Binary Decision Diagrams

Gianpiero Cabodi

Politecnico di Torino Torino, Italy

gianpiero.cabodi@polito.it http://staff.polito.it/gianpiero.cabodi/

Outline

- Binary Decision Diagrams: Fundamentals
- Generation of BDDs from Network
- Variable Ordering Related Problems
- Complex Operations with BDDs
- Symbolic Simulation & STE
- Reachability analysis
- Symbolic Model Checking

Binary Decision Diagrams

- Restricted Form of Branching Program (graph representation of Boolean function)
- Canonical form (constant time comparison)
- Simple (Polynomial) algorithms to construct e manipulate (Boolean operations: and, or, not, etc.)
- Exponential but practically efficient algorithm for boolean quantification
- Starting Point
 - 1. If-Then-Else Decomposition
 - 2. Ordered Decision Tree
 - 3. Reduced Decision Tree

Decomposition

Reduction

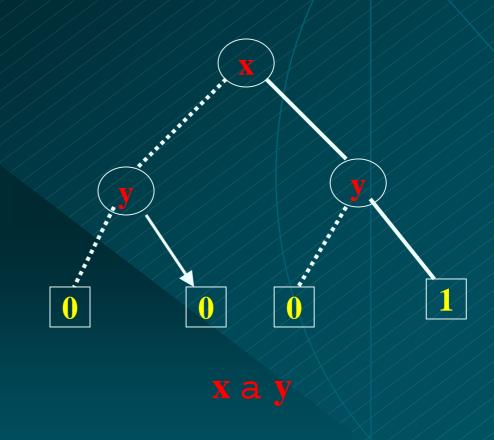
BDDs

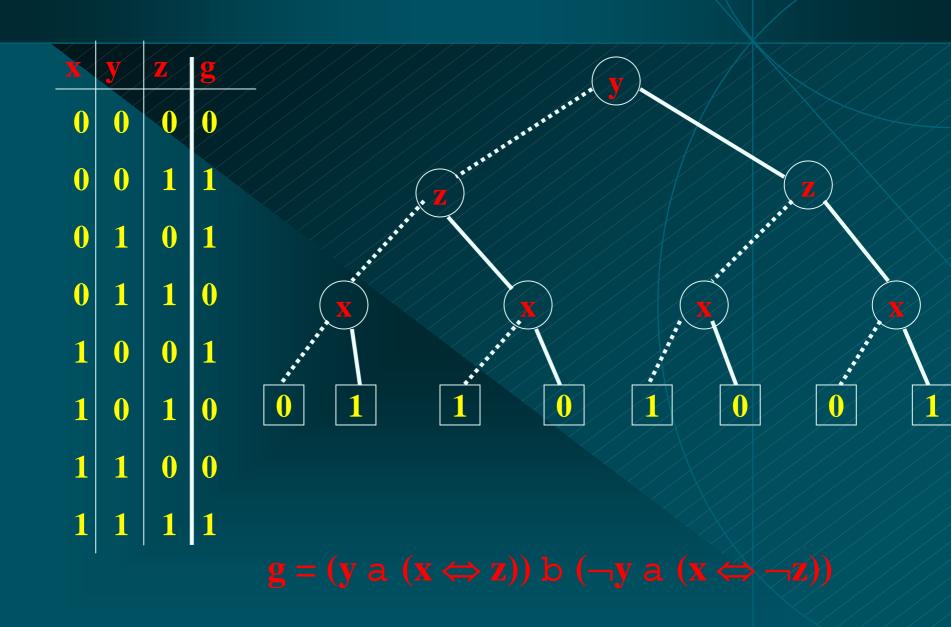
- * Boolean functions can be (often) succinctly represented as boolean decision diagrams.
- * BDDs are easy to manipulate.
- Not all boolean functions have a succinct representation.
- Use BDDs to represent and manipulate the boolean functions associated with the model checking process.

Boolean Functions

- †: Domain \$ Range
- Boolean function:
 - Domain = $\{0, 1\}^n = \{0, 1\}$ §§ $\{0, 1\}$.
 - ◆ Range = {0, 1}
 - f is a function of n boolean variables.

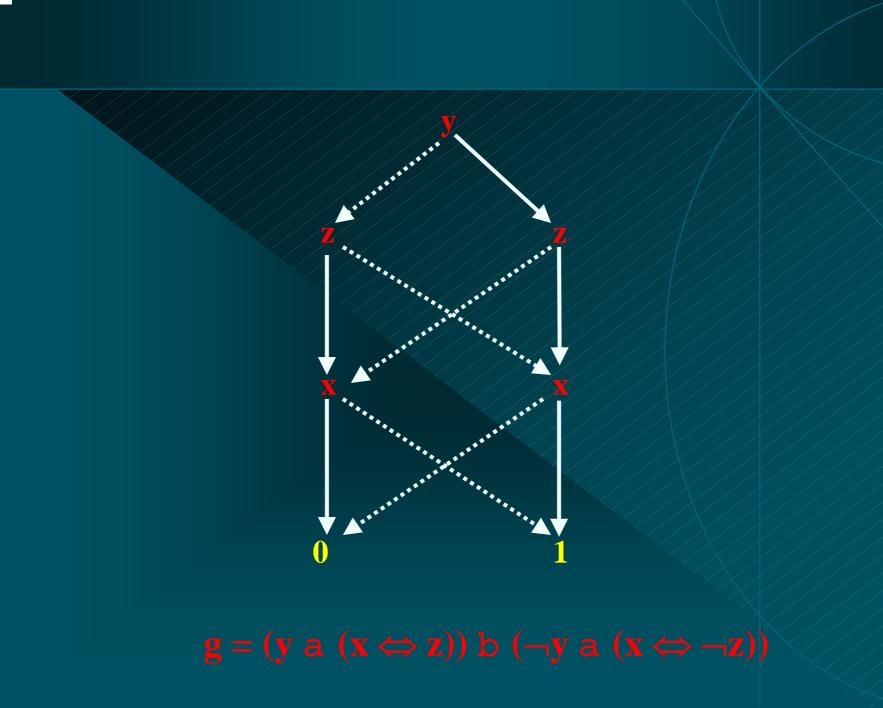
Boolean decision trees.





BDDs

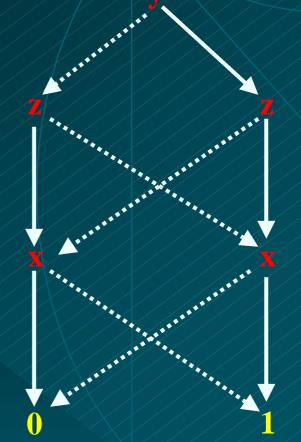
- A BDD is finite rooted directed acyclic graph in which:
- There is a unique initial node (the root)
- * Each terminal node is labeled with a 0 or 1.
- * Each non-terminal (internal) node v has 3 attributes:
 - ♦ var(v), and
 - exactly two successors low(v) and high(v): one labeled 0 (dotted edge, low(v)) and the other labeled 1 (full edge, high(v)).



Reduced BDDs

- A BDD is reduced iff none of the three reduction rules can be applied to it.
- Start from the bottom layer (terminal nodes).
- Apply the rules repeatedly to level i. And then move to level i-1 (checking applicability of R3 only needs testing whether var(m)=var(n), low(m)=low(n) and high(m)=high(n)).
- Stop when the root node has been treated.
- This can be done efficiently.

Reduced BDD



$$\mathbf{g} = (\mathbf{y} \ \mathbf{a} \ (\mathbf{x} \Leftrightarrow \mathbf{z})) \ \mathbf{b} \ (\neg \mathbf{y} \ \mathbf{a} \ (\mathbf{x} \Leftrightarrow \neg \mathbf{z}))$$

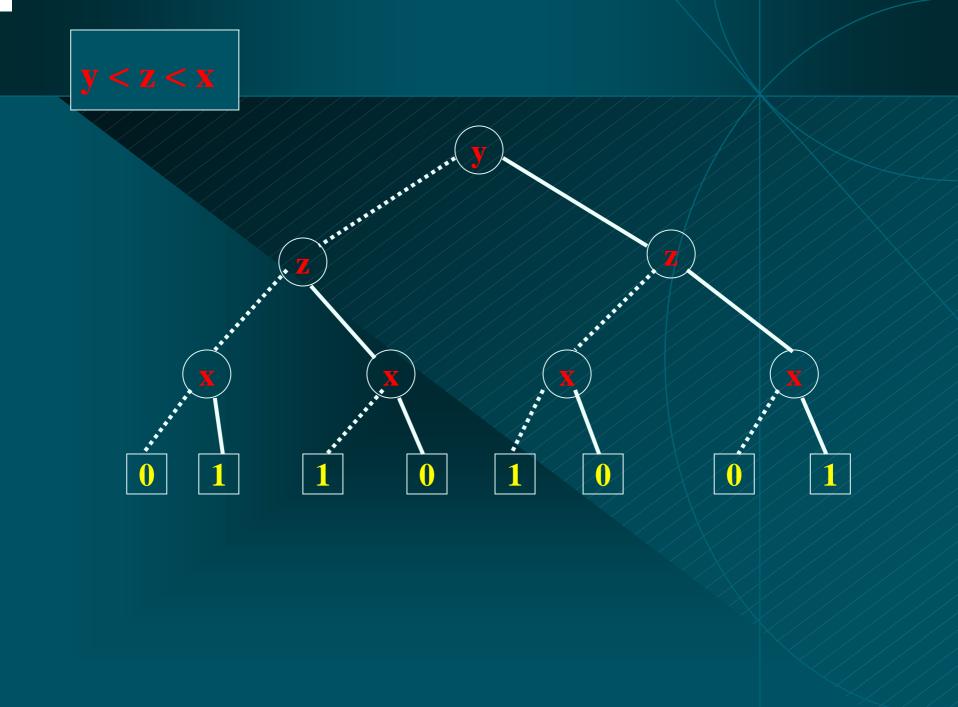
Ordered BDDs

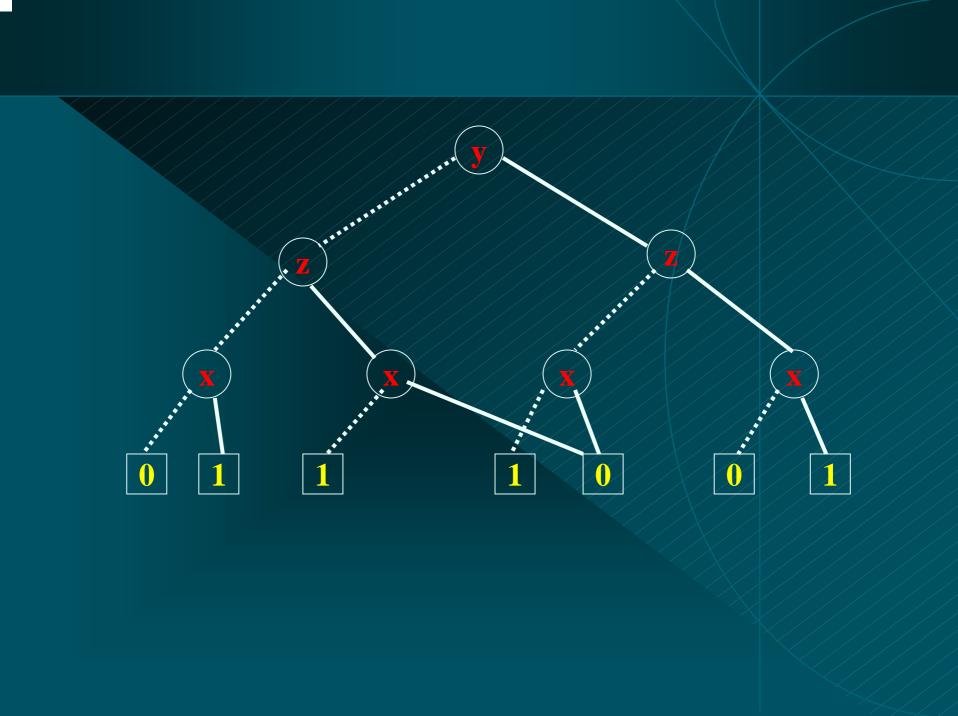
- $x_1, x_2, ..., x_n$
 - An indexed (ordered) set of boolean variables.
 - $\bullet X_1 < X_2 \dots < X_n$
- **❖ G** is an ordered BDD w.r.t. the above *variable ordering iff*:
 - Each variable that appears in G is in the above set. (but the converse may not be true).
 - ♦ If i < j and x_i and x_i appear on a path then x_i appears before x_i.

