Calculi

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

CCS-style

- Actions are partitioned into input and output pairs.
- Communication or synchronisation takes places between conjugate pairs.

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

Bio-PEPA

CCS-style

- Actions are partitioned into input and output pairs.
- Communication or synchronisation takes places between conjugate pairs.
- The resulting action has silent type τ .

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

CCS-style

- Actions are partitioned into input and output pairs.
- Communication or synchronisation takes places between conjugate pairs.
- The resulting action has silent type τ .

CSP-style

Bio-PEPA

No distinction between input and output actions.

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

CCS-style

- Actions are partitioned into input and output pairs.
- Communication or synchronisation takes places between conjugate pairs.
- The resulting action has silent type τ.

CSP-style

Bio-PFPA

- No distinction between input and output actions.
- Communication or synchronisation takes place on the basis of shared names.

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

CCS-style

- Actions are partitioned into input and output pairs.
- Communication or synchronisation takes places between conjugate pairs.
- The resulting action has silent type τ .

CSP-style

Bio-PFPA

- No distinction between input and output actions.
- Communication or synchronisation takes place on the basis of shared names.
- The resulting action has the same name.

0000000000000000

Who Synchronises...?

Even within classical process algebras there is variation in the interpretation of parallel composition:

CCS-style

- Actions are partitioned into input and output pairs.
- Communication or synchronisation takes places between conjugate pairs.
- The resulting action has silent type τ.

CSP-style

Bio-PFPA

- No distinction between input and output actions.
- Communication or synchronisation takes place on the basis of shared names.
- The resulting action has the same name.

We will see examples of both CCS-style and CSP-style synchronisation.

0000000000000000

Timed Synchronisation

The issue of what it means for two timed activities to synchronise is a vexed one....

SPA

Process Calculi

0000000000000000

Timed Synchronisation

- The issue of what it means for two timed activities to synchronise is a vexed one....
- In a computing context different components may have different capacities to carry out an activity.

0000000000000000

Timed Synchronisation

- The issue of what it means for two timed activities to synchronise is a vexed one....
- In a computing context different components may have different capacities to carry out an activity.
- The rate of a synchronised or shared activity must then be chosen, reflecting the capacities of the components involved.

0000000000000000

Timed Synchronisation

- The issue of what it means for two timed activities to synchronise is a vexed one....
- In a computing context different components may have different capacities to carry out an activity.
- The rate of a synchronised or shared activity must then be chosen, reflecting the capacities of the components involved.
- The different SPA languages have adopted a number of different solutions to this problem.

0000000000000000

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out activities of any particular type, determined by the apparent rate for that type.

0000000000000000

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out activities of any particular type, determined by the apparent rate for that type.

Bio-PEPA

 Synchronisation, or cooperation cannot make a component exceed its bounded capacity.

0000000000000000

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out activities of any particular type, determined by the apparent rate for that type.

- Synchronisation, or cooperation cannot make a component exceed its bounded capacity.
- Thus the apparent rate of a cooperation is the minimum of the apparent rates of the co-operands.

0000000000000000

Cooperation in PEPA

In PEPA each component has a bounded capacity to carry out activities of any particular type, determined by the apparent rate for that type.

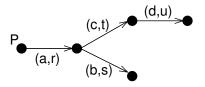
Bio-PFPA

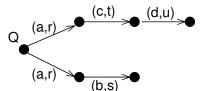
- Synchronisation, or cooperation cannot make a component exceed its bounded capacity.
- Thus the apparent rate of a cooperation is the minimum of the apparent rates of the co-operands.
- We will see that a different solution is appropriate in the context of biological systems.

0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:

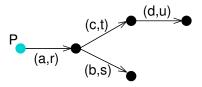


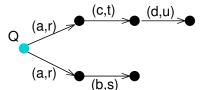


0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:

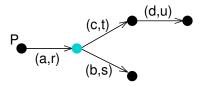


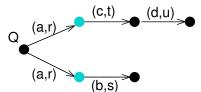


0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:

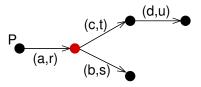


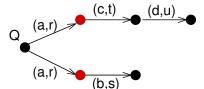


0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:



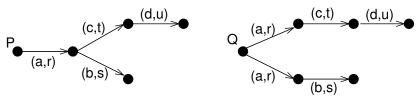


0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:

Bio-PEPA

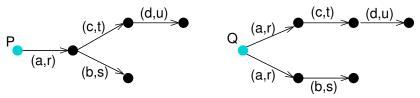


In SPA observation is assumed to include the ability to record timing information over a number of runs.

0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:



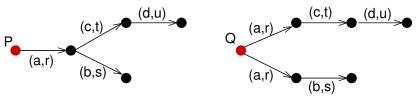
In SPA observation is assumed to include the ability to record timing information over a number of runs.

0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:

Bio-PEPA

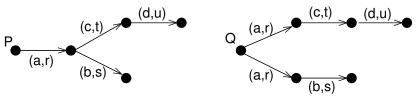


In SPA observation is assumed to include the ability to record timing information over a number of runs.

0000000000000000

Equivalence Relations

In process algebra equivalence relations are defined based on the notion of observability:



In SPA observation is assumed to include the ability to record timing information over a number of runs.

The resulting equivalence relation is a bisimulation in the style of Larsen and Skou, and coincides with the Markov process notion of lumpability.

SPA

Process Calculi

0000000000000000

Exploiting equivalence relations

In a SPA model an equivlance relation may be used in two ways to assist model solution:

0000000000000000

Exploiting equivalence relations

In a SPA model an equivlance relation may be used in two ways to assist model solution:

Bio-PFPA

Equivalence between models: The behaviour of two alternative models/components may be compared. Equivalent ones may be used interchangeably. This is of particular value when one model is easier to solve than the other e.g. if it has a smaller state space. This is termed model simplification.

0000000000000000

Exploiting equivalence relations

In a SPA model an equivlance relation may be used in two ways to assist model solution:

Bio-PFPA

- Equivalence between models: The behaviour of two alternative models/components may be compared. Equivalent ones may be used interchangeably. This is of particular value when one model is easier to solve than the other e.g. if it has a smaller state space. This is termed model simplification.
- Equivalence within a model: The behaviour of individual states within the state space of a single model may be compared. This can lead to the formation of equivalence classes and a more abstract representation may then be chosen with one representative of each equivalence class. This is termed model aggregation.

Bio-PEPA

Process Calculi

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish a partition of the state space of a model, and replace each set of states by one macro-state, i.e. take a different stochastic representation of the same model.

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish a partition of the state space of a model, and replace each set of states by one macro-state, i.e. take a different stochastic representation of the same model.

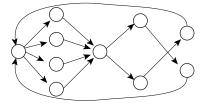
Bio-PFPA

A lumpable partition is the only partition of a Markov process which preserves the Markov property.

Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish a partition of the state space of a model, and replace each set of states by one macro-state, i.e. take a different stochastic representation of the same model.

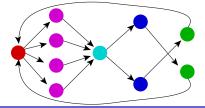
A lumpable partition is the only partition of a Markov process which preserves the Markov property.



Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish a partition of the state space of a model, and replace each set of states by one macro-state, i.e. take a different stochastic representation of the same model.

A lumpable partition is the only partition of a Markov process which preserves the Markov property.

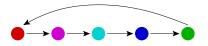


Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish a partition of the state space of a model, and replace each set of states by one macro-state, i.e. take a different stochastic representation of the same model

Bio-PFPA

A lumpable partition is the only partition of a Markov process which preserves the Markov property.



0000000000000000

- Multiprocessor access-contention protocols (Gilmore, Hillston) and Ribaudo, Edinburgh and Turin)
- Protocols for fault-tolerant systems (Clark, Gilmore, Hillston and Ribaudo, Edinburgh and Turin)
- Multimedia traffic characteristics (Bowman et al. Kent)
- Database systems (The STEADY group, Heriot-Watt University)
- Software Architectures (Pooley, Bradley and Thomas, Heriot-Watt and Durham)
- Switch behaviour in active networks (Hillston, Kloul and Mokhtari, Edinburgh and Versailles)

SPA

Process Calculi

0000000000000000

PEPA Case Studies (2)

Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)

Process Calculi

0000000000000000

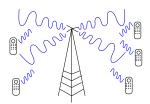
- Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)
- Robotic workcells (Holton, Gilmore and Hillston, Bradford and Edinburgh)

Process Calculi

0000000000000000

PEPA Case Studies (2)

- Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)
- Robotic workcells (Holton, Gilmore and Hillston, Bradford and Edinburgh)
- Cellular telephone networks (Kloul, Fourneau and Valois, Versailles)

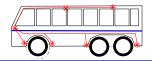


Process Calculi

00000000000000000

PEPA Case Studies (2)

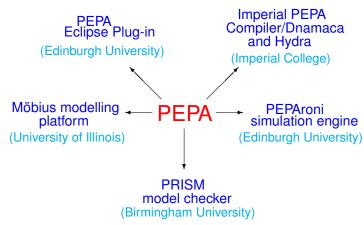
- Locks and movable bridges in inland shipping in Belgium (Knapen, Hasselt)
- Robotic workcells (Holton, Gilmore and Hillston, Bradford and Edinburgh)
- Cellular telephone networks (Kloul, Fourneau and Valois, Versailles)
- Automotive diagnostic expert systems (Console, Picardi and Ribaudo, Turin)



Process Calculi

Tool Support

0000000000000000



SPA

Process Calculi

0000000000000000

Markovian analysis

Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.

Process Calculi

0000000000000000

Markovian analysis

- Analysis of the Markov process can yield quite detailed information about the dynamic behaviour of the model.
- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.

0000000000000000

Markovian analysis

Analysis of the Markov process can yield guite detailed information about the dynamic behaviour of the model.

Bio-PFPA

- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.

0000000000000000

Markovian analysis

Analysis of the Markov process can yield guite detailed information about the dynamic behaviour of the model.

Bio-PFPA

- A steady state analysis provides statistics for average behaviour over a long run of the system, when the bias introduced by the initial state has been lost.
- A transient analysis provides statistics relating to the evolution of the model over a fixed period. This will be dependent on the starting state.
- Stochastic model checking is available via the PRISM model checker, assessing the probable validity of properties expressed in CSL (Continuous Stochastic Logic).

Process Calculi

SPA for Systems Biology

Equivalences and Analysis

Genetic network with negative feedback loop

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

Bio-PEPA

 Process algebraic formulations are compositional and make interactions/constraints explicit.

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

Bio-PEPA

- Process algebraic formulations are compositional and make interactions/constraints explicit.
- Structure can also be apparent.