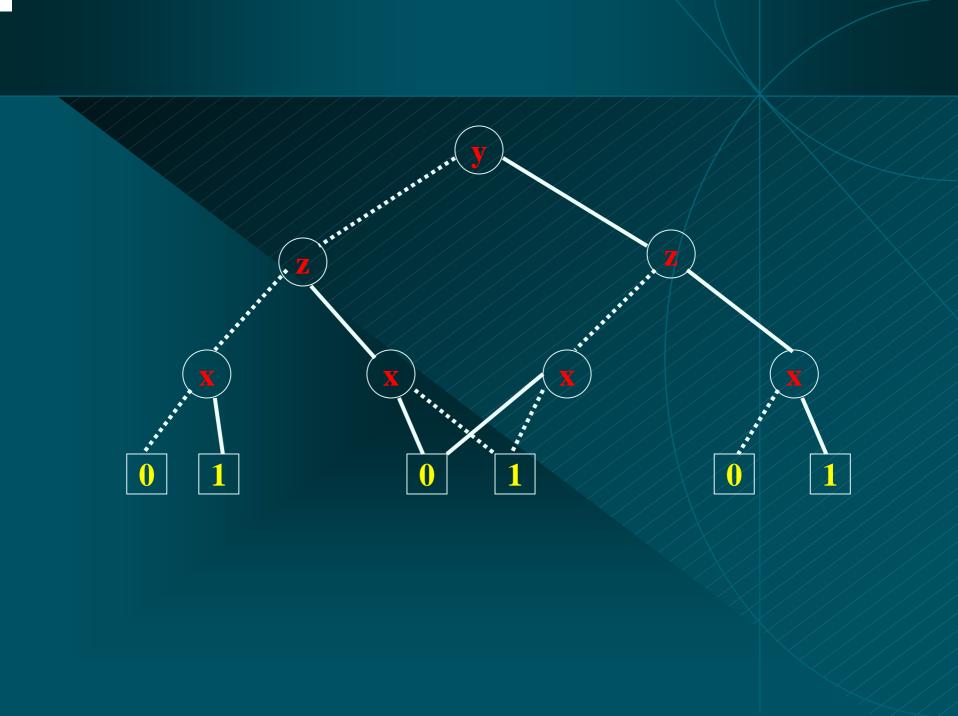
Ordered BDDS

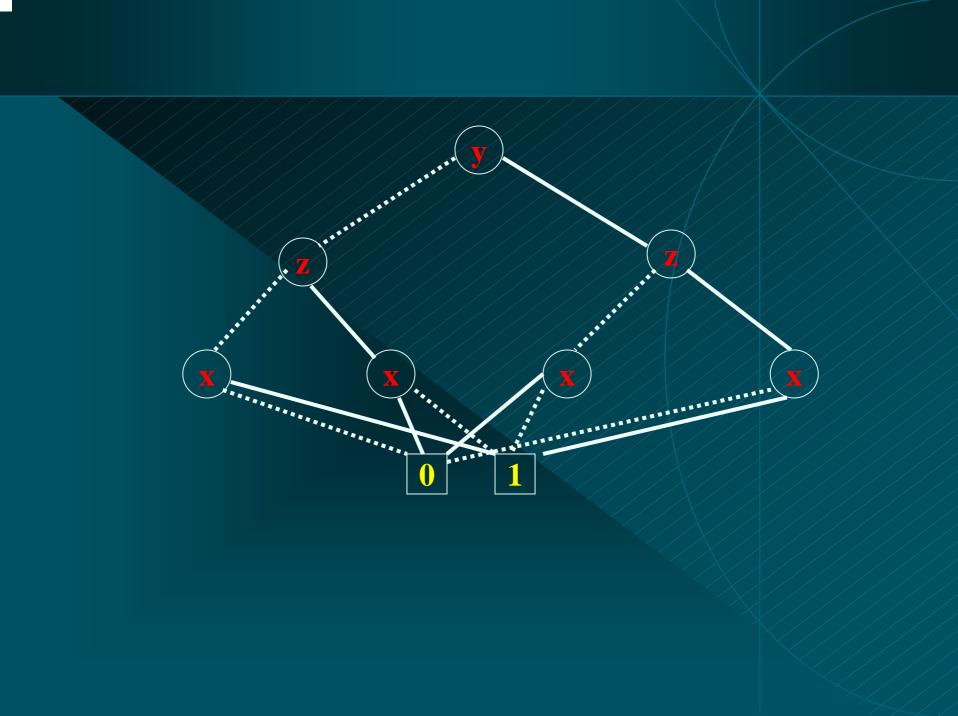
Fundamental Fact:

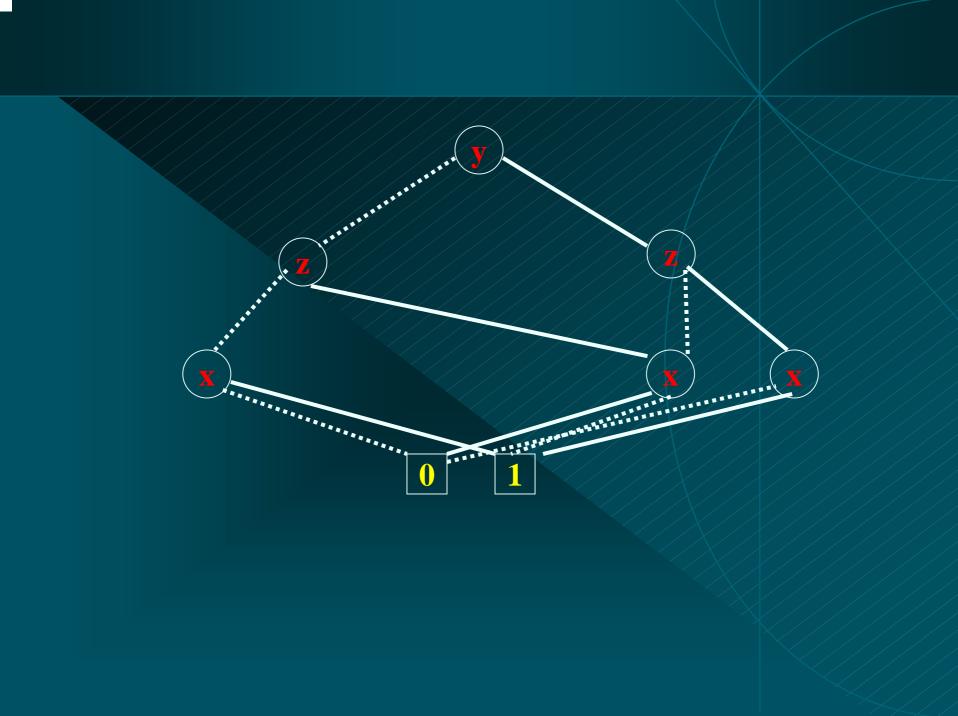
- For a fixed variable ordering, each boolean function has exactly one reduced Ordered BDD!
- Reduced OBDDs are canonical objects.
- ◆ To test if f and g are equal, we just have to check if their reduced OBDDs are identical.
- This will be crucial for model checking!

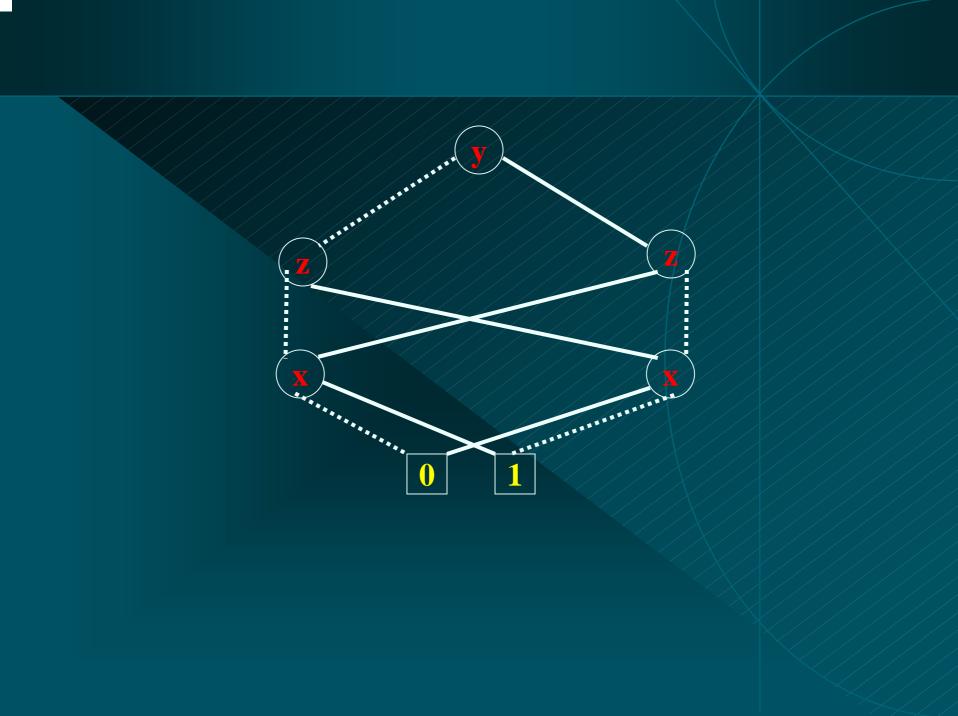












Canonicity of ROBDD

Let us denote an ROBDD with its root node and the function represented by subgraph a rooted at node u with fu. Then:

Theorem: For any function $f:\{0,1\}^n \rightarrow \{0,1\}$ there exists a unique ROBDD u with variable ordering $x_1, x_2,...,x_n$ such that

$$f^{U} = f(X_1, \dots, X_n)$$

Consequences of canonicity

Theorem: For any function $f:\{0,1\}^n \rightarrow \{0,1\}$ there exists a unique ROBDD u with variable ordering $x_1, x_2, ..., x_n$ such that

$$f^{u} = f(x_1, ..., x_n)$$

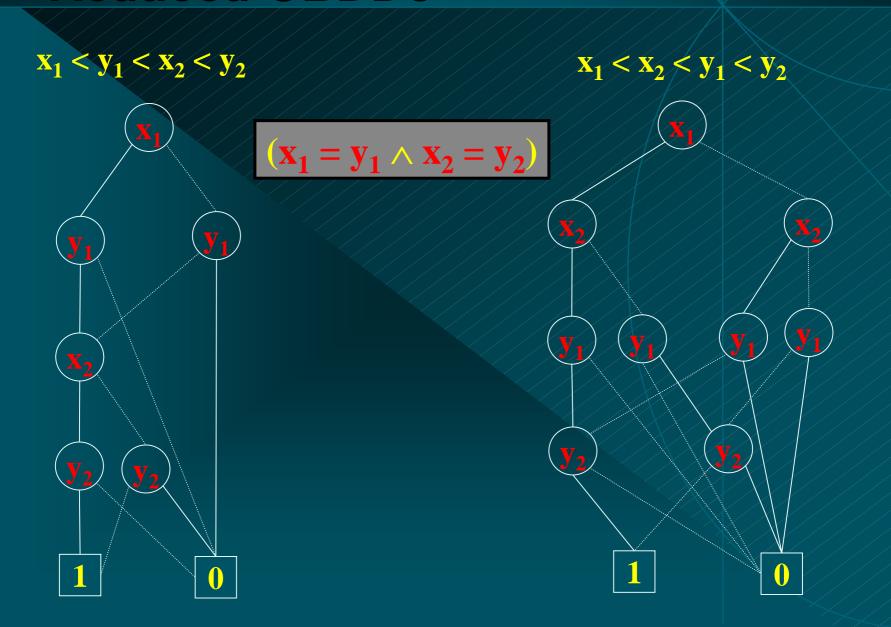
Therefore we can say that:

- A function fu is a tautology if its ROBDD u is equal to 1.
- A function full is a satisfiable if its ROBDD u is not equal to 0.

Reduced OBDDs

- The ordering is crucial!
- x_1, x_2, y_1, y_2 x_1, x_2
 - \bullet f(x₁, x₂, y₁, y₂) $y_1 y_2$
 - $+ f(x_1, x_2, y_1, y_2) = 1$ iff $(x_1 = y_1 \land x_2 = y_2)$
- If $x_1 < y_1 < x_2 < y_2$, then the OBDD is of size 3.2 + 2 = 8.
- ❖ If $x_1 < x_2 < y_1 < y_2$, then the OBDD is of size $3 \cdot 2^2 1 = 11$!

Reduced OBDDs



Reduced OBDDs

- The ordering is crucial!

•
$$f(x_1, x_2,...,x_n,y_1,y_2,...,y_n) = 1$$
 iff $O(x_1 = y_1)$
 $i = 1$

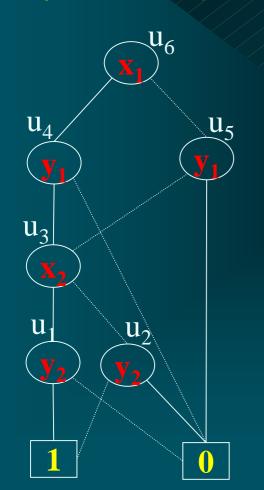
- \star If $x_1 < y_1 < x_2 < y_2 ... < x_n < y_n$, then the OBDD is of size 3n + 2.
- ❖ If $x_1 < x_2 < ... < x_n < y_1 < ... < y_n$, then the OBDD is of size 3. $2^n 1$!

ROBDDs

- * Finding the optimal variable ordering is computationally expensive (NP-complete).
- There are heuristics for finding "good orderings".
- There exist boolean functions whose sizes are exponential (in the number of variables) for any ordering.
- Functions encountered in practice are rarely of this kind.

Implementation of ROBDDs

Array-based implementation



$$root = u_6$$

	Var	Low	High
0	?	?	?
1	?	?	?
u_1	$\mathbf{y_2}$	0	1
$\mathbf{u_2}$	y_2	1	0
$\mathbf{u_3}$	$\mathbf{x_2}$	$\mathbf{u_2}$	u ₁
$\mathbf{u_4}$	$\mathbf{y_2}$	0	$\mathbf{u_3}$
\mathbf{u}_{5}	$\mathbf{y_1}$	0	$\mathbf{u_3}$
u ₆	\mathbf{x}_1	\mathbf{u}_{5}	u ₄

The function MK

→ The function MK searches for a node u with var(u)=x, low(u)=l and high(u)=h. If the node does not exists, then creates the new node after inserting it. The running time is O(1).

H(i,I,h) is a hash function mapping a triple <i,I,h> into a node index in T.

```
mk(i,l,h)
if l=h then
return l
else if T[H(i,l,h)] ≠ empty then
return T[H(i,l,h)]
else u = add(T,H(i,l,h),i,l,h)
return u
```

- Boolean operations will have to be performed on ROBDDs.
- These operations can be implemented efficiently.
- \bullet fbg ----- G_f op_b $G_g = G_{fbg}$
- There is a procedure called APPLY to do this.

- When performing an operation on G and G' we assume their variable orderings are compatible.
- $\star X = X_G ^ X_{G'}$
- There is an ordering < on X such that:</p>
 - < restricted to X_G is <_G
 - < restricted to X_G is <_G.

- The basic idea (Shannon Expansion):
- * $f(x_1, x_2, ..., x_n)$ $f(x_1, x_2, ..., x_n) = (-x_1 a f(x_1 = 0))$ $f(x_1, x_2, ..., x_n) = (-x_1 a f(x_1 = 0))$
- This is true even if x₁ does not appear in f!

Operations on OBDDs: Negation

The basic idea (Shannon Expansion):

$$f(x_1, x_2,...,x_n) = (-x_1 \text{ a } f_{x_1=0}) \text{ b } (x_1 \text{ a } f_{x_1=1})$$

Therefore, assuming $x_1 < x_2 < ... < x_n$

$$\neg f(x_1, x_2,...,x_n) = \neg ((\neg x_1 \text{ a } f_{X_1=0}) \text{ b } (x_1 \text{ a } f_{X_1=1})) \\
= (\neg (\neg x_1 \text{ a } f_{X_1=0}) \text{ a } \neg (x_1 \text{ a } f_{X_1=1})) \\
= ((x_1 \text{ b } \neg f_{X_1=0}) \text{ a } (\neg x_1 \text{ b } \neg f_{X_1=1})) \\
= (x_1 \text{ a } \neg x_1) \text{ b } (\neg x_1 \text{ a } \neg f_{X_1=0}) \text{ b} \\
\text{ b } (x_1 \text{ a } \neg f_{X_1=1}) \text{ b } (\neg f_{X_1=0} \text{ a } \neg f_{X_1=1}) \\
= (\neg x_1 \text{ a } \neg f_{X_1=0}) \text{ b } (x_1 \text{ a } \neg f_{X_1=1})$$

- Let x be the top variable of G_f and y the top variable of G_g.
- To compute G_{f op g} we consider:

We have to solve now two smaller problems!

- Let x be the top variable of G_f and y the top variable of G_g.
- **❖** To compute G_{topg} we consider:
 - CASE2: x < y.
 - Then x does not appear in G_g (why?).
 - $\oint g \, \mathfrak{m}_{=0} = g = g \, \mathfrak{m}_{=1}$ $f \text{ op } g = (\neg x \text{ a } (f \, \mathfrak{m}_{=0} \text{ op } g) \text{ b } (x \text{ a } (f \, \mathfrak{m}_{=1} \text{ op } g))$
 - We have to solve now two smaller problems!

CASE2: x > y is symmetric.

To compute $G_{l op g}$ we consider:

Base (terminal) cases depend upon OP

Eg.: if OP = b then $\{0,0 \rightarrow 0; 1\}$ if OP = a then $\{1,1 \rightarrow 1; 0\}$

Build BDDs: The Apply Procedure

- **&** Given:
 - two BDDs one for f and one for g
 - the logical operator op
- To build
 - r = f op g(and of two BDDs, or of two BDDs etc.) call:
- Do the following:
 - Init computed table CT
 - ightharpoonup r = APPLY (f, g)

with:

Algorithm for Apply

```
Algorithm Apply(op,u,v)
 Function App(u,v)
    if terminal_case(op,u,v) then return op(u,v)
    else if var(u) = var(v) then
        u = mk(var(u), App(op,low(u),low(v)),
                            App(op,high(u),high(v)))
    else if var(u) < var(v) then
        u = mk(var(u), App(op, low(u), v), App(op, high(u), v))
    else /* var(u) > var(v) */
       u = mk(var(u), App(op, u, low(v)), App(op, u, high(v)))
    return u
return App(u,v)
```

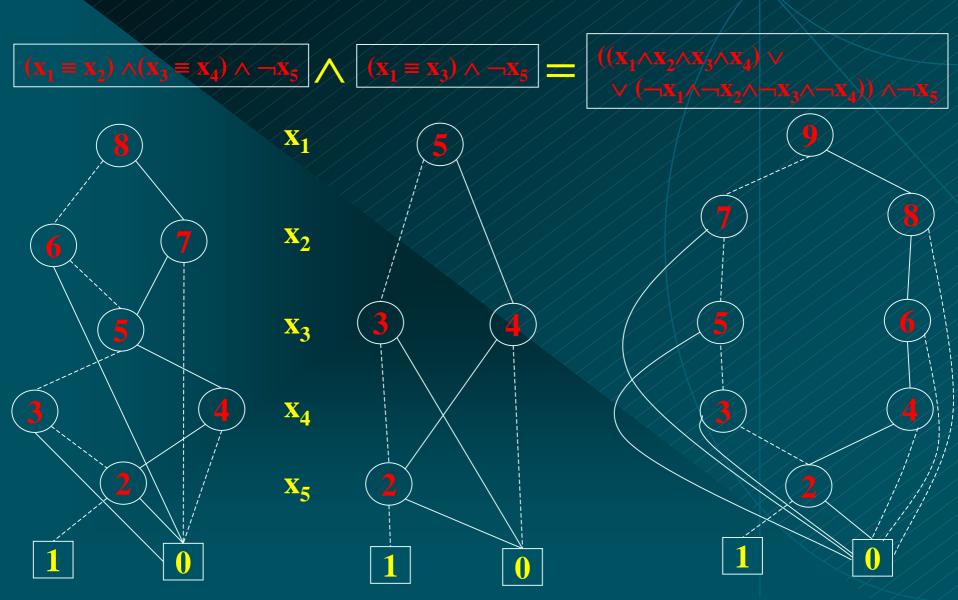
running time = $O(2^n)$. Why? n = number of variables.

Efficient algorithm for Apply

```
Algorithm Apply(op,u,v)
  init(G)
 Function App(u,v)
    if G(u,v) \neq empty then return G(u,v)
    else if terminal_case(op,u,v) then return op(u,v)
    else if var(u)=var(v) then
        r = mk(var(u), App(op,low(u),low(v)),
                           App(op,high(u),high(v)))
    else if var(u) < var(v) then
        r = mk(var(u), App(op, low(u), v), App(op, high(u), v))
    else /* var(u) > var(v) */
        r = mk(var(u), App(op, u, low(v)), App(op, u, high(v)))
    return r
return App(u,v)
```

running time = $O(|G_u||G_v|)$. Why?