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

Bio-PFPA

- Process algebraic formulations are compositional and make interactions/constraints explicit.
- Structure can also be apparent.
- Equivalence relations allow formal comparison of high-level descriptions.

Process algebras have several attractive features which could be useful for modelling and understanding biological systems:

Bio-PFPA

- Process algebraic formulations are compositional and make interactions/constraints explicit.
- Structure can also be apparent.
- Equivalence relations allow formal comparison of high-level descriptions.
- There are well-established techniques for reasoning about the behaviours and properties of models, supported by software. These include qualitative and quantitative analysis, and model checking.

Concurrency	Molecular Biology	Metabolism	Signal Transduction
Concurrent computational processes	Molecules	Enzymes and metabolites	Interacting proteins
Synchronous communica-	Molecular	Binding and	Binding and
tion	interaction	catalysis	catalysis
Transition or mobility	Biochemical modification or relocation	Metabolite synthesis	Protein binding, modification or sequestration

[Regev et al 2000]

Concurrency	Molecular Biology	Metabolism	Signal Transduction
Concurrent computational processes	Molecules	Enzymes and metabolites	Interacting proteins
Synchronous communica-	Molecular	Binding and	Binding and
tion	interaction	catalysis	catalysis
Transition or mobility	Biochemical modification or relocation	Metabolite synthesis	Protein binding, modification or sequestration

[Regev et al 2000]

Calculi for Systems Biology

Several different process caluli have been developed or adapted for application in systems biology. Each of them has different properties able to render different aspects of biological phenomena. They may be divided into two main categories:

Calculi for Systems Biology

Process Calculi

Several different process caluli have been developed or adapted for application in systems biology. Each of them has different properties able to render different aspects of biological phenomena. They may be divided into two main categories:

Bio-PFPA

Calculi defined originally in computer science and then applied in biology, such as the biochemical stochastic π -calculus, SCCP, CCS-R and PEPA;

Calculi for Systems Biology

Several different process caluli have been developed or adapted for application in systems biology. Each of them has different properties able to render different aspects of biological phenomena. They may be divided into two main categories:

Bio-PFPA

- Calculi defined originally in computer science and then applied in biology, such as the biochemical stochastic π -calculus, SCCP, CCS-R and PEPA;
- Calculi defined specifically by observing biological structures and phenomena, such as BioAmbients, Brane Calculi and Beta-binders

Stochastic π -calculus

Process Calculi

• The stochastic π -calculus has been used to model and analyse a wide variety of biological systems.

Stochastic π -calculus

- The stochastic π -calculus has been used to model and analyse a wide variety of biological systems.
- Examples include metabolic pathways, gene transcription and signal transduction.

- The stochastic π-calculus has been used to model and analyse a wide variety of biological systems.
- Examples include metabolic pathways, gene transcription and signal transduction.

Bio-PEPA

 Analysis is mainly based on stochastic simulation (Gillespie's algorithm).

Stochastic π -calculus

- The stochastic π-calculus has been used to model and analyse a wide variety of biological systems.
- Examples include metabolic pathways, gene transcription and signal transduction.

Bio-PFPA

- Analysis is mainly based on stochastic simulation (Gillespie's algorithm).
- Two tools: BioSPI and SPIM which implement slightly different versions of the language.

- \triangleright The stochastic π -calculus has been used to model and analyse a wide variety of biological systems.
- Examples include metabolic pathways, gene transcription and signal transduction.

Bio-PFPA

- Analysis is mainly based on stochastic simulation (Gillespie's algorithm).
- Two tools: BioSPI and SPIM which implement slightly different versions of the language.
- There has also been some work on a graphical notation associated with the SPIM tool.

 CCS-R is a variant of CCS with new elements which allow the capture of reversibility.

CCS-R

 CCS-R is a variant of CCS with new elements which allow the capture of reversibility.

Bio-PEPA

The interactions are described in terms of binary synchronised communications, similarly to π -calculus.

CCS-R is a variant of CCS with new elements which allow the capture of reversibility.

- The interactions are described in terms of binary synchronised communications, similarly to π -calculus.
- It was motivated by modelling reversible reactions in biochemistry.

 CCS-R is a variant of CCS with new elements which allow the capture of reversibility.

Bio-PFPA

- The interactions are described in terms of binary synchronised communications, similarly to π -calculus.
- It was motivated by modelling reversible reactions in biochemistry.
- The successor of CSS-R is the Reversible CCS (RCCS). This calculus allows processes to backtrack if this is in agreement with a defined notion of casual equivalence.

 SCCP is a stochastic extension of Concurrent Constraint Programming (CCP).

SCCP

Process Calculi

- SCCP is a stochastic extension of Concurrent Constraint Programming (CCP).
- Here each species is represented by a variable and the reactions are expressed by constraints (or updates) on these variables.

- SCCP is a stochastic extension of Concurrent Constraint Programming (CCP).
- Here each species is represented by a variable and the reactions are expressed by constraints (or updates) on these variables.

Bio-PFPA

 Mappings have been defined from SCCP models to CTMC models at the molecular level suitable for stochastic simulation, to systems of ODEs and to hybrid systems.

- SCCP is a stochastic extension of Concurrent Constraint Programming (CCP).
- Here each species is represented by a variable and the reactions are expressed by constraints (or updates) on these variables.

Bio-PFPA

- Mappings have been defined from SCCP models to CTMC models at the molecular level suitable for stochastic simulation, to systems of ODEs and to hybrid systems.
- Unlike the stochastic π -calculus and CCS-R, the calculus is not limited to binary interactions so any kind of reactions can be represented.

SCCP

- SCCP is a stochastic extension of Concurrent Constraint Programming (CCP).
- Here each species is represented by a variable and the reactions are expressed by constraints (or updates) on these variables.

Bio-PFPA

- Mappings have been defined from SCCP models to CTMC models at the molecular level suitable for stochastic simulation, to systems of ODEs and to hybrid systems.
- Unlike the stochastic π -calculus and CCS-R, the calculus is not limited to binary interactions so any kind of reactions can be represented.
- Moreover the rate can be expressed by a generic function, thus general kinetic laws can be captured.

Bio-PEPA

Biology-specific process calculi

The current work on defining biology-specific process calculi has focused on spatial aspects.

The current work on defining biology-specific process calculi has focused on spatial aspects.

Bio-PEPA

Thus each of the new calculi places emphasis on the location of components and how this impacts on their potential interactions.

Bio-PEPA

Process Calculi

Originating from Regev et al.

The Bioambient Calculus

Process Calculi

- Originating from Regev et al.
- An extension of the stochastic π -calculus, inspired by the Ambient Calculus which captures process location and movement through computational domains.

Originating from Regev et al.

- An extension of the stochastic π -calculus, inspired by the Ambient Calculus which captures process location and movement through computational domains.

Bio-PEPA

 An ambient is a bounded place where computation can happen — within each ambient there may be component processes and sub-ambients.

- Originating from Regev et al.
- An extension of the stochastic π -calculus, inspired by the Ambient Calculus which captures process location and movement through computational domains.

Bio-PFPA

- An ambient is a bounded place where computation can happen — within each ambient there may be component processes and sub-ambients.
- Entities may enter or exit an ambient and ambients may merge.

- Originating from Regev et al.
- An extension of the stochastic π -calculus, inspired by the Ambient Calculus which captures process location and movement through computational domains.

Bio-PFPA

- An ambient is a bounded place where computation can happen — within each ambient there may be component processes and sub-ambients.
- Entities may enter or exit an ambient and ambients may merge.
- A stochastic version has recently been defined and used in applications.

Originating from Cardelli at Microsoft Research, Cambridge.

Bio-PEPA

The Brane Calculus

- Originating from Cardelli at Microsoft Research, Cambridge.
- Membranes are taken as primitives of the calculus:

Originating from Cardelli at Microsoft Research, Cambridge.

- Membranes are taken as primitives of the calculus:
 - Systems consist of nested membranes;

- Originating from Cardelli at Microsoft Research, Cambridge.
- Membranes are taken as primitives of the calculus:
 - Systems consist of nested membranes;
 - Membranes consist of collections of actions:

Bio-PFPA

The Brane Calculus

- Originating from Cardelli at Microsoft Research, Cambridge.
- Membranes are taken as primitives of the calculus:
 - Systems consist of nested membranes;
 - Membranes consist of collections of actions:
 - Reactions happen only at the level of systems and are caused only by actions on membranes.

The Brane Calculus

- Originating from Cardelli at Microsoft Research, Cambridge.
- Membranes are taken as primitives of the calculus:
 - Systems consist of nested membranes;
 - Membranes consist of collections of actions:
 - Reactions happen only at the level of systems and are caused only by actions on membranes.

Bio-PFPA

 Actions may be bitonal actions of the membrane, binding or release, or molecular interactions.

Beta Binders

Process Calculi

Originating from the group at the University of Trento.

- Originating from the group at the University of Trento.
- Can be viewed as an extension of the stochastic π -calculus.

Beta Binders

Process Calculi

- Originating from the group at the University of Trento.
- Can be viewed as an extension of the stochastic π -calculus.

Bio-PEPA

 Processes are encapsulated into boxes, that mimic biological membranes, and have interaction sites, motifs, depicting where molecules can bind together.

Beta Binders

- Originating from the group at the University of Trento.
- Can be viewed as an extension of the stochastic π -calculus.

Bio-PFPA

- Processes are encapsulated into boxes, that mimic biological membranes, and have interaction sites, motifs, depicting where molecules can bind together.
- The semantics give rules on joining and splitting boxes, as well as the affinity between interaction sites.

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

Bio-PEPA

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

Bio-PEPA

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

Mapping biological systems to process algebra

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

Bio-PFPA

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

In the PEPA group we have been experimenting with more abstract mappings between process algebra constructs and elements of signalling pathways.

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

Bio-PFPA

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

In the PEPA group we have been experimenting with more abstract mappings between process algebra constructs and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an instance, or a class rather than an object).

The work using the stochastic π -calculus and related calculi, maps a molecule to a process in the process algebra description.

Bio-PFPA

This is an inherently individuals-based view of the system and analysis will generally be via stochastic simulation.

In the PEPA group we have been experimenting with more abstract mappings between process algebra constructs and elements of signalling pathways.

In our mapping we focus on species (c.f. a type rather than an instance, or a class rather than an object).

Alternative mappings from the process algebra to underlying mathematics are then readily available.

Motivations for Abstraction

Our motivations for seeking more abstraction in process algebra models for systems biology are:

Motivations for Abstraction

Process Calculi

Our motivations for seeking more abstraction in process algebra models for systems biology are:

Bio-PFPA

 Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible is the state space is not prohibitively large.