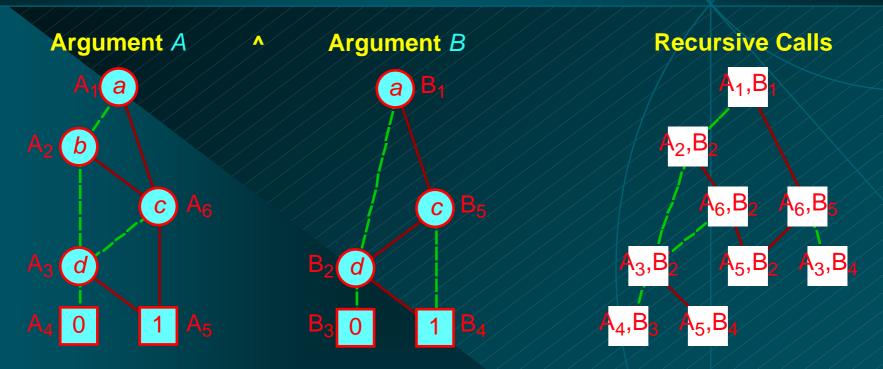
Example of Apply a



APPLY (f, g)

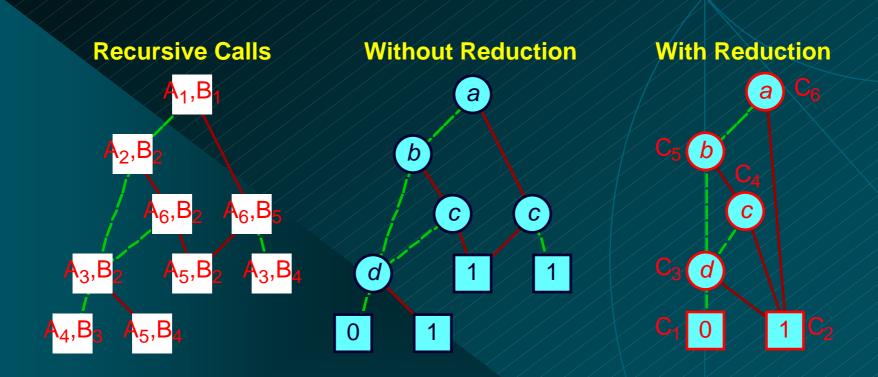
- 1. IF $CT(f, g) \neq empty THEN return (CT (f, g))$
- 2. ELSE if f and $g \in \{0, 1\}$ THEN r = op (f, g)
- 3. ELSE if topVar(f) = topVar(g) THEN
- 4. ELSE if topVar(f) < topVar(g) THEN
 - \bullet r = ITE (topVar (f), APPLY (T(f), g), APPLY (E(f), g))
- 5. ELSE /* topVar(f) > topVar(g) */
- 6. put r in G
- 7. return (r)

Execution Example



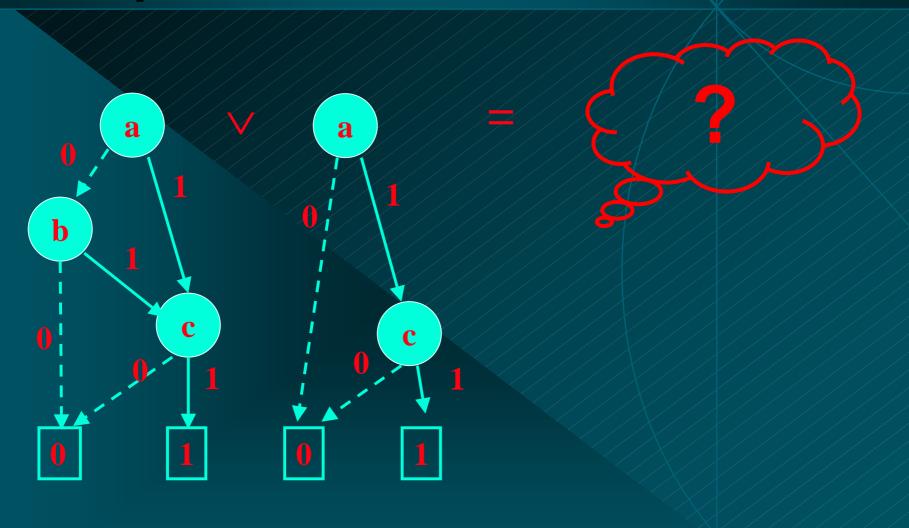
- Optimizations
 - Dynamic programming
 - Early termination rules

Result Generation

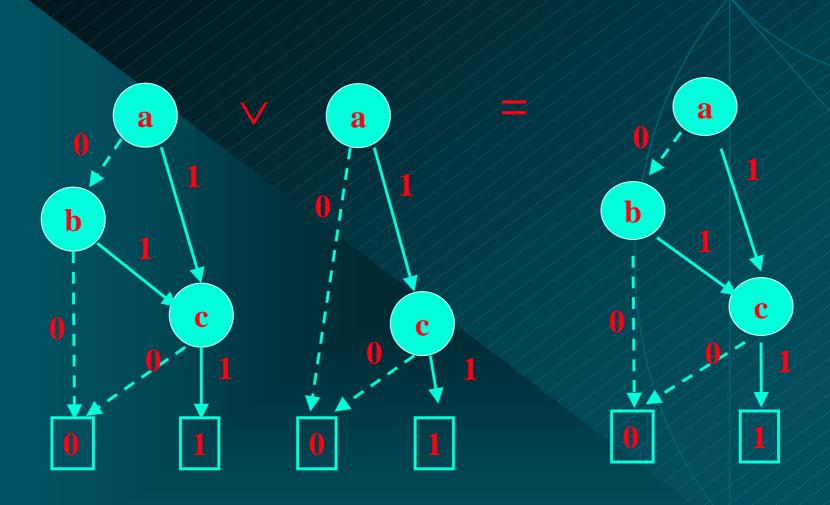


- Recursive calling structure implicitly defines unreduced BDD
- Apply reduction rules bottom-up as return from recursive calls
- Do not create new result node if both brances equal (return that result) or if equivalent node already exists in reduce table. (The apply function is also memoized.)

Example



Example

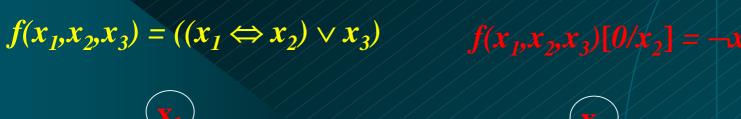


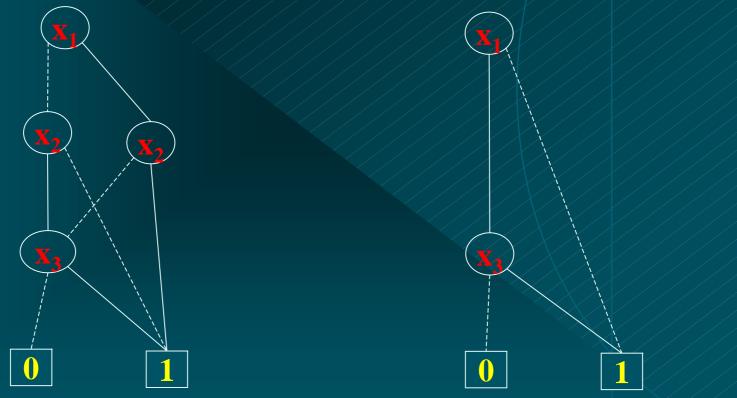
The Restrict operation

- * Problem: Given a (partial) truth assignment $x_1=b_1,...,x_k=b_k$ (where $b_j=0$ or $b_j=1$), and a ROBDD t^{ν} , compute the restriction of t^{ν} under the assignment.
- ***** E.G.: if $f(x_1, x_2, x_3) = ((x_1 \Leftrightarrow x_2) \lor x_3)$ we want to compute $f(x_1, x_2, x_3)[0/x_2] = f(x_1, 0, x_3)$

i.e.: $f(x_1, 0, x_3) = \neg x_1 \lor x_3$

Restrict Operation: example





Restrict Operation

- Let x be the root of G_f
- To compute G_{f|v=b} we consider:

Restrict Operation

- Let x be the root of G_f
- To compute G_{f|v=b} we consider:

CASE2:
$$x > y$$

$$\Leftrightarrow f|_{y=b} = f$$

Restrict Operation

- Let x be the root of G_f
- ❖ To compute G_{f|y=b} we consider:

We have to solve now two smaller problems!

Algorithm for Restrict

```
Algorithm Restrict(u,i,b)

Function Res(u)

if var(u) > i then return u

else if var(u) < i then

return mk(var(u),Res(low(u)),Res(high(u)))

else /* var(u) = i */

if b = 0 then

return Res(low(u))

else /* var(u) = i and b = 1 */

return Res(high(u))

return Res(u)
```

running time = $O(2^n)$. Why?

Efficient algorithm for Restrict

```
Algorithm Restrict(u,i,b)
  init(G)
 Function Res(u)
    if G(u) \neq empty then return G(u)
    if var(u) > i then return u
    else if var(u) < i then
       r = mk(var(u),Res(low(u)),Res(high(u)))
    else /* var(u) = var(v) */
       if b = 0 then
          r = Res(low(u))
       else /* var(u) = var(v) and b = 1 */
          r = Res(high(u))
    return r
return Res(u)
```

running time = $O(|G_u|)$. Why?

Quantification

Extend the boolean language with

They can be defined in terms of ROBDD operations:

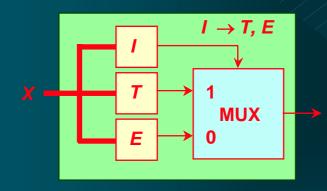
$$\exists x.t = t[0/x] b t[1/x]$$

$$\forall x.t = t[0/x] \land t[1/x]$$

We can use an appropriate combination of Restrict and Apply

If-Then-Else Decomposition

- All operators can be expressed in terms of ITE
- Used to build BDD from logic network or formula



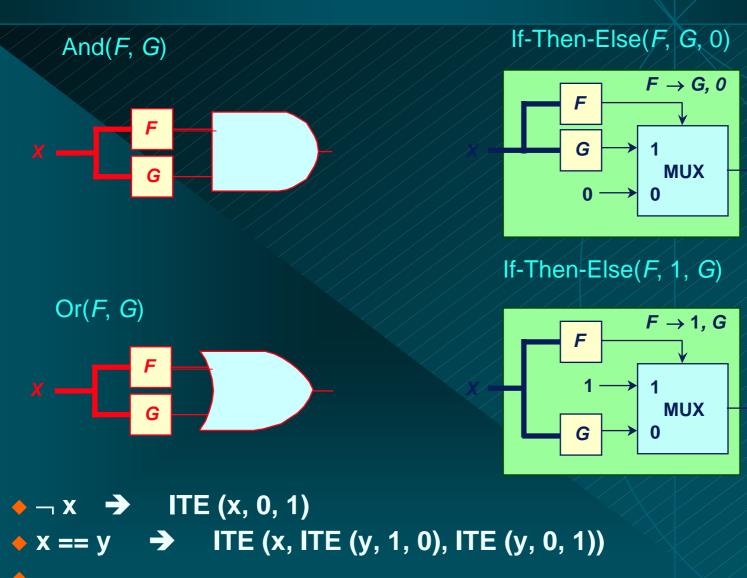
Arguments I, T, E

- Functions over variables X
- Represented as BDDs

Result

- ITE (I, T, E) = $(I \land T) \lor (\neg I \land E)$
- Represented as a BDD

All operators can be expressed using ITE



- Boole's (Shannon) Decomposition
 - \rightarrow ITE $(x, F|_x, F|_x)$
- BDD from Boole's Decomposition
 - Form decomposition one variable at a time
 - Proceed until terminal (0-1) values

This gives an "Ordered Decision Tree"

To sum up ...