Our motivations for seeking more abstraction in process algebra models for systems biology are:

Bio-PFPA

- Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible is the state space is not prohibitively large.
- The data that we have available to parameterise models is sometimes speculative rather than precise.

Motivations for Abstraction

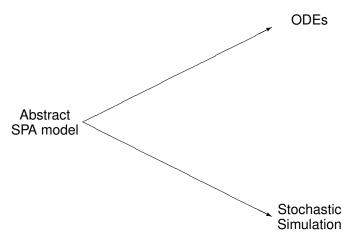
Our motivations for seeking more abstraction in process algebra models for systems biology are:

Bio-PFPA

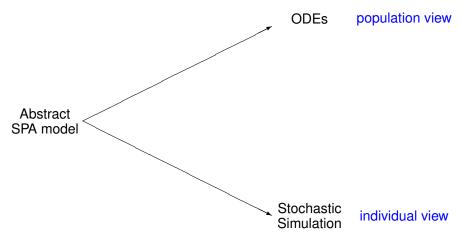
- Process algebra-based analyses such as comparing models (e.g. for equivalence or simulation) and model checking are only possible is the state space is not prohibitively large.
- The data that we have available to parameterise models is sometimes speculative rather than precise. This suggests that it can be useful to use semiquantitative models rather than quantitative ones.

Bio-PEPA

Alternative Representations



Alternative Representations



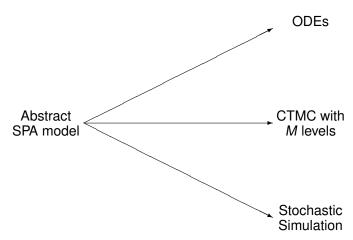
Bio-PEPA

We can discretise the continuous range of possible concentration values into a number of distinct states. These form the possible states of the component representing the reagent.

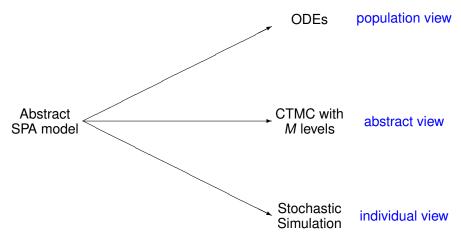
Bio-PEPA

Process Calculi

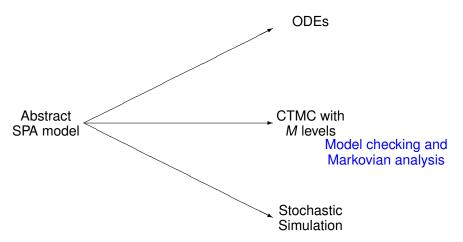
Alternative Representations



Alternative Representations



Alternative Representations



Stochastic Process Algebra

Models are constructed from components which engage in activities.

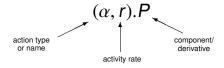


Stochastic Process Algebra

Process Calculi

Models are constructed from components which engage in activities.

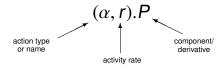
Bio-PEPA



Stochastic Process Algebra

Models are constructed from components which engage in activities.

Bio-PEPA

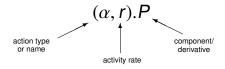


The language may be used to generate a Markov Process (CTMC).

SPA MODEL

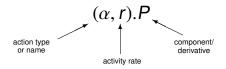
Models are constructed from components which engage in activities.

Bio-PEPA



Models are constructed from components which engage in activities.

Bio-PEPA

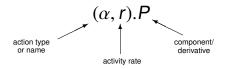


Stochastic Process Algebra

Process Calculi

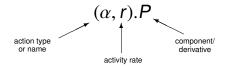
Models are constructed from components which engage in activities.

Bio-PEPA



Models are constructed from components which engage in activities.

Bio-PEPA



The language may be used to generate a Markov Process (CTMC).

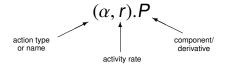
Q is the infinitesimal generator matrix characterising the CTMC.

Stochastic Process Algebra

Process Calculi

Models are constructed from components which engage in activities.

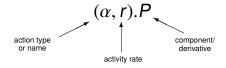
Bio-PEPA



Stochastic Process Algebra

Models are constructed from components which engage in activities.

Bio-PEPA

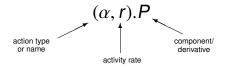


The language may be used to generate a system of ordinary differential equations (ODEs).

SPA MODEL

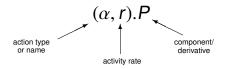
Models are constructed from components which engage in activities.

Bio-PEPA



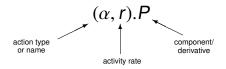
Models are constructed from components which engage in activities.

Bio-PEPA



Models are constructed from components which engage in activities.

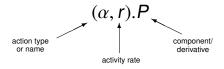
Bio-PEPA



Stochastic Process Algebra

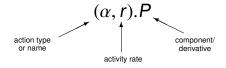
Models are constructed from components which engage in activities.

Bio-PEPA



Models are constructed from components which engage in activities.

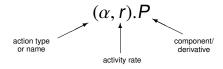
Bio-PEPA



Stochastic Process Algebra

Models are constructed from components which engage in activities.

Bio-PEPA

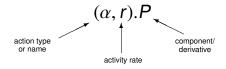


The language also may be used to generate a stochastic simulation.

SPA MODEL

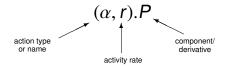
Models are constructed from components which engage in activities.

Bio-PEPA



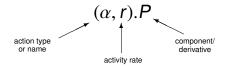
Models are constructed from components which engage in activities.

Bio-PEPA



Models are constructed from components which engage in activities.

Bio-PEPA



Stochastic Process Algebra

Process Calculi

Models are constructed from components which engage in activities.

Bio-PEPA

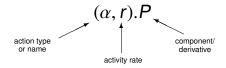


Stochastic Process Algebra

Process Calculi

Models are constructed from components which engage in activities.

Bio-PEPA



Alternative models

When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.

Bio-PEPA

When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.

Bio-PFPA

The ODE model can be regarded as an approximation of a CTMC in which the number of molecules is large enough that the randomness averages out and the system is essentially deterministic

Alternative models

When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.

Bio-PFPA

- The ODE model can be regarded as an approximation of a CTMC in which the number of molecules is large enough that the randomness averages out and the system is essentially deterministic
- In models with levels, each level of granularity gives rise to a CTMC, and the behaviour of this sequence of Markov processes converges to the behaviour of the system of ODEs.

When a molecular mapping is used in general a CTMC state space is too large to permit anything but stochastic simulation.

Bio-PFPA

- The ODE model can be regarded as an approximation of a CTMC in which the number of molecules is large enough that the randomness averages out and the system is essentially deterministic
- In models with levels, each level of granularity gives rise to a CTMC, and the behaviour of this sequence of Markov processes converges to the behaviour of the system of ODEs.
- Some analyses which can be carried out via numerical solution of the CTMC are not readily available from ODEs or stochastic simulation.

Bio-PEPA

Process Calculi

Bio-PEPA

Model definition The syntax and semantics Equivalences and Analysis

Genetic network with negative feedback loop

Process Calculi

Modelling biological features

SPA designed for modelling computing systems do not readily capture some of the features of biological systems.

Bio-PEPA

0000000

Modelling biological features

SPA designed for modelling computing systems do not readily capture some of the features of biological systems.

Bio-PEPA

•0000000

Particular problems are encountered with:

Bio-PEPA

•0000000

Model definition

Process Calculi

Modelling biological features

SPA designed for modelling computing systems do not readily capture some of the features of biological systems.

Particular problems are encountered with:

stoichiometry — the multiplicity in which an entity participates in a reaction:

Modelling biological features

SPA designed for modelling computing systems do not readily capture some of the features of biological systems.

Bio-PFPA

0000000

Particular problems are encountered with:

- stoichiometry the multiplicity in which an entity participates in a reaction:
- general kinetic laws while mass action is widely used other kinetics are also commonly employed.

Modelling biological features

SPA designed for modelling computing systems do not readily capture some of the features of biological systems.

Bio-PFPA

Particular problems are encountered with:

- stoichiometry the multiplicity in which an entity participates in a reaction;
- general kinetic laws while mass action is widely used other kinetics are also commonly employed.
- multiway reactions although thermodynamics arguments can be made that there are never more than two reagents involved in a reaction, in practice it is often useful to model at a more abstract level.

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PEPA

0000000

$$2S \stackrel{E}{\longrightarrow} P$$

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

0000000

$$2S \stackrel{E}{\longrightarrow} P$$

$$S+S \longrightarrow 2S$$
 $2S+E \longrightarrow 2S:E$ $2S:E \longrightarrow P:E$ $P:E \longrightarrow P+E$

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

0000000

$$2S \stackrel{E}{\longrightarrow} P$$

$$S+S \longrightarrow 2S$$
 $2S+E \longrightarrow 2S:E$ $2S:E \longrightarrow P:E$ $P:E \longrightarrow P+E$

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

0000000

$$2S \stackrel{E}{\longrightarrow} P$$

$$S+S \longrightarrow 2S$$
 $2S+E \longrightarrow 2S:E$ $2S:E \longrightarrow P:E$ $P:E \longrightarrow P+E$

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

0000000

$$2S \stackrel{E}{\longrightarrow} P$$

$$S+S \longrightarrow 2S$$
 $2S+E \longrightarrow 2S:E$ $2S:E \longrightarrow P:E$ $P:E \longrightarrow P+E$

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

0000000

$$2S \stackrel{E}{\longrightarrow} P$$

$$S + S \longrightarrow 2S$$
 $2S + E \longrightarrow 2S : E$ $2S : E \longrightarrow P : E \longrightarrow P + E$

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

$$2S \stackrel{E}{\longrightarrow} P$$

In process algebras such as the stochastic π -calculus this must be broken up into a sequence of unary and binary reactions, e.g.:

$$S+S \longrightarrow 2S$$
 $2S+E \longrightarrow 2S:E$ $2S:E \longrightarrow P:E$ $P:E \longrightarrow P+E$

The problems with this are various:

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

$$2S \stackrel{E}{\longrightarrow} P$$

In process algebras such as the stochastic π -calculus this must be broken up into a sequence of unary and binary reactions, e.g.:

$$S + S \longrightarrow 2S$$
 $2S + E \longrightarrow 2S : E$ $2S : E \longrightarrow P : E \longrightarrow P + E$

The problems with this are various:

The number of "states" of the system is significantly increased which has implications for computational efficiency/tractability.

Model definition

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

$$2S \stackrel{E}{\longrightarrow} P$$

In process algebras such as the stochastic π -calculus this must be broken up into a sequence of unary and binary reactions, e.g.:

$$S + S \longrightarrow 2S$$
 $2S + E \longrightarrow 2S : E$ $2S : E \longrightarrow P : E \longrightarrow P + E$

The problems with this are various:

- The number of "states" of the system is significantly increased which has implications for computational efficiency/tractability.
- Different possible decompositions.

Model definition

Process Calculi

Illustration

Consider a conversion of a substrate S, with stoichiometry 2, to a product P which is under the influence of an enzyme E, i.e.

Bio-PFPA

$$2S \stackrel{E}{\longrightarrow} P$$

In process algebras such as the stochastic π -calculus this must be broken up into a sequence of unary and binary reactions, e.g.:

$$S + S \longrightarrow 2S$$
 $2S + E \longrightarrow 2S : E$ $2S : E \longrightarrow P : E \longrightarrow P + E$

The problems with this are various:

- The number of "states" of the system is significantly increased which has implications for computational efficiency/tractability.
- Different possible decompositions.
- Rates must be found for all the intermediate steps.

0000000

Model definition

Process Calculi

Motivation

Bio-PEPA has been designed to overcome these challenges:

0000000

Model definition

Process Calculi

Motivation

Bio-PEPA has been designed to overcome these challenges:

 Unique rates are associated with each reaction (action) type, separately from the specification of the logical behaviour. These rates may be specified by functions.

Model definition

Process Calculi

Motivation

Bio-PEPA has been designed to overcome these challenges:

 Unique rates are associated with each reaction (action) type, separately from the specification of the logical behaviour. These rates may be specified by functions.

Bio-PFPA

00000000

The representation of an action within a component (species) records the stoichiometry of that entity with respect to that reaction. The role of the entity is also distinguished.

Bio-PFPA

Process Calculi

Motivation

Bio-PEPA has been designed to overcome these challenges:

- Unique rates are associated with each reaction (action) type, separately from the specification of the logical behaviour. These rates may be specified by functions.
- The representation of an action within a component (species) records the stoichiometry of that entity with respect to that reaction. The role of the entity is also distinguished.
- Multi-way reactions are possible in Bio-PEPA since it has CSP-style synchronisation rather than CCS-style synchronisation. Thus a multi-way reaction is abstracted as a multi-syncronisation.

00000000

Model definition

Process Calculi

Reagent-centric view [CGH04]

Bio-PEPA refers to the reagent-centric view modelling style.

00000000

Model definition

Process Calculi

Reagent-centric view [CGH04]

- Bio-PEPA refers to the reagent-centric view modelling style.
- Models are based on discrete levels of concentration within a species.

Model definition

Process Calculi

Reagent-centric view [CGH04]

- Bio-PEPA refers to the reagent-centric view modelling style.
- Models are based on discrete levels of concentration within a species.
- ► The granularity of the system is defined in terms of the step size h of the concentration intervals.

Bio-PEPA

00000000

Process Calculi

Reagent-centric view [CGH04]

- Bio-PEPA refers to the reagent-centric view modelling style.
- Models are based on discrete levels of concentration within a species.
- The granularity of the system is defined in terms of the step size h of the concentration intervals.

Bio-PFPA

00000000

We define the same step size h for all the species, with few exceptions. This follows from the law of conservation of mass.

Bio-PFPA

Process Calculi

Reagent-centric view [CGH04]

- Bio-PEPA refers to the reagent-centric view modelling style.
- Models are based on discrete levels of concentration within a species.
- The granularity of the system is defined in terms of the step size h of the concentration intervals.
- We define the same step size h for all the species, with few exceptions. This follows from the law of conservation of mass.
- If I_i is the concentration level for the species i, the concentration is taken to be $x_i = I_i \times h$.

Model definition

Process Calculi

Reagent-centric modelling (2)

Role	Impact on reaction rate	Impact on reagent
Reactant	positive impact, e.g. proportional to current concentration	decreases level
Product	no impact, except at saturation	increases level
Enzyme	positive impact, e.g. proportional to current concentration	level unchanged
Inhibitor	negative impact, e.g. inversely proportional to current concentration	level unchanged

Model definition

Process Calculi

Reagent-centric view (3)

The rate of a transition is consistent with the granularity.

Bio-PEPA

00000000

00000000

Model definition

Process Calculi

Reagent-centric view (3)

- The rate of a transition is consistent with the granularity.
- In a Bio-PEPA model the granularity must be specified by the modeller as the expected range of concentration values and the number of levels considered.

Bio-PFPA

00000000

Model definition

Reagent-centric view (3)

- The rate of a transition is consistent with the granularity.
- ▶ In a Bio-PEPA model the granularity must be specified by the modeller as the expected range of concentration values and the number of levels considered.
- The form of the CTMC derived from Bio-PEPA, which we term the CTMC with levels, will depend on the granularity of the model.

Process Calculi

Reagent-centric view (3)

- The rate of a transition is consistent with the granularity.
- ▶ In a Bio-PEPA model the granularity must be specified by the modeller as the expected range of concentration values and the number of levels considered.

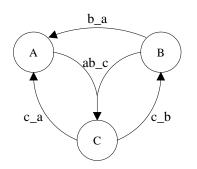
Bio-PFPA

- The form of the CTMC derived from Bio-PEPA, which we term the CTMC with levels, will depend on the granularity of the model.
- As the granularity tends to zero the behaviour of this CTMC with levels tends to the behaviour of the ODEs [CDHC08].

00000000

Process Calculi

Bio-PEPA reagent-centric example



$$A \stackrel{\text{def}}{=} (ab_c, 1) \downarrow A + (b_a, 1) \uparrow A$$

$$+ (c_a, 1) \uparrow A$$

$$B \stackrel{\text{def}}{=} (ab_c, 1) \downarrow B + (b_a, 1) \downarrow B$$

$$+ (c_b, 1) \uparrow B$$

$$C \stackrel{\text{def}}{=} (c_a, 1) \downarrow C + (c_b, 1) \downarrow C$$

$$+ (ab_c, 1) \uparrow C$$

$$\left(A(I_{A0}) \underset{\{ab.c,b.a\}}{\bowtie} B(I_{B0})\right) \underset{\{ab.c,c.a,c.b\}}{\bowtie} C(I_{C0})$$

Process Calculi

State representation

The state of the system at any time consists of the local states of each of its sequential/species components.

Bio-PEPA

0000000

Model definition

Process Calculi

State representation

- The state of the system at any time consists of the local states of each of its sequential/species components.
- The local states of components are quantitative rather than functional, i.e. distinct states of the species are represented as distinct components, not derivatives of a single component.

Process Calculi

State representation

The state of the system at any time consists of the local states of each of its sequential/species components.

Bio-PFPA

0000000

- The local states of components are quantitative rather than functional, i.e. distinct states of the species are represented as distinct components, not derivatives of a single component.
- A component varying its state corresponds to it varying its concentration level.

Process Calculi

State representation

- The state of the system at any time consists of the local states of each of its sequential/species components.
- The local states of components are quantitative rather than functional, i.e. distinct states of the species are represented as distinct components, not derivatives of a single component.
- A component varying its state corresponds to it varying its concentration level.
- This is captured by an integer parameter associated with the species and the effect of a reaction is to vary that parameter by a number of levels corresponding to the stoichiometry of this species in the reaction.

•0000000000

Process Calculi

The syntax

Sequential (species) component

•0000000000

The syntax and semantics

Process Calculi

The syntax

Sequential (species) component

$$S \stackrel{\text{def}}{=} (\alpha, \kappa)$$
 op $S \mid S + S \mid C$

where op =
$$\downarrow | \uparrow | \oplus | \ominus | \odot$$

0000000000

Process Calculi

The syntax

Sequential (species) component

$$S \stackrel{\text{def}}{=} (\alpha, \kappa)$$
 op $S \mid S + S \mid C$

where op =
$$\downarrow | \uparrow | \oplus | \ominus | \odot$$

Model component

0000000000

The syntax and semantics

Process Calculi

The syntax

Sequential (species) component

$$S \stackrel{\text{def}}{=} (\alpha, \kappa)$$
 op $S \mid S + S \mid C$

where op =
$$\downarrow | \uparrow | \oplus | \ominus | \odot$$

Model component

$$P \stackrel{\text{def}}{=} P \bowtie_{\mathcal{L}} P \mid S(I)$$

0000000000

Process Calculi

The Bio-PEPA system

A Bio-PEPA system \mathcal{P} is a 6-tuple $\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_{\mathcal{B}}, Comp, P \rangle$, where:

- V is the set of compartments:
- N is the set of quantities describing each species (step size. number of levels, location, ...);
- K is the set of parameter definitions;
- \triangleright \mathcal{F}_{R} is the set of functional rate definitions;
- Comp is the set of definitions of sequential components;
- P is the model component describing the system.

00000000

The syntax and semantics

Semantics

Process Calculi

The syntax and semantics

Semantics

Process Calculi

The semantics of Bio-PEPA is defined in terms of an operational semantics.

Bio-PEPA

0000000000

0000000000

Process Calculi

Semantics

The semantics of Bio-PEPA is defined in terms of an operational semantics.

We define two relations over the processes:

1. capability relation, that supports the derivation of quantitative information:

000000000

Process Calculi

Semantics

The semantics of Bio-PEPA is defined in terms of an operational semantics

We define two relations over the processes:

- 1. capability relation, that supports the derivation of quantitative information:
- 2. stochastic relation, that gives us the rates associated with each action.