A BDD (ROBDD)

- Is a directed acyclic graph (DAG)
 - ♦ one root node, two terminals 0, 1
 - ♦ each node, two children, and a variable
- It uses a Shannon co-factoring tree, except that it is
 - ♦ Reduced
 - **♦ Ordered**

Reduced

- ♦ any node with two identical children is removed.
- two nodes with isomorphic BDD's are merged

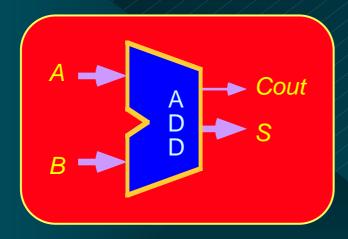
Ordered

Co-factoring variables (splitting variables) always follow the same order along all paths

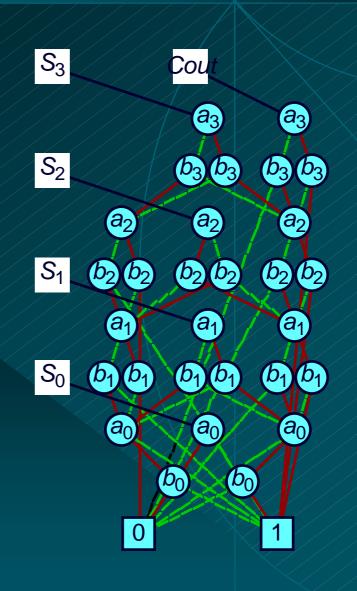
$$x_{i_1} < x_{i_2} < x_{i_3} < \dots < x_{i_n}$$

Representing Circuit Functions

- Functions
 - All outputs of 4-bit adder
 - Functions of data inputs



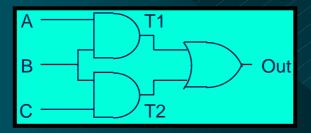
- Shared Representation
 - Graph with multiple roots
 - 31 nodes for 4-bit adder
 - 571 nodes for 64-bit adder
 - Linear growth
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■



Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

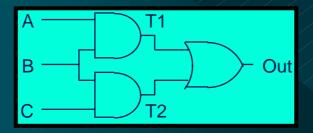
Network



Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

Network



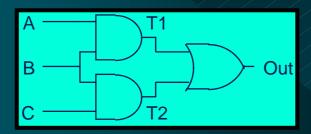
Evaluation

```
    A ← new_var ("a");
    B ← new_var ("b");
    C ← new_var ("c");
    T1 ← And (A, B);
    T2 ← And (B, C);
    Out ← Or (T1, T2);
```

Generating OBDD from Network

Task: Represent output functions of gate network as OBDDs.

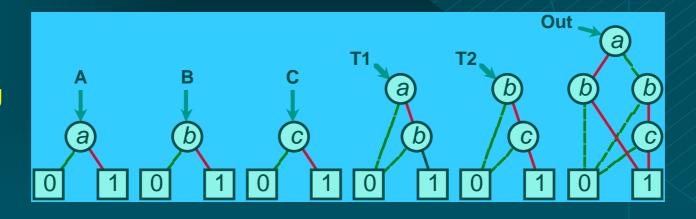
Network

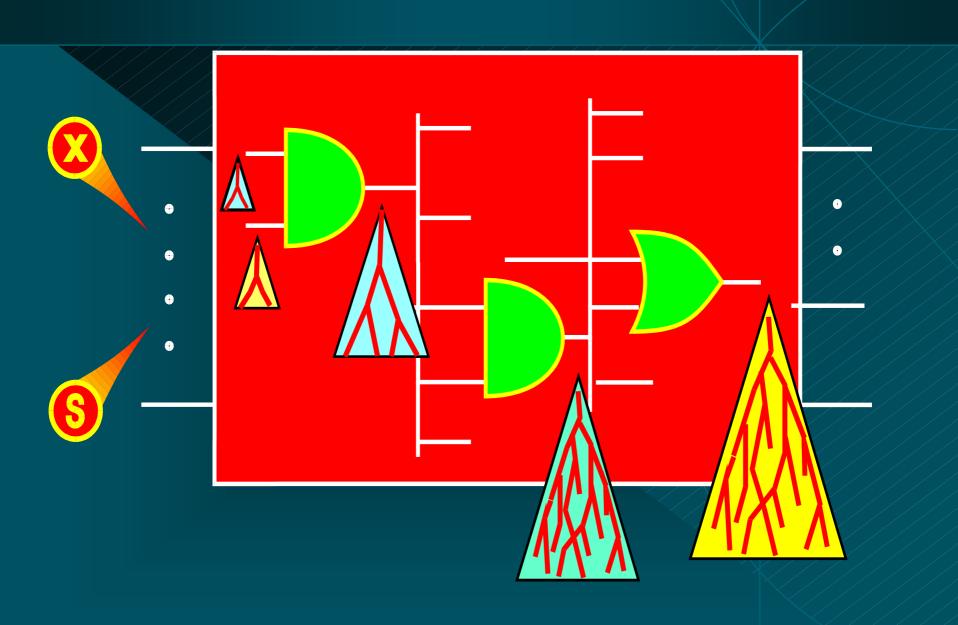


Evaluation

```
    A ← new_var ("a");
    B ← new_var ("b");
    C ← new_var ("c");
    T1 ← And (A, B);
    T2 ← And (B, C);
    Out ← Or (T1, T2);
```

Resulting Graphs



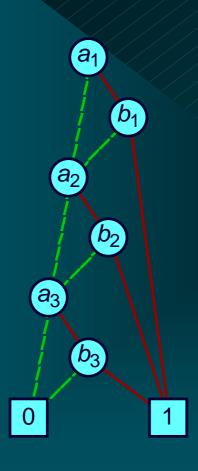


Strategy

- Represent data as set of OBDDs
 - ♦ Identical variable orderings
- Express solution method as sequence of symbolic operations
 - ♦ Sequence of constructor & query operations
 - ♦ Similar style to on-line algorithm
- Implement each operation by OBDD manipulation
 - ♦ Do all the work in the constructor operations
- Key Algorithmic Properties
 - Arguments are OBDDs with identical variable orderings
 - Result is OBDD with same ordering
 - Each step polynomial complexity

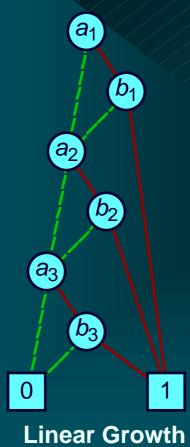
$$F(a_1, a_2, a_3, b_1, b_2, b_3) = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$$

 $F(a_1, a_2, a_3, b_1, b_2, b_3) = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$



$$F(a_1, a_2, a_3, b_1, b_2, b_3) = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$$

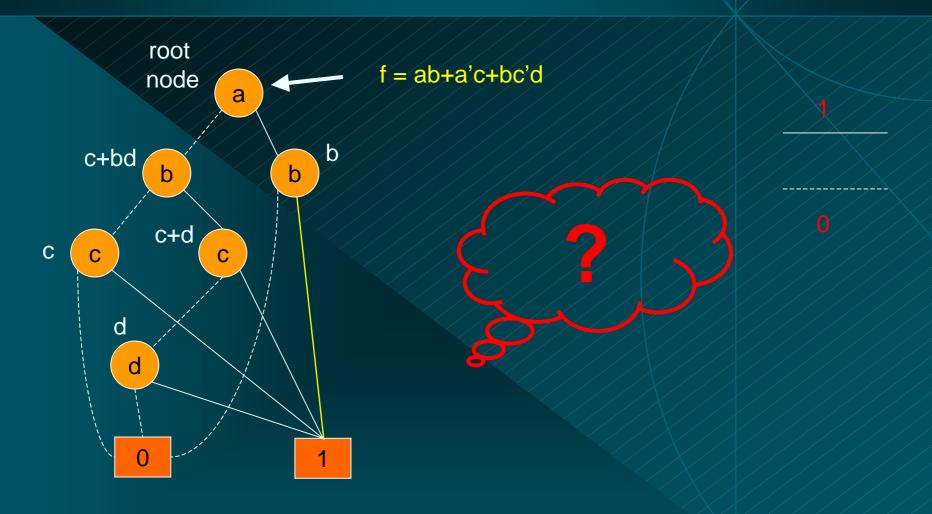
Good Ordering



 $F(a_1, a_2, a_3, b_1, b_2, b_3) = (a_1 \wedge b_1) \vee (a_2 \wedge b_2) \vee (a_3 \wedge b_3)$

Good Ordering Bad Ordering a_1 b_1 a_2 a_2 a_2 a_3 a_3 a_3 b_1 $(b_1)(b_1)$ a_3 b_3 b_3 **Linear Growth Exponential Growth**

Exercise



Given the BDD with variable order a, b, c, d Represents it with the order a, c, d, b.

Exercise



Given the BDD with variable order a, b, c, d Represents it with the order a, c, d, b.

Sample Function Classes

Function Class Ordering Sensitivity Best Worst ALU (Add/Sub) High linear exponential **Symmetric** linear quadratic None Multiplication exponential exponential Lów

General Experience

- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 5,000,000 node OBDDs
- Heuristic ordering methods generally satisfactory

Consideration on Variable Ordering

- Variable order is fixed
 - For each path from root to terminal node the order of "input" variables is exactly the same
- Strong dependency of the BDD size (terms of nodes) and variable ordering
- Ordering algorithm:
 - ◆ Co-NP complete problem heuristic approaches
 - Static Variable Ordering Heuristic
 - Dynamic Variable Ordering Heuristic
 - ◆ ROBDDs Reduced Ordered Binary DDs (BDDs!)

Static Variable Ordering

- Different heuristic introduced over the years
- Usually based on the circuit structure
 - E.g., depth-first visit from the outputs
- Sufficient for "static problems"
- Insufficient for "dynamic requirements"

Dynamic Variable Reordering

- First Introduced by Richard Rudell, Synopsys, 1991
- Periodically Attempt to Improve Ordering for All BDDs
 - Part of garbage collection
 - Move each variable through ordering to find its best location
- Has Proved Very Successful
 - Time consuming but effective
 - Especially for sequential circuit analysis

Dynamic Reordering By Sifting

- Choose candidate variable
- Try all positions in variable ordering
 - → Repeatedly swap with adjacent variable
- Move to best position found

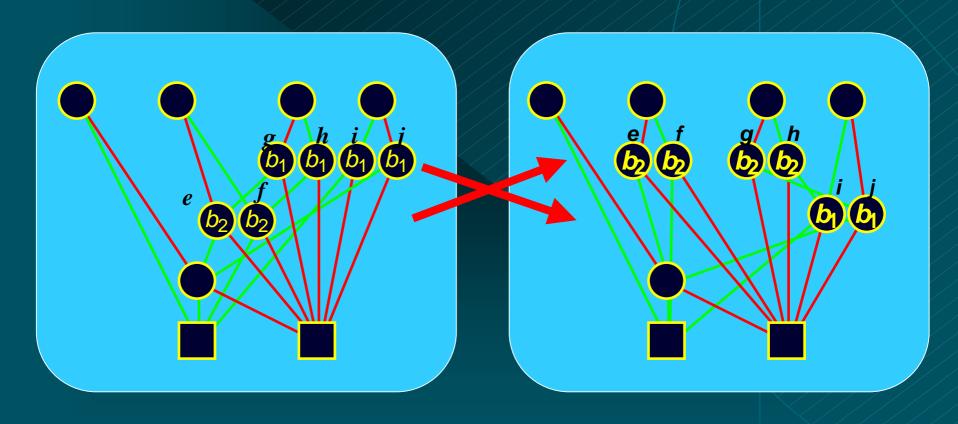
(a₁) (a_2) $(a_2)(a_2)$ (a_2) (a_2) $a_3 a_3 a_3 a_3$ $(a_3)(a_3)(a_3)(a_3)$ $(a_3)(a_3)(a_3)(a_3)$ $(b_2)(b_2)(b_2)(b_2)$ $(b_2)(b_2)(b_2)(b_2)$ $(b_1)(b_1)(b_1)$ $(b_3)(b_3)$ (b_3) (b_3) 0 0 0 0

Best

Choices

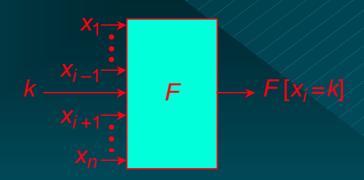
Swapping Adjacent Variables

- Localized Effect
 - Add / delete / alter only nodes labeled by swapping variables
 - Do not change any incoming pointers