00000000000

Process Calculi

0000000000

The syntax and semantics

Process Calculi

$$\mathsf{prefixReac} \qquad ((\alpha,\kappa) \downarrow S)(I) \xrightarrow{(\alpha,[S:\downarrow(I,\kappa)])} {}_{\mathcal{C}} S(I-\kappa) \quad \kappa \leq I \leq N$$

0000000000

The syntax and semantics

Process Calculi

$$\text{prefixReac} \qquad ((\alpha, \kappa) \downarrow S)(l) \xrightarrow{(\alpha, [S: \downarrow (l, \kappa)])}_{c} S(l - \kappa) \quad \kappa \leq l \leq N$$

$$\text{prefixProd} \qquad ((\alpha, \kappa) \uparrow S)(l) \xrightarrow{(\alpha, [S: \uparrow (l, \kappa)])}_{c} S(l + \kappa) \quad 0 \leq l \leq (N - \kappa)$$

0000000000

The syntax and semantics

Process Calculi

The syntax and semantics

Process Calculi

Semantics: constant and choice rules

The syntax and semantics

Process Calculi

Semantics: constant and choice rules

Choice1
$$\frac{S_1(I) \xrightarrow{(\alpha, v)} {}_{c} S_1'(I')}{(S_1 + S_2)(I) \xrightarrow{(\alpha, v)} {}_{c} S_1'(I')}$$

Conclusions

The syntax and semantics

Process Calculi

Semantics: constant and choice rules

Choice1
$$\frac{S_{1}(I) \xrightarrow{(\alpha, v)}_{c} S_{1}^{'}(I^{'})}{(S_{1} + S_{2})(I) \xrightarrow{(\alpha, v)}_{c} S_{1}^{'}(I^{'})}$$

$$\begin{array}{ccc} \text{Choice2} & \frac{S_2(I) \xrightarrow{(\alpha, v)}_c S^{'}{}_2(I^{'})}{(S_1 + S_2)(I) \xrightarrow{(\alpha, v)}_c S^{'}{}_2(I^{'})} \end{array}$$

0000000000

The syntax and semantics

Process Calculi

Semantics: constant and choice rules

Choice1
$$\frac{S_{1}(I) \xrightarrow{(\alpha, v)}_{c} S_{1}'(I')}{(S_{1} + S_{2})(I) \xrightarrow{(\alpha, v)}_{c} S_{1}'(I')}$$

Choice2
$$\frac{S_2(I) \xrightarrow{(\alpha, v)}_{c} S_2^{'}(I^{'})}{(S_1 + S_2)(I) \xrightarrow{(\alpha, v)}_{c} S_2^{'}(I^{'})}$$

Constant
$$\frac{S(l) \xrightarrow{(\alpha, S: [op(l, \kappa))]} {}_{c}S'(l')}{C(l) \xrightarrow{(\alpha, C: [op(l, \kappa))]} {}_{c}S'(l')} \quad \text{with } C \stackrel{\text{def}}{=} S$$

00000000000

Conclusions

The syntax and semantics

Process Calculi

Semantics: cooperation rules

Process Calculi

Semantics: cooperation rules

$$coop1 \quad \frac{P_1 \xrightarrow{(\alpha, V)} {}_{c} P_1'}{P_1 \bowtie_{f} P_2 \xrightarrow{(\alpha, V)} {}_{c} P_1' \bowtie_{f} P_2} \quad \text{with } \alpha \notin \mathcal{L}$$

Bio-PEPA

00000000000

00000000000

Process Calculi

Semantics: cooperation rules

$$\begin{array}{ll} \operatorname{coop1} & \frac{P_1 \xrightarrow{(\alpha, v)}_{c} P_1'}{P_1 \bowtie P_2 \xrightarrow{(\alpha, v)}_{c} P_1' \bowtie P_2} & \operatorname{with} \alpha \notin \mathcal{L} \\ \\ \operatorname{coop2} & \frac{P_2 \xrightarrow{(\alpha, v)}_{c} P_2'}{P_1 \bowtie P_2 \xrightarrow{(\alpha, v)}_{c} P_1 \bowtie P_2'} & \operatorname{with} \alpha \notin \mathcal{L} \end{array}$$

00000000000

The syntax and semantics

Process Calculi

Semantics: cooperation rules

$$\begin{array}{l} \operatorname{coop1} & \frac{P_{1} \xrightarrow{(\alpha, \nu)}_{c} P_{1}'}{P_{1} \bowtie_{\mathcal{L}} P_{2} \xrightarrow{(\alpha, \nu)}_{c} P_{1}' \bowtie_{\mathcal{L}} P_{2}} & \operatorname{with} \alpha \notin \mathcal{L} \\ \\ \operatorname{coop2} & \frac{P_{2} \xrightarrow{(\alpha, \nu)}_{c} P_{2}'}{P_{1} \bowtie_{\mathcal{L}} P_{2} \xrightarrow{(\alpha, \nu)}_{c} P_{1} \bowtie_{\mathcal{L}} P_{2}'} & \operatorname{with} \alpha \notin \mathcal{L} \end{array}$$

coopFinal
$$\frac{P_1 \xrightarrow{(\alpha, V_1)} {}_{c} P_1' \quad P_2 \xrightarrow{(\alpha, V_2)} {}_{c} P_2'}{P_1 \bowtie P_2 \xrightarrow{(\alpha, V_1 :: V_2)} {}_{c} P_1' \bowtie P_2'} \quad \text{with } \alpha \in \mathcal{L}$$

00000000000

The syntax and semantics

Process Calculi

Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation

$$\rightarrow_{\mathcal{S}} \subseteq \mathcal{P} \times \Gamma \times \mathcal{P}$$
, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

Process Calculi

Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation $\rightarrow_S \subseteq \mathcal{P} \times \Gamma \times \mathcal{P}$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

00000000000

Process Calculi

Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation $\rightarrow_S \subseteq \mathcal{P} \times \Gamma \times \mathcal{P}$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

Final
$$\frac{P \xrightarrow{(\alpha_{j}, v)}_{c} P'}{\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_{R}, Comp, P \rangle \xrightarrow{(\alpha_{j}, r_{\alpha_{j}})}_{S} \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_{R}, Comp, P' \rangle}$$

Bio-PFPA

00000000000

Process Calculi

Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation $\rightarrow_S \subseteq \mathcal{P} \times \Gamma \times \mathcal{P}$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

Final
$$\frac{P \xrightarrow{(\alpha_{j}, v)}_{c} P'}{\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_{R}, Comp, P \rangle \xrightarrow{(\alpha_{j}, r_{\alpha_{j}})}_{S} \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_{R}, Comp, P' \rangle}$$

 r_{α_i} represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition.

00000000000

Process Calculi

Semantics: rates and transition system

In order to derive the rates we consider the stochastic relation $\rightarrow_S \subseteq \mathcal{P} \times \Gamma \times \mathcal{P}$, with $\gamma \in \Gamma := (\alpha, r)$ and $r \in \mathbb{R}^+$.

The relation is defined in terms of the previous one:

Final
$$\frac{P \xrightarrow{(\alpha_{j}, v)}_{c} P'}{\langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_{R}, Comp, P \rangle \xrightarrow{(\alpha_{j}, r_{\alpha_{j}})}_{S} \langle \mathcal{V}, \mathcal{N}, \mathcal{K}, \mathcal{F}_{R}, Comp, P' \rangle}$$

 r_{α_i} represents the parameter of an exponential distribution and the dynamic behaviour is determined by a race condition. The rate r_{α_i} is defined as $f_{\alpha_i}(v, \mathcal{N})/h$.

Process Calculi

The abstraction

► Each species *i* is described by a Bio-PEPA component *C_i*.

Bio-PEPA

00000000000

Process Calculi

The abstraction

- Each species i is described by a Bio-PEPA component C_i.
- ▶ Each reaction j is associated with an action type α_j and its dynamics is described by a specific function f_{α_i} .

Bio-PEPA

0000000000

Process Calculi

The abstraction

- Each species i is described by a Bio-PEPA component C_i .
- **Each** reaction j is associated with an action type α_i and its dynamics is described by a specific function f_{α_i} .

Bio-PEPA

0000000000

Given a reaction *j*, all the species/components cooperate together along the action type α_i and consequently, reactants decrease their levels, while products increase them. All the reactions are abstracted by cooperation.

Process Calculi

The abstraction

- Each species i is described by a Bio-PEPA component C_i .
- **Each** reaction j is associated with an action type α_i and its dynamics is described by a specific function f_{α_i} .

Bio-PFPA

0000000000

- Given a reaction *j*, all the species/components cooperate together along the action type α_i and consequently, reactants decrease their levels, while products increase them. All the reactions are abstracted by cooperation.
- Compartments are static and represented by names indicating the location of species.

Process Calculi

The abstraction

- Each species i is described by a Bio-PEPA component C_i .
- **Each** reaction j is associated with an action type α_i and its dynamics is described by a specific function f_{α_i} .

Bio-PFPA

0000000000

- Given a reaction *j*, all the species/components cooperate together along the action type α_i and consequently, reactants decrease their levels, while products increase them. All the reactions are abstracted by cooperation.
- Compartments are static and represented by names indicating the location of species.

The species components are then composed together to describe the behaviour of the system.

Process Calculi

Example: Michaelis-Menten

The reaction $S \xrightarrow{E} P$ represents the enzymatic reaction from the substrate S to the product P with enzyme E.

Bio-PEPA

0000000000

0000000000

The syntax and semantics

Process Calculi

Example: Michaelis-Menten

The reaction $S \xrightarrow{E} P$ represents the enzymatic reaction from the substrate S to the product P with enzyme E.

The dynamics is described by the law $\frac{V \times E \times S}{(K + S)}$.

0000000000

The syntax and semantics

Process Calculi

Example: Michaelis-Menten

The reaction $S \xrightarrow{E} P$ represents the enzymatic reaction from the substrate S to the product P with enzyme E.

The dynamics is described by the law $\frac{V \times E \times S}{(K + S)}$.

$$S = (\alpha, 1) \downarrow S$$

$$E = (\alpha, 1) \oplus E$$

$$P = (\alpha, 1) \uparrow P$$

$$(S(I_{S0}) \underset{\alpha}{\bowtie} E(I_{E0})) \underset{\alpha}{\bowtie} P(I_{P0})$$

0000000000

Process Calculi

Example: Competitive Inhibition

Binding of the inhibitor to the enzyme prevents binding of the substrate and vice versa.

$$EI \longleftrightarrow S + E + I \longleftrightarrow SE \longrightarrow P + E$$

Process Calculi

Example: Competitive Inhibition

Binding of the inhibitor to the enzyme prevents binding of the substrate and vice versa.

$$EI \longleftrightarrow S + E + I \longleftrightarrow SE \longrightarrow P + E$$

Under QSSA (the intermediate species *SE* and *EI* are constant) we can approximate the reactions above by a unique reaction

$$S \xrightarrow{E,l:f_l} P$$
 with rate $f_l = \frac{w \times S \times E}{S + K_M(1 + \frac{l}{K_l})}$

where w: turnover number (catalytic constant), K_M : Michaelis constant and K_I : inhibition constant.

0000000000

Process Calculi

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

$$S = (\alpha, 1) \downarrow S$$
 $P = (\alpha, 1) \uparrow P$ $E = (\alpha, 1) \oplus E$ $I = (\alpha, 1) \ominus I$

0000000000

Process Calculi

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

$$S=(\alpha,1){\downarrow}S \qquad P=(\alpha,1){\uparrow}P \qquad E=(\alpha,1)\oplus E \qquad I=(\alpha,1)\ominus I$$

The system is described by

$$\left(\left(S(I_{S0}) \underset{\scriptscriptstyle \{\alpha\}}{\bowtie} E(I_{E0})\right) \underset{\scriptscriptstyle \{\alpha\}}{\bowtie} I(I_{I0})\right) \underset{\scriptscriptstyle \{\alpha\}}{\bowtie} P(I_{P0})$$

0000000000

Process Calculi

Example: Competitive Inhibition (2)

The specification in Bio-PEPA is:

$$S=(\alpha,1){\downarrow}S \qquad P=(\alpha,1){\uparrow}P \qquad E=(\alpha,1)\oplus E \qquad I=(\alpha,1)\ominus I$$

The system is described by

$$\left(\left(S(I_{S0})\underset{\scriptscriptstyle \{\alpha\}}{\bowtie}E(I_{E0})\right)\underset{\scriptscriptstyle \{\alpha\}}{\bowtie}I(I_{I0})\right)\underset{\scriptscriptstyle \{\alpha\}}{\bowtie}P(I_{P0})$$

with functional rate

$$f_{\alpha} = \frac{w \times S \times E}{S + K_{M}(1 + \frac{I}{K_{I}})}$$

Process Calculi

Equivalence relations

We are seeking to define a number of equivalence relations. for BioPEPA — both those that are expected from the computer science perspective and those that are useful from the biological perspective.

Bio-PFPA

Process Calculi

Equivalence relations

We are seeking to define a number of equivalence relations. for BioPEPA — both those that are expected from the computer science perspective and those that are useful from the biological perspective.

From the computer science perspective we have defined an isomorphism and a (strong) bisimulation.

Bio-PFPA

Process Calculi

Equivalence relations

We are seeking to define a number of equivalence relations. for BioPEPA — both those that are expected from the computer science perspective and those that are useful from the biological perspective.

From the computer science perspective we have defined an isomorphism and a (strong) bisimulation.

From the biological perspective, we are investigating the situations in which biologists regard models or elements of models to be equivalent, particularly when this is employed for model simplification.

Equivalences and Analysis

Analysis

Process Calculi

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

Analysis

Process Calculi

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

Bio-PEPA

Analysis

Process Calculi

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

Bio-PEPA

From it we can obtain

a CTMC (with levels)

Analysis

Process Calculi

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis

Analysis

Process Calculi

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

Bio-PEPA

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis
- a Gillespie model for stochastic simulation

Analysis

Process Calculi

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

Bio-PEPA

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis
- a Gillespie model for stochastic simulation
- a PRISM model for model checking

Bio-PFPA

Analysis

Process Calculi

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain

- a CTMC (with levels)
- a ODE system for simulation and other kinds of analysis
- a Gillespie model for stochastic simulation
- a PRISM model for model checking

Each of these kinds of analysis can be of help for studying different aspects of the biological model. Moreover we are exploring how they can be used in conjunction.

Outline

Process Calculi

Equivalences and Analysis

Examples

Genetic network with negative feedback loop Goldbeter's model

Process Calculi

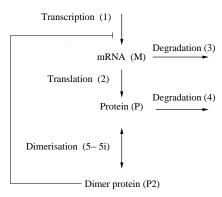
The biological model

Consider a genetic network with negative feedback through dimers.

Process Calculi

The biological model

Consider a genetic network with negative feedback through dimers.



Process Calculi

Species and reactions

The biological entities are:

- the mRNA molecule (M),
- the protein in monomer form (P) and
- the protein in dimeric form (P2).

Species and reactions

The biological entities are:

- the mRNA molecule (M),
- the protein in monomer form (P) and
- the protein in dimeric form (P2).

All the reactions are described by mass action kinetics with the exception of the first reaction, that has an inhibition kinetics.

Process Calculi

Translation into Bio-PEPA

Definition of the list N

 $[M:N_M,h_M; P:N_P,h_P; P2:N_{P2},h_{P2}]$

Translation into Bio-PEPA

Definition of the list N

$$[M:N_M,h_M; P:N_P,h_P; P2:N_{P2},h_{P2}]$$

Definition of functional rates

$$f_{\alpha_{1}} = \frac{V}{K_{M} + P2}$$

$$f_{\alpha_{2}} = fMA(k_{2}) \qquad f_{\alpha_{3}} = fMA(k_{3}) \qquad f_{\alpha_{4}} = fMA(k_{4})$$

$$f_{\alpha_{5}} = fMA(k_{5}) \qquad f_{\alpha_{5,lnv}} = fMA(k_{5,lnv})$$

Translation into Bio-PEPA (cont.)

Definition of the system components

$$\begin{array}{lll} \mathsf{M} & = & (\alpha_1,1) \uparrow \mathsf{M} + (\alpha_2,1) \oplus \mathsf{M} + (\alpha_3,1) \downarrow \mathsf{M}; \\ \mathsf{P} & = & (\alpha_2,2) \uparrow \mathsf{P} + (\alpha_4,1) \downarrow \mathsf{P} + (\alpha_5,2) \downarrow \mathsf{P} + (\alpha_5_\mathit{Inv},2) \uparrow \mathsf{P}); \\ \mathsf{P2} & = & (\alpha_1,1) \ominus \mathsf{P2} + (\alpha_5_\mathit{Inv},1) \downarrow \mathsf{P2} + (\alpha_5,1) \uparrow \mathsf{P2}; \\ \mathsf{Res} & = & (\alpha_3,1) \odot \mathsf{Res} + (\alpha_4,1) \odot \mathsf{Res}; \\ \mathsf{CF} & = & (\alpha_1,1) \odot \mathsf{CF}; \end{array}$$

Translation into Bio-PEPA (cont.)

Definition of the system components

$$\begin{array}{lll} M & = & (\alpha_{1},1) \uparrow M + (\alpha_{2},1) \oplus M + (\alpha_{3},1) \downarrow M; \\ P & = & (\alpha_{2},2) \uparrow P + (\alpha_{4},1) \downarrow P + (\alpha_{5},2) \downarrow P + (\alpha_{5_lnv},2) \uparrow P); \\ P2 & = & (\alpha_{1},1) \ominus P2 + (\alpha_{5_lnv},1) \downarrow P2 + (\alpha_{5},1) \uparrow P2; \\ Res & = & (\alpha_{3},1) \odot Res + (\alpha_{4},1) \odot Res; \\ CF & = & (\alpha_{1},1) \odot CF; \end{array}$$

Definitions of the system

$$((((CF(1)\underset{\scriptscriptstyle{[\alpha_1]}}{\boxtimes}M(0))\underset{\scriptscriptstyle{[\alpha_2]}}{\boxtimes}P(0))\underset{\scriptscriptstyle{[\alpha_5,\alpha_{5..lnv}]}}{\boxtimes}P2(0))\underset{\scriptscriptstyle{[\alpha_3,\alpha_4]}}{\boxtimes}Res(0)$$

Bio-PEPA

Examples 000000000000

Conclusions

Genetic network with negative feedback loop

Process Calculi

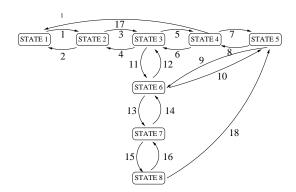
Analysis: the CTMC with levels

For 2 levels, the CTMC consists of 8 states and 18 transitions.

Process Calculi

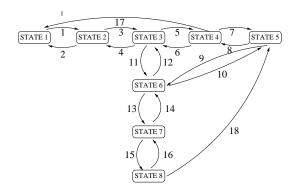
Analysis: the CTMC with levels

For 2 levels, the CTMC consists of 8 states and 18 transitions.



Analysis: the CTMC with levels

For 2 levels, the CTMC consists of 8 states and 18 transitions.



States are $(CF(l_1), M(l_2), P(l_3), P2(l_4), RES(l_5))$, with levels $l_1 \dots l_5$.

Process Calculi

Analysis: derivation of the ODE system

The stoichiometry matrix *D* associated with the system is

	α_1	α_2	α_3	α_4	α_5	$lpha_{5_Inv}$	
CF	0	0	0	0	0	0	X _{CF}
Res	0	0	0	0	0	0	X _{Res}
М	+1	0	-1	0	0	0	<i>X</i> ₁
Р	0	+1	0	-1	-2	+2	<i>X</i> ₂
P2	0	0	0	0	+1	-1	<i>X</i> ₃

Analysis: derivation of the ODE system

The stoichiometry matrix D associated with the system is

	α_1	α_2	α_3	α_4	α_5	α_{5_Inv}	
CF	0	0	0	0	0	0	X _{CF}
Res	0	0	0	0	0	0	X _{Res}
M	+1	0	-1	0	0	0	<i>X</i> ₁
Р	0	+1	0	-1	-2	+2	<i>X</i> ₂
P2	0	0	0	0	+1	-1	<i>X</i> ₃

The kinetic law vector is

$$w^{T} = (\frac{v \times x_{CF}}{K_{M} + x_{3}}; k_{2} \times x_{1}; k_{3} \times x_{1}; k_{4} \times x_{2}; k_{5} \times x_{2}^{2}; k_{5} - lnv \times x_{3})$$

Bio-PEPA

Process Calculi

Analysis: derivation of ODEs (cont.)

The system of ODEs is obtained as $\frac{d\bar{x}}{dt} = D \times w$:

$$\frac{dx_1}{dt} = \frac{v \times 1}{K_M + x_3} - k3 \times x_1$$

$$\frac{dx_2}{dt} = k2 \times x_1 - k4 \times x_2 - 2 \times k5 \times x_2^2 + 2 \times k5 \text{.Inv} \times x_3$$

$$\frac{dx_2}{dt} = k5 \times x_2^2 - k5 \text{.Inv} \times x_3$$

Process Calculi

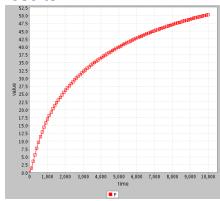
Analysis: stochastic simulation

The derivation of the Gillespie model is made by creating molecules corresponding to each species and defining the possible reactions with appropriate adjustment of kinetic rates.

Bio-PEPA

Simulation results

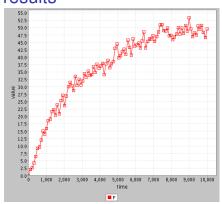
Process Calculi



ODE results

Simulation results

Process Calculi



Stochastic simulation results (10 runs)

Bio-PEPA

Examples 000000000000 Conclusions

Genetic network with negative feedback loop

PRISM model

Process Calculi

Each species is represented as a PRISM module.