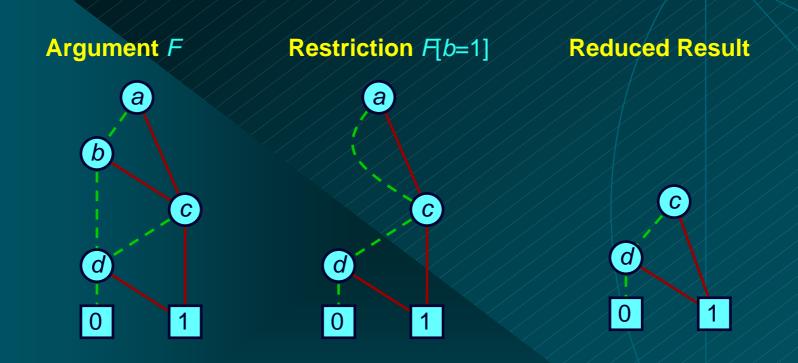


Restriction

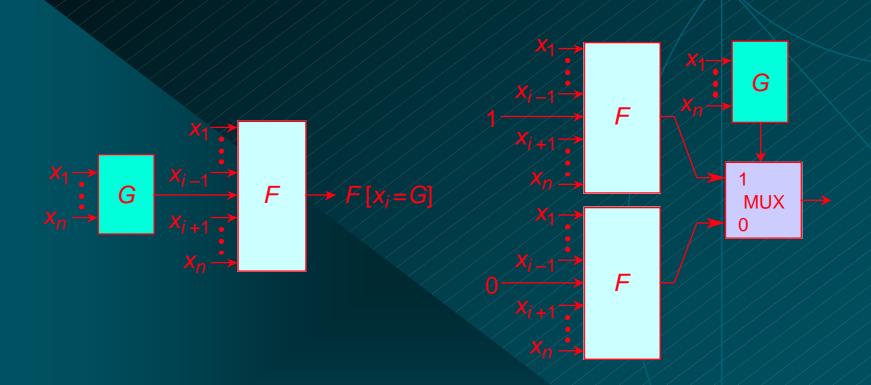
- Concept
 - Effect of setting function argument x_i to constant k (0 or 1).
 - Also called Cofactor operation (UCB)
 - F_x equivalent to F [x=1]
 F_x equivalent to F [x=0]



Restriction Execution Example



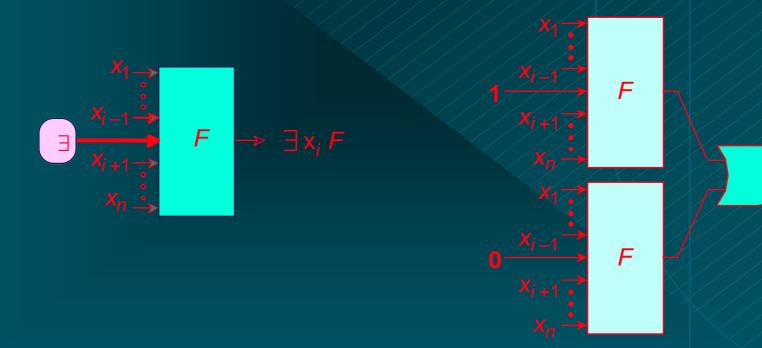
Functional Composition



- Create new function by composing functions F and G.
- Useful for composing hierarchical modules.

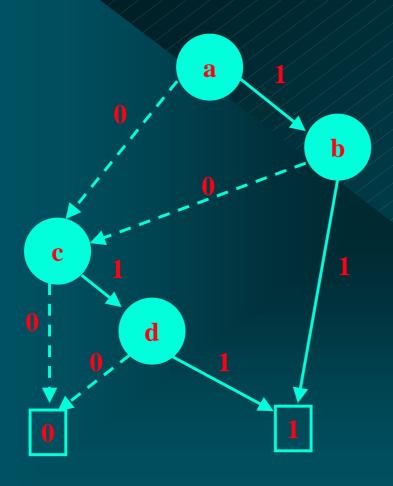
Existential Variable Quantification

- $\Rightarrow \exists_b f = f \mid_{b=0} \lor f \mid_{b=1}$
 - Eliminate dependency on some argument
 - Efficient algorithm for quantifying over a set of variables



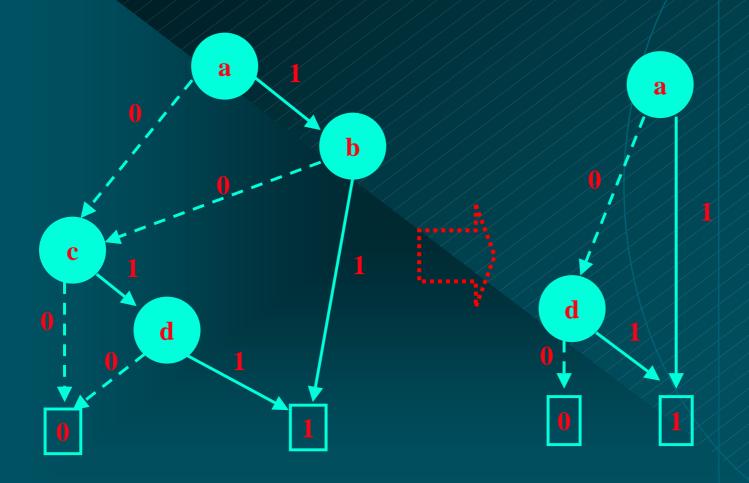
Example

$$\exists_{(b,c)}. ((a \land b) \lor (c \land d)) = ?$$



Example

$$\exists_{(b,c)}. ((a \land b) \lor (c \land d)) = a \lor d$$



Universal Variable Quantification

What's good about BDDs?

- Powerful Operations
 - Creating, manipulating, testing
 - Each step polynomial complexity
 - ♦ Graceful degradation
- Generally Stay Small Enough
 - Especially for digital circuit applications
 - Given good choice of variable ordering
- Extremely useful in practice
- (Until late 90s) Weak Competition
 - No other method close in overall strength
 - Especially with quantification operations

What's bad about BDDs?

- Some formulas do not have small representation! (e.g., multipliers)
- BDD representation of a function can vary exponentially in size depending on variable ordering; users may need to play with variable orderings (less automatic)
- Size limitations: a big problem
- (Last years) Competitive Approach: CNF representation + SATisfiability solvers

A few BDD Packages

- Brace, Rudell, Bryant: KBDD
 - Carnegie Mellon, 1990
 - Synopsys, 1993 on
 - Digital, Compaq, Intel, 1993 on
- Long: KBDD
 - Carnegie Mellon, 1993
 - AT&T, 1995 on
- Armin Biere: ABCD
 - Carnegie Mellon / Universität Karlsruhe
- Olivier Coudert: TiGeR
 - Synopsys / Monterey Design Systems
- ❖ Geert Janssen: EHV
 - Eindhoven University of Technology

- ❖ Geert Janssen: EHV
 - Eindhoven University of Technology
- * Rajeev K. Ranjan: CAL
 - UCB, Synopsys
- **❖** Bwolen Yang: PBF
 - Carnegie Mellon
- Stefan Horeth: TUDD
 - University TU Darmstadt
 - http://marple.rs.e-technik.tu-darmastadt.de/~sth
- * Fabio Somenzi: CUDD
 - University of Colorado
 - http://vlsi.colorado.edu/~fabio

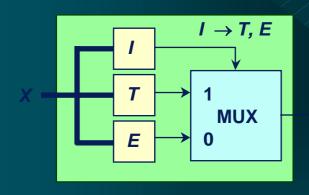
Symbolic manipulation with OBDDs

- Strategy
 - Represent data as set of OBDDs
 Identical variable orderings
 - Express solution method as sequence of symbolic operations
 - Implement each operation by OBDD manipulation
- Key Algorithmic Properties
 - Arguments: OBDDs with identical variable orders
 - Result is OBDD with same ordering
 - Each step polynomial complexity

If-Then-Else operation

Concept

 Basic technique for building OBDD from logic network or formula.



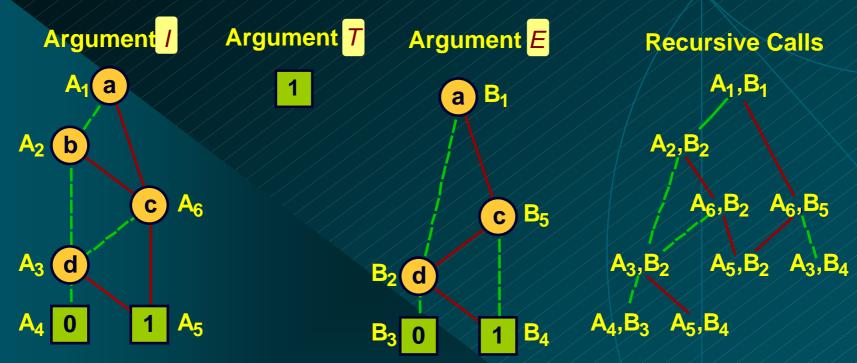
Arguments I, T, E

- Functions over variables X
- Represented as OBDDs

Result

- OBDD representing composite function

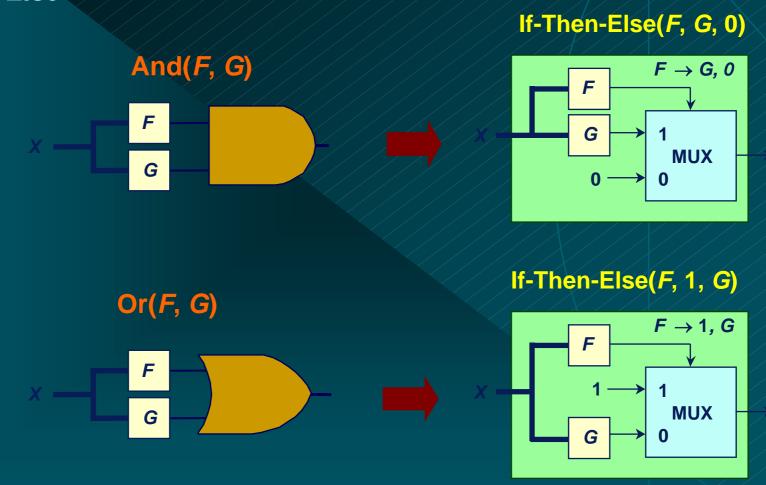
If-Then-Else execution example



- Optimizations
 - Dynamic programming
 - Early termination rules
 - Apply reduction rules bottom-up as return from recursive calls
 (Recursive calling structure implicitly defines unreduced BDD)

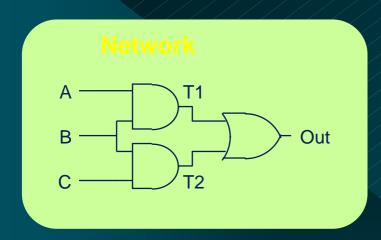
Derived algebraic operations

Other operations can be expressed in terms of If-Then-Else



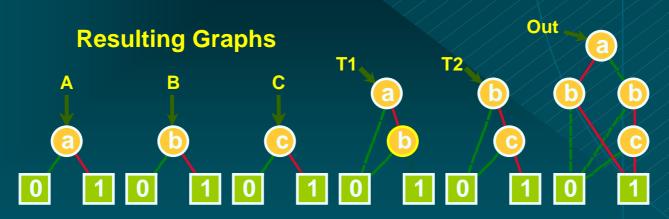
Generating OBDD from network

Task: Represent output functions of gate network as OBDDs.

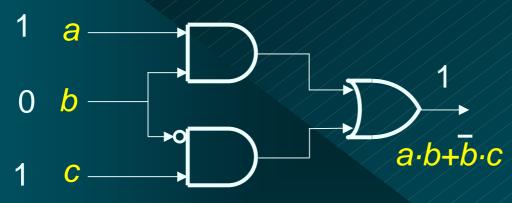


Evaluation

```
A ← new_var ("a");
B ← new_var ("b");
C ← new_var ("c");
T1 ← And (A, 0, B);
T2 ← And (B, C);
Out ← Or (T1, T2);
```



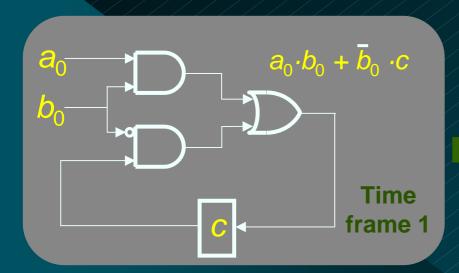
- Conventional simulation:
 - Input & outputs are constants (0,1,X,...)

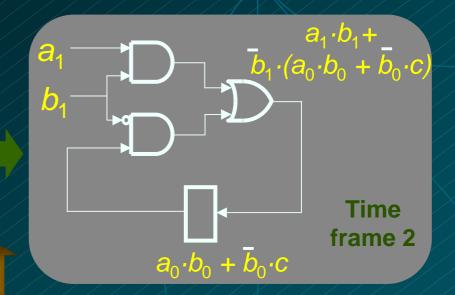


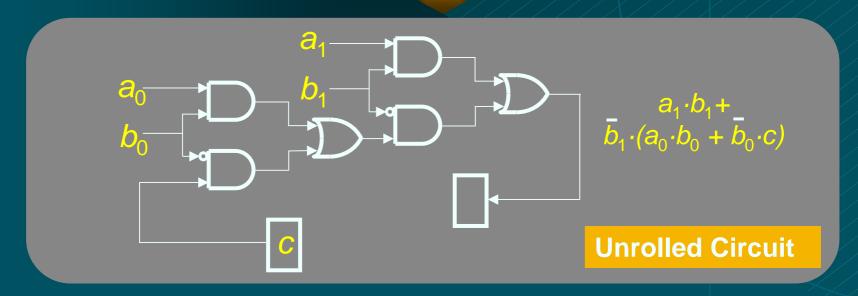
Problem: Too many constant input combinations to simulate!!

- Symbolic simulation:
 - Symbolic expressions used for inputs
 - Expressions propagated to compute outputs
 - Equivalent to multiple constant simulations!!

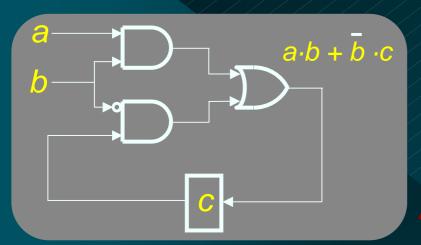
Symbolic simulation (sequential case)

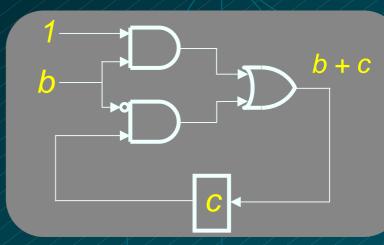




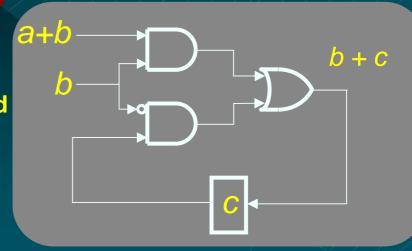


Inputs can be constants





- Simulate certain set Input
 of patterns expressions
 Model signal can be related
- Model signal correlations
- Can result in simpler output expressions



- Use BDDs as the symbolic representation
- Work at gate and MOS transistor level
- Can exploit abstraction capabilities of 'X' value
 - Can be used to model unknown/don't care values
 - Common use in representing uninitialized state variables
 - Boolean functions extended to work with {0,1,X}
 - Two BDD (binary) variables used to represent each symbolic variable

Advantages

- Can handle larger designs than model checking
- Can use a large variety of circuit models
- Possibly more natural for non-formalists.
- Amenable to partial verification.

Disadvantages

- Not good with state machines (possibly better with data paths).
- Does not support temporal logic
 - ♦ Requires ingenuity to prove properties.

Practical deployment

- Systems:
 - COSMOS [bryant et al], Voss[Seger et al Intel]
 - Magellan [Synopsys]
 - Innologic
- Exploiting hierarchy
 - Symbolically encode circuit structure
 - Based on hierarchy in circuit description
 - Simulator operates directly on encoded circuit
 - ♦ Use symbolic variables to encode both data values & circuit structure
 - Implemented by Innologic, Synopsys (DAC '02)
 - Greatest success in memory verification (Innologic)

High-level symbolic simulation

- Data Types: Boolean, bitvectors, int, reals, arrays
- Operations: logical, arithmetic, equality, uninterpreted functions
- Final expression contains variables and operators
- Coupled with Decision procedures to check correctness of final expression
- Final expressions can also be manually checked for unexpected terms/variables, flagging errors e.g. in JEM1 verification [Greve '98]

High-level symbolic simulation

- Manipulation of symbolic expressions done with
 - Rewrite systems like in PVS
 - Boolean and algebraic simplifiers along with theories of linear inequalities, equalities and uninterpreted functions
- Extensively used along with decision procedures in microprocessor verification
 - Pipelined processors: DLX
 - Superscalar processors: Torch (Stanford)
 - Retirement logic of Pentium Pro
 - Processors with out of order executions

Symbolic trajectory evaluation (STE)

- Trajectory: Sequence of values of system variables
 - Example: c = AND (a, b) and delay is 1
 - A possible trajectory: (a,b,c) = (0, 1, X), (1, 1, 0), (1, 0, 1), (X, X, 0), (X, X, X),...
- Express behavior of system model as a set of trajectories land desired property as a set of trajectories
- Determine if I is inconsistent with S
 - Inconsistent: I says 0 but S says 1 for a signal at time t
 - Consistent: I says 0 but S says X or 0 for a signal at time t

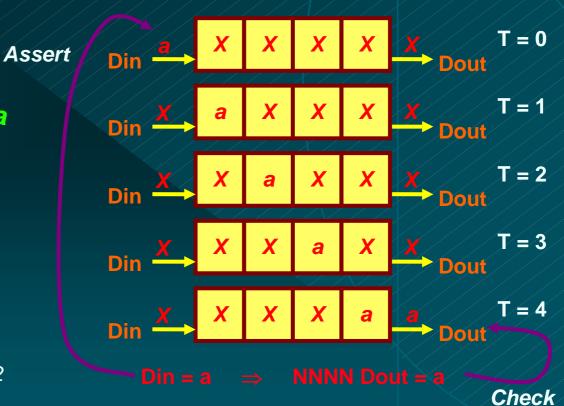
STE: An example

Specification

 $Din = a \Rightarrow NNNN Dout = a$

If apply input a then 4 cycles later will get output a

Ref: Prof. Randal Bryant, 2002



STE: Pros, cons & u

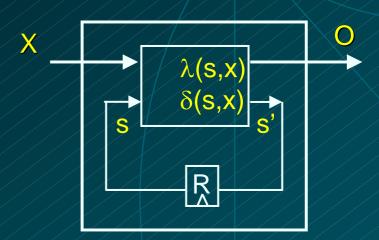
- Advantage: Higher capacity than symbolic model checking
- Disadvantage: Properties checkable not as expressive as CTL
- Practical success of STE
 - Verification of arrays (memories, TLBs etc.) in Power PC architecture
 - x86 Instruction length decoder for Intel processor
 - Intel FP adder
 - Microprocessor verification

Symbolic Reachability Analysis

Finite State Machines (FSM)

FSM M(X,S, δ, λ,O)

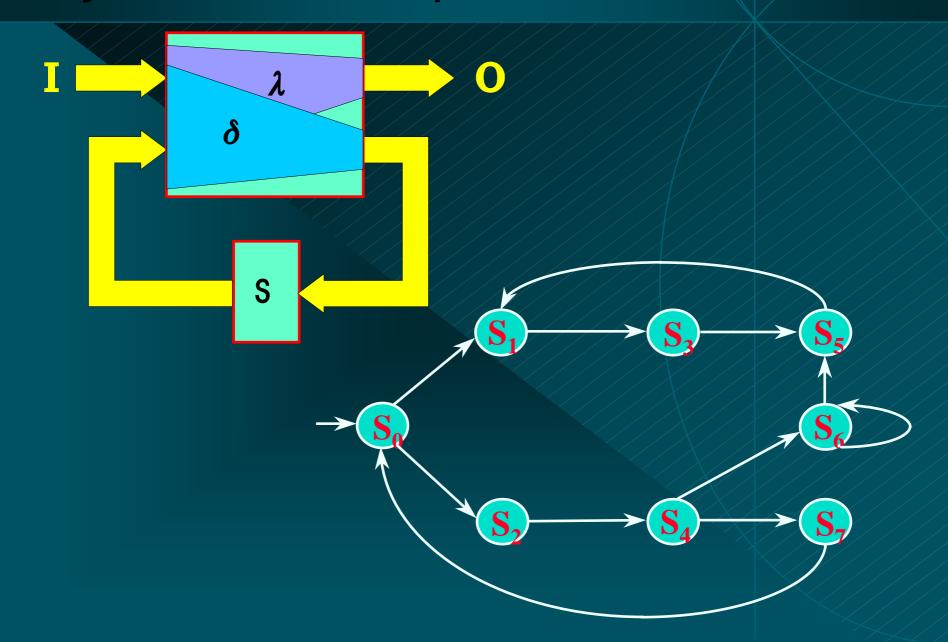
- Inputs: X
- Outputs:
- States: S
- Next state function, $\delta(s,x) : S \times X \rightarrow S$
- Output function, $\lambda(s,x) : S \times X \rightarrow O$



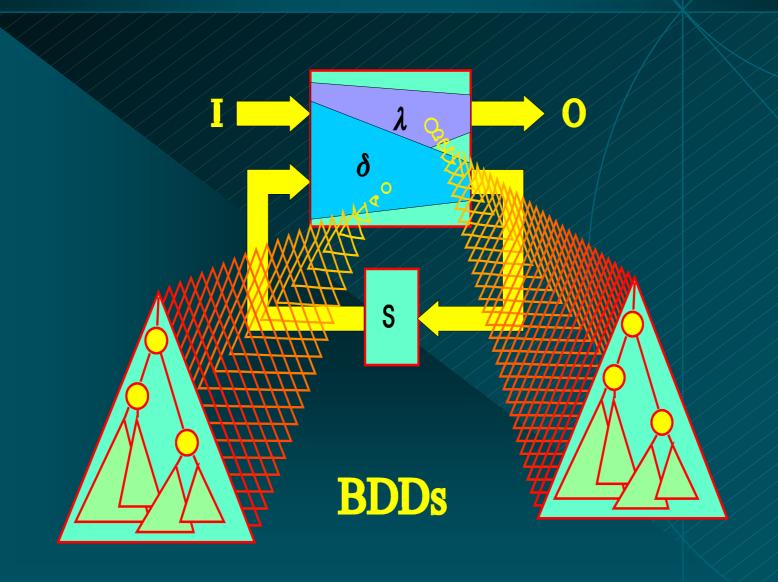
FSM Traversal

- State Transition Graphs
 - directed graphs with labeled nodes and arcs (transitions)
 - symbolic state traversal methods
 - important for symbolic verification, state reachability analysis, FSM traversal, etc.