PRISM model

Process Calculi

Each species is represented as a PRISM module. For example, the protein is represented as:

```
module p
p: [0..Np] init 0;
[Translation] p < Np \rightarrow (p' = p + 1);
[DegradationP] p > 0 \rightarrow (p' = p - 1);
[Dimerization] p > 1 \rightarrow (p' = p - 2);
[DimerizationInv] p < (Np-1) \rightarrow (p'=p+2);
```

endmodule

Bio-PFPA

Process Calculi

PRISM model (cont.)

An additional module is needed to capture the kinetic rates.

```
module Functional rates
```

```
dummy: bool init true;
[Transcription] m < Nm \rightarrow (v/(K + p2 * h_{p2}) * h_{p2}) : (dummy' = dummy);
[Translation] m > 0 \rightarrow (k2 * m * h_m/h_m) : (dummy' = dummy);
[DegradationmRNA] m > 0 \rightarrow (k3 * m * h_m/h_m) : (dummy' = dummy);
[DegradationP] p > 0 \rightarrow (k4 * p * h_p/h_p) : (dummy' = dummy);
[Dimerization] p > 1 \rightarrow (k5 * p * h_p * p * h_p/h_p)(dummy' = dummy);
[DimerizationInv] p2 > 0 \rightarrow (k5_{Inv} * p2 * h_{p2}/h_{p2}) : (dummy' = dummy);
endmodule
```

Bio-PEPA

Examples 000000000000 Conclusions

Genetic network with negative feedback loop

PRISM analysis

Process Calculi

PRISM analysis

Process Calculi

Proportion of monomer P in total P (in terms of levels).
We need to define a reward structure in the PRISM file as:

rewards

true : $\frac{p}{(p+p2)}$; endrewards

Hillston and Ciocchetta. LFCS, University of Edinburgh.

Bio-PEPA

PRISM analysis

Process Calculi

Proportion of monomer P in total P (in terms of levels).

We need to define a reward structure in the PRISM file as:

rewards

true : $\frac{p}{(p+p2)}$;

endrewards

We can ask for the proportion of monomer P by using the query:

$$R = ?[I = T]$$

PRISM analysis

Process Calculi

Proportion of monomer P in total P (in terms of levels).

We need to define a reward structure in the PRISM file as:

rewards

true : $\frac{p}{(p+p2)}$;

Bio-PEPA

endrewards

We can ask for the proportion of monomer P by using the query:

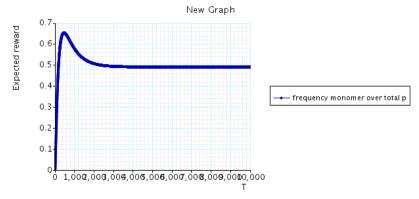
$$R = ?[I = T]$$

Probability that P is at level i at time T

$$P = ?[trueU[T, T]p = i]$$

PRISM results

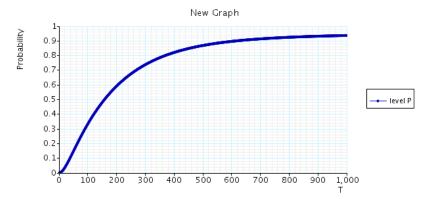
Process Calculi



monomer frequency

PRISM results

Process Calculi



Probability monomer protein is at high level over time

Bio-PEPA

Goldbeter's model

Process Calculi

Goldbeter's model [Goldbeter 91]

 Goldbeter's model describes the activity of the cyclin in the cell cycle.

Goldbeter's model [Goldbeter 91]

Goldbeter's model describes the activity of the cyclin in the cell cycle.

Bio-PEPA

► The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.

Goldbeter's model [Goldbeter 91]

- Goldbeter's model describes the activity of the cyclin in the cell cycle.
- ► The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.
- This protease promotes cyclin degradation.

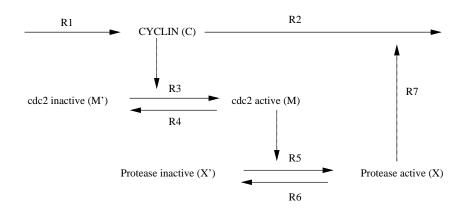
Goldbeter's model [Goldbeter 91]

- Goldbeter's model describes the activity of the cyclin in the cell cycle.
- ► The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.
- This protease promotes cyclin degradation.
- This leads to a negative feedback loop.

Goldbeter's model [Goldbeter 91]

- Goldbeter's model describes the activity of the cyclin in the cell cycle.
- The cyclin promotes the activation of a cdk (cdc2) which in turn activates a cyclin protease.
- This protease promotes cyclin degradation.
- This leads to a negative feedback loop.
- In the model most of the kinetic laws are of kind Michaelis-Menten and this can be reflected in the Bio-PEPA model.

The biological model



Goldbeter's model

Process Calculi

The biological model (2)

There are three different biological species involved:

Goldbeter's model

Process Calculi

The biological model (2)

There are three different biological species involved:

cyclin, the protein protagonist of the cycle, C;

Goldbeter's model

Process Calculi

The biological model (2)

There are three different biological species involved:

- cyclin, the protein protagonist of the cycle, C;
- cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form (i.e. phosphorylated). The variables used to represent them are M and M', respectively;

The biological model (2)

There are three different biological species involved:

- cyclin, the protein protagonist of the cycle, C;
- cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form (i.e. phosphorylated). The variables used to represent them are M and M', respectively;
- cyclin protease, in both active (i.e. phosphorylated) and inactive form (i.e. dephosphorylated). The variable are X and X'.

Reactions

id	desc.	react.	prod.	mod.	kinetic laws
R1	creation of cyclin	-	С	-	vi
R2	degradation of cyclin	С	-	-	kd × C
R3	activation of cdc2 kinase	M'	М	-	$\frac{C*V_{M1}}{(K_c+C)}\frac{M'}{(K_1+M')}$
R4	deactivation of cdc2 kinase	М	M'	-	$\frac{M \times V_2}{(K_2 + M)}$
R5	activation of cyclin protease	X'	Х	М	$\frac{X' \times M \times V_{M3}}{(K_3 + X')}$
R6	deactivation of cyclin protease	X	X'	-	$\frac{X \times V_4}{K_4 + X}$
R7	X triggered degradation of cyclin	С	-	X	$\frac{C \times v_d \times X}{C + K_d}$

R1 and R2 have Mass-Action kinetics, whereas all others are Michaelis-Menten.

Process Calculi

Translation into Bio-PEPA

Definition of the set N:

$$N = [Res: 1, 1; CF: 1, 1; C: h_C, N_c; M: h_M, N_M; M': h_{M'}, N_{M'}; X: h_X, N_X, ; X': h_{X'}, N_{X'}]$$

Res and CF represent degradation and synthesis respectively.

Translation into Bio-PEPA

Definition of the set N:

$$N = [Res: 1, 1; CF: 1, 1; C: h_C, N_c; M: h_M, N_M; M': h_{M'}, N_{M'}; X: h_X, N_X, ; X': h_{X'}, N_{X'}]$$

Bio-PEPA

Res and CF represent degradation and synthesis respectively.

Definition of functional rates (\mathcal{F}):

$$\begin{array}{llll} f_{\alpha_1} & = & fMA(v_i); & f_{\alpha_2} & = & fMA(k_d); \\ f_{\alpha_4} & = & fMM(V_2, K_2); & f_{\alpha_5} & = & fMM(V_3, K_3); \\ f_{\alpha_6} & = & fMM(V_4, K_4); & f_{\alpha_7} & = & fMM(V_d, K_d); \end{array}$$

$$f_{\alpha_3} = \frac{v_1 \times C}{K_c + C} \frac{M'}{K_1 + M'}$$

Bio-PEPA

Process Calculi

The Bio-PEPA system (2)

Definition of species components (Comp):

$$C = (\alpha_{1}, 1)\uparrow C + (\alpha_{2}, 1)\downarrow C + (\alpha_{3}, 1) \oplus C + (\alpha_{7}, 1)\downarrow C;$$

$$M' = (\alpha_{3}, 1)\downarrow M' + (\alpha_{4}, 1)\uparrow M';$$

$$M = (\alpha_{3}, 1)\uparrow M + (\alpha_{4}, 1)\downarrow M + (\alpha_{5}, 1) \oplus M;$$

$$X' = (\alpha_{5}, 1)\downarrow X' + (\alpha_{6}, 1)\uparrow X';$$

$$X = (\alpha_{5}, 1)\uparrow X + (\alpha_{6}, 1)\downarrow X + (\alpha_{7}, 1) \oplus X;$$

$$Res = (\alpha_{2}, 1) \odot Res; \quad CF = (\alpha_{1}, 1) \odot CF;$$

Definition of the model component (*P*):

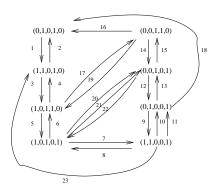
$$C(I_{0C}) \underset{\scriptscriptstyle [a_3]}{\bowtie} M(I_{0M}) \underset{\scriptscriptstyle [a_3,a_4]}{\bowtie} M^{'}(I_{0M^{'}}) \underset{\scriptscriptstyle [a_5,a_7]}{\bowtie} X(I_{0X}) \underset{\scriptscriptstyle [a_5,a_6]}{\bowtie} X^{'}(I_{0X^{'}})$$

$$\underset{\scriptscriptstyle [a_2]}{\bowtie} Deg(0) \underset{\scriptscriptstyle [a_1]}{\bowtie} CF(1)$$

Process Calculi

Analysis: CTMC with 2 levels

Assume two levels for each species and initially C, M and X present (level 1) and the other elements not present (level 0). The initial state is $(I_C(1), I_{M'}(0), I_M(1), I_{X'}(0), I_X(1))$.