Symbolic FSM representation



Function Representation



Set Representation

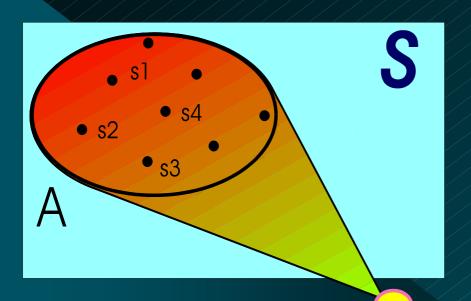
* Idea

A formula can represent a set of states (its models)

Example

```
(x ⊕ y) ⊕ z
represents {100,010,110,111}
```


Characteristic Function



Characteristic Function of set A:

$$\chi_A(s) = 1 \text{ IFF } s \in A$$

$$= 0 \text{ IFF } s \notin A$$

Characteristic functions

- $A \subseteq \{0,1\}^n$ (Set of bit vectors of length *n*)
- Represent set A as Boolean function A of n variables

 $X \in A$ if and only if A(X) = 1

A 0/1

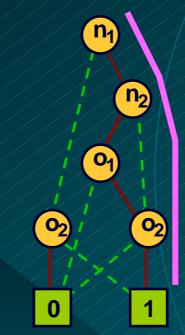
Set Operations



Symbolic FSM representation

Nondeterministic FSM

Symbolic Representation: Transition relation



o₁,o₂ encoded old state

n₁, n₂ encoded new state

- Represent set of transitions as function tr(Old, New)
 - Yields 1 if can have transition from state Old to state New
- Represent as Boolean function
 - Over variables encoding states

The Transition Relation (deterministic FSM)

TR
$$(s, x, y) = \prod_{i=1}^{n} (y_i \equiv \delta_i(s, x))$$

The Transition Relation espresses present-state, primary input ⇒ next state correspondence.

TR(s,x,y) =
=
$$\Pi_{i=1}^{n}(y_i \equiv \delta_i (s,x))$$

$$TR(s,x,y) =$$

$$= \Pi_{i=1}^{n}(y_{i} \equiv \delta_{i}(s,x))$$

$$= [(y_{1} \equiv \delta_{1}(s,x)) \cdot (y_{2} \equiv \delta_{2}(s,x)) \cdot \dots \cdot (y_{n} \equiv \delta_{n}(s,x))]$$

$$TR(s,x,y) =$$

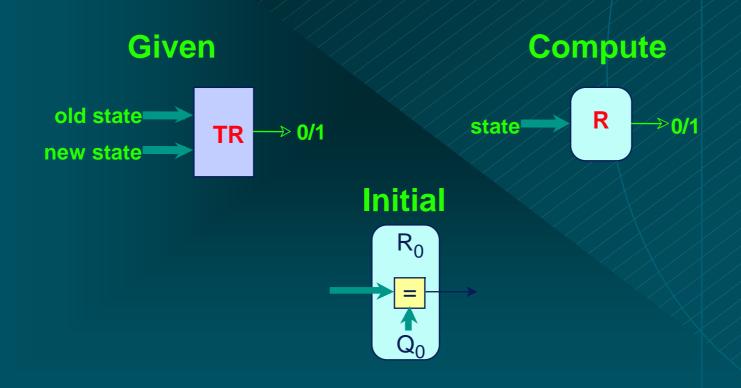
$$= \prod_{i=1}^{n} (y_i \equiv \delta_i (s,x))$$

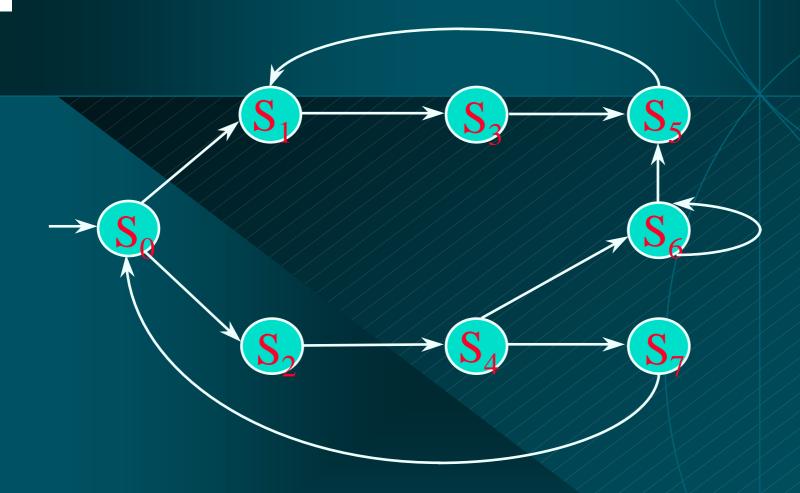
$$= [(y_1 \equiv \delta_1 (s,x)) \cdot (y_2 \equiv \delta_2 (s,x)) \cdot \dots \cdot (y_n \equiv \delta_n (s,x))]$$

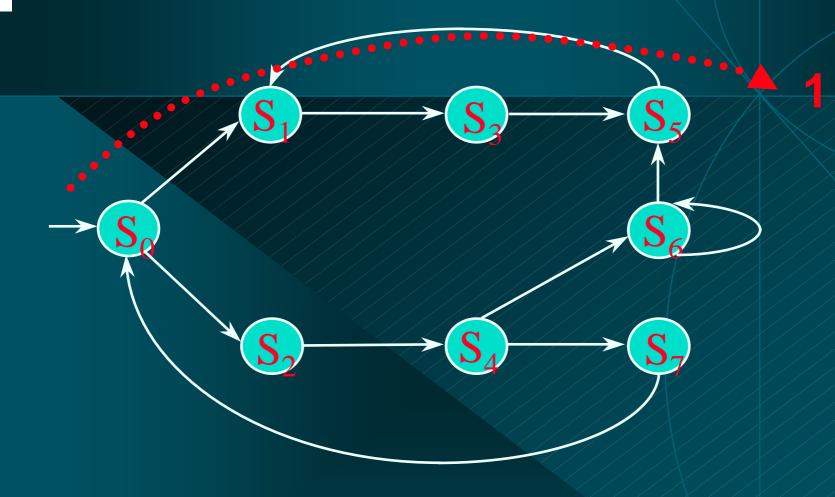
Reachability analysis

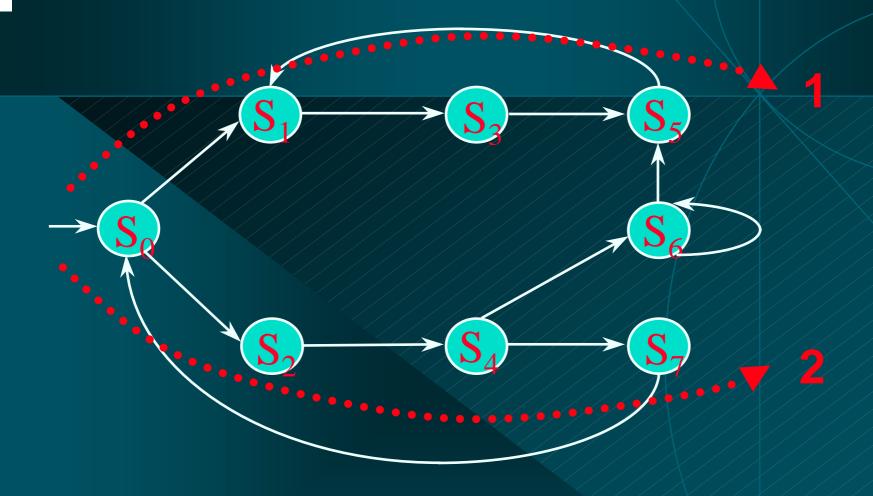
Task

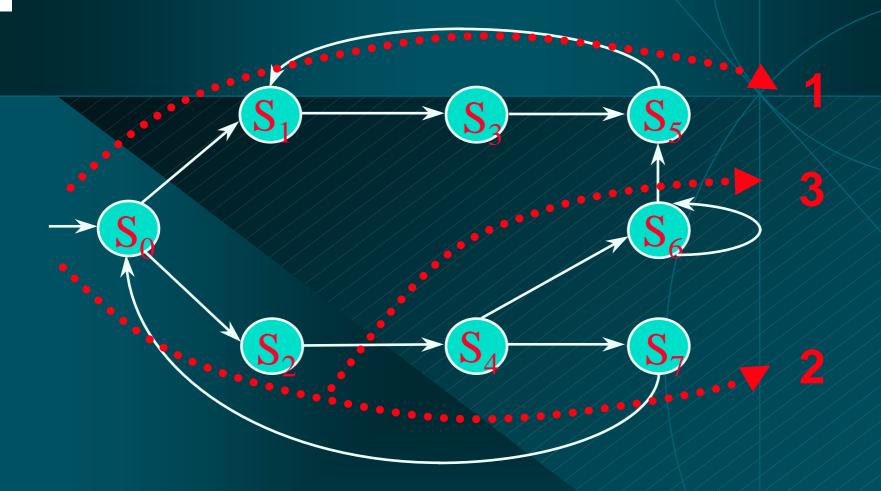
- Compute set of states reachable from initial state Q₀
- Represent as Boolean function R(S)
- Never enumerate states explicitly

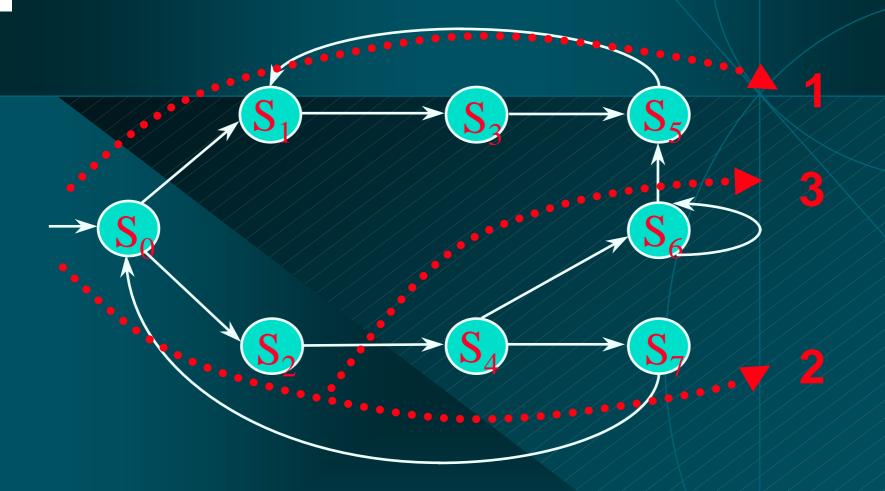




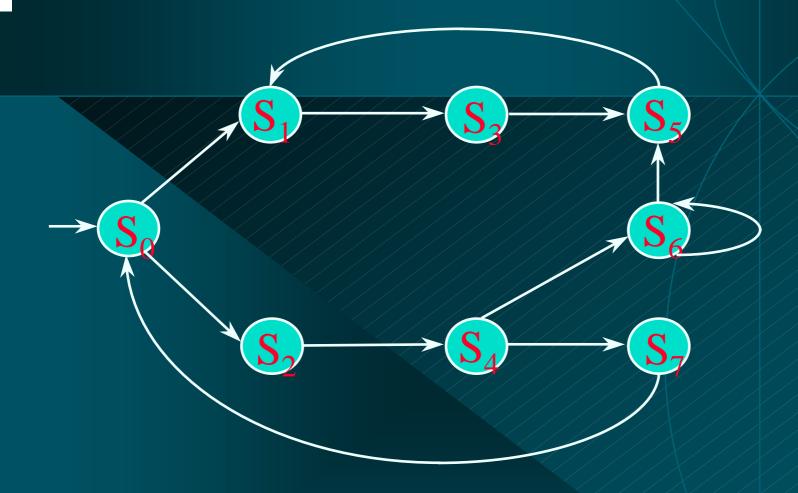