Process Calculi

Analysis: ODEs

The stoichiometry matrix *D*:

		R1	R2	R3	R4	R5	R6	R7	
-	С	+1	0	0	0	0	0	-1	XC
	M'	0	0	-1	+1	0	0	0	X _M
	M	0	0	+1	-1	0	0	0	X _M
	X'	0	0	0	0	-1	+1	0	$X_{X'}$
	Χ	0	0	0	0	+1	-1	0	XX

Bio-PEPA

Goldbeter's model

Process Calculi

Analysis: ODEs

The stoichiometry matrix *D*:

		R2						
С	+1	0	0	0	0	0	-1	XC
M'	0	0 0 0 0	-1	+1	0	0	0	$X_{M'}$
М	0	0	+1	-1	0	0	0	X _M
X'	0	0	0	0	-1	+1	0	$X_{X'}$
Χ	0	0	0	0	+1	-1	0	XX

The vector that contains the kinetic laws is:

$$w = \left(v_{i} \times 1, k_{d} \times x_{C}, \frac{V_{M1} \times x_{C}}{K_{c} + x_{C}} \frac{x_{M'}}{(K_{1} + x_{M'})}, \frac{V_{2} \times x_{M}}{(K_{2} + x_{M})}, \frac{V_{M3} \times x_{M} \times x_{X'}}{(K_{3} + x_{X'})}, \frac{V_{4} \times x_{X}}{(K_{4} + x_{X})}, \frac{v_{d} \times x_{C} \times x_{X}}{(K_{d} + x_{C})}\right)$$

Analysis: ODEs (2)

The system of ODEs is obtained as $\frac{d\bar{x}}{dt} = D \times w$, where $\bar{x}^T =: (x_C, x_{M'}, x_M, x_{X'}, x_X)$ is the vector of the species variables:

$$\frac{dx_{C}}{dt} = v_{i} \times 1 - k_{d} \times x_{C} - \frac{v_{d} \times x_{C} \times x_{X}}{(K_{d} + x_{C})}$$

$$\frac{dx_{M'}}{dt} = -\frac{V_{M1} \times x_{C}}{K_{c} + x_{C}} \frac{x_{M'}}{(K_{1} + x_{M'})} + \frac{V_{2} \times x_{M}}{(K_{2} + x_{M})}$$

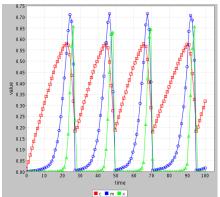
$$\frac{dx_{M}}{dt} = +\frac{V_{M1} \times x_{C}}{K_{c} + x_{C}} \frac{x_{M'}}{(K_{1} + x_{M'})} - \frac{V_{2} \times x_{M}}{(K_{2} + x_{M})}$$

$$\frac{dx_{X'}}{dt} = -\frac{V_{M3} \times x_{M} \times x_{X'}}{(K_{3} + x_{X'})} + \frac{V_{4} \times x_{X}}{(K_{4} + x_{X})}$$

$$\frac{dx_{X}}{dt} = \frac{V_{M3} \times x_{M} \times x_{X'}}{(K_{3} + x_{X'})} - \frac{V_{4} \times x_{X}}{(K_{4} + x_{X})}$$

Process Calculi

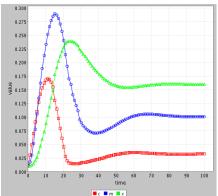
ODE results



$$K_1 = K_2 = K_3 = K_4 = 0.02 \mu M$$

Process Calculi

ODE results



$$K_1 = K_2 = K_3 = K_4 = 40 \mu M$$

Process Calculi

Extension of the Goldbeter's model

Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.

Extension of the Goldbeter's model

- Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.
- They introduce a protein that binds to and inhibits one of the proteins involved in the cell division cycle.

Extension of the Goldbeter's model

- Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.
- They introduce a protein that binds to and inhibits one of the proteins involved in the cell division cycle.
- This influences the start and the stop of the cell division and modulates the frequency of oscillations.

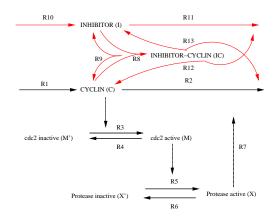
Extension of the Goldbeter's model

- Gardner et al. [Gardner 98] proposed an extension of the Goldbeter's model in order to represent a control mechanism for the cell division cycle.
- They introduce a protein that binds to and inhibits one of the proteins involved in the cell division cycle.
- This influences the start and the stop of the cell division and modulates the frequency of oscillations.

Several possible extensions were presented; we consider one of them.

Process Calculi

Schema of the extended model



Bio-PEPA

Process Calculi

Extended Bio-PEPA system

$$C = \cdots + (\alpha_8, 1) \downarrow C + (\alpha_9, 1) \uparrow C + (\alpha_{12}, 1) \uparrow C;$$

$$\vdots \qquad \vdots$$

$$Res = \cdots + (\alpha_{11}, 1) \odot Res; \quad CF = \cdots + (\alpha_{10}, 1) \odot CF;$$

$$I = (\alpha_8, 1) \downarrow I + (\alpha_9, 1) \uparrow I + (\alpha_{10}, 1) \uparrow I + (\alpha_{11}, 1) \downarrow I + (\alpha_{13}, 1) \uparrow I;$$

$$IC = (\alpha_8, 1) \uparrow IC + (\alpha_9, 1) \downarrow IC + (\alpha_{12}, 1) \downarrow IC + (\alpha_{13}, 1) \downarrow IC;$$

Process Calculi

New functional rates

```
f_{\alpha_8}
                     V_S;
                     fMA(d_1);
f_{\alpha_{10}}
                     fMA(a_1);
f_{\alpha_{11}}
                     fMA(a_2);
f_{\alpha_{12}}
                     fMA(\theta \times d_1);
f_{\alpha_{13}}
                     fMA(\theta \times k_d)
```

Bio-PEPA

Goldbeter's model

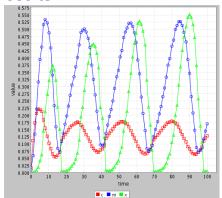
Process Calculi

Complete Bio-PEPA system

$$C(I_{0C}) \underset{\{\alpha_{3}\}}{\boxtimes} M(I_{0M}) \underset{\{\alpha_{3},\alpha_{4}\}}{\boxtimes} M^{'}(I_{0M^{'}}) \underset{\{\alpha_{5},\alpha_{7}\}}{\boxtimes} X(I_{0X}) \underset{\{\alpha_{5},\alpha_{6}\}}{\boxtimes} X^{'}(I_{0X^{'}}) \underset{\{\alpha_{2}\}}{\boxtimes} \\ Deg(0) \underset{\{\alpha_{1}\}}{\boxtimes} CF(1) \\ \underset{\{\alpha_{8},\alpha_{9},\alpha_{10},\alpha_{11}\}}{\boxtimes} I(I_{0I}) \underset{\{\alpha_{8},\alpha_{9},\alpha_{12},\alpha_{13}\}}{\boxtimes} IC(I_{0IC})$$

Process Calculi

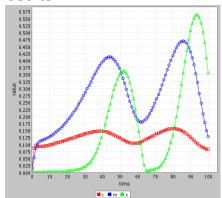
New ODE results



$$a_1 = a_2 = 0.3$$
 and $v_s = 0.6$

Process Calculi

New ODE results

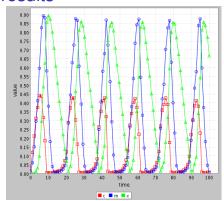


 $a_1 = a_2 = 0.7$ and $v_s = 1.4$

Bio-PEPA

Process Calculi

New ODE results



$$a_1 = a_2 = 0.05$$
 and $v_s = 0.1$

Bio-PEPA

Process Calculi

Equivalences and Analysis

Genetic network with negative feedback loop

Conclusions

Whilst the notation can be a challenge, the compositionality and precise interpretation of process algebras make them attractive for modelling biological signalling pathways.

Bio-PEPA

Conclusion: SPA for Systems Biology

Whilst the notation can be a challenge, the compositionality and precise interpretation of process algebras make them attractive for modelling biological signalling pathways.

Bio-PFPA

Choices in the design of the SPA such as the form of synchronisation which is incorporated has a strong influence on the way in which systems can be modelled.

Whilst the notation can be a challenge, the compositionality and precise interpretation of process algebras make them attractive for modelling biological signalling pathways.

Bio-PFPA

Choices in the design of the SPA such as the form of synchronisation which is incorporated has a strong influence on the way in which systems can be modelled.

The inclusion of stochastic information about the duration of actions/reactions creates a very natural mapping from SPA models to stochastic simulations at the molecular models.

Whilst the notation can be a challenge, the compositionality and precise interpretation of process algebras make them attractive for modelling biological signalling pathways.

Bio-PFPA

Choices in the design of the SPA such as the form of synchronisation which is incorporated has a strong influence on the way in which systems can be modelled.

The inclusion of stochastic information about the duration of actions/reactions creates a very natural mapping from SPA models to stochastic simulations at the molecular models.

However, such molecular mappings typically generate state spaces which are too large for other SPA analysis techniques.

Conclusions: Bio-PEPA

Process Calculi

Bio-PEPA is a modification of the process algebra PEPA for the modelling and analysis of biochemical networks.

Bio-PEPA

Bio-PEPA is a modification of the process algebra PEPA for the modelling and analysis of biochemical networks.

Bio-PEPA

Bio-PEPA allows us to represent explicitly features of biological networks, such as stoichiometry and general kinetic laws.

Bio-PEPA is a modification of the process algebra PEPA for the modelling and analysis of biochemical networks.

Bio-PFPA

Bio-PEPA allows us to represent explicitly features of biological networks, such as stoichiometry and general kinetic laws.

Moreover the reagent-centric, abstract style of modelling supports an integrative approach in which several different approaches to analysis may be applied to the same model.

Abstract modelling offers a compromise between the individual-based and population-based views of systems which biologists commonly take.

Bio-PEPA

Abstract modelling offers a compromise between the individual-based and population-based views of systems which biologists commonly take.

Bio-PEPA

Moveover we can undertake additional analysis based on the discretised population view.

Abstract modelling offers a compromise between the individual-based and population-based views of systems which biologists commonly take.

Bio-PFPA

Moveover we can undertake additional analysis based on the discretised population view.

The abstract Markovian models allow quantities of interest such as "response times" to be expressed as probability distributions rather than single estimates. This may allow better reflection of wet lab data which also shows variability.

Future directions

There are number of areas for on-going and future work. For example:

- The definition of bisimulations and equivalences.
- The extent to which the process algebra compositional structure can be exploited during model analysis, particularly in conjunction with model checking techniques.

Bio-PFPA

- The issue of coping with unknown and uncertain values in experimental data.
- ...and many more...

Acknowledgements

Process Calculi

The PEPA project has been funded by SERC, EPSRC and the CEC. Work on Bio-PEPA has been funded by BBSRC and EPSRC. In particular Jane Hillston and Federica Ciocchetta are supported by the CODA project, and the Centre for Systems Biology at Edinburgh.

Bio-PFPA

We would like to thank our collaborators, Jeremy Bradley, Muffy Calder, Andrea Degasperi, Vashti Galpin, Stephen Gilmore, Nil Geisweiller, Maria Luisa Guerriero and Marco Stenico.

Thank you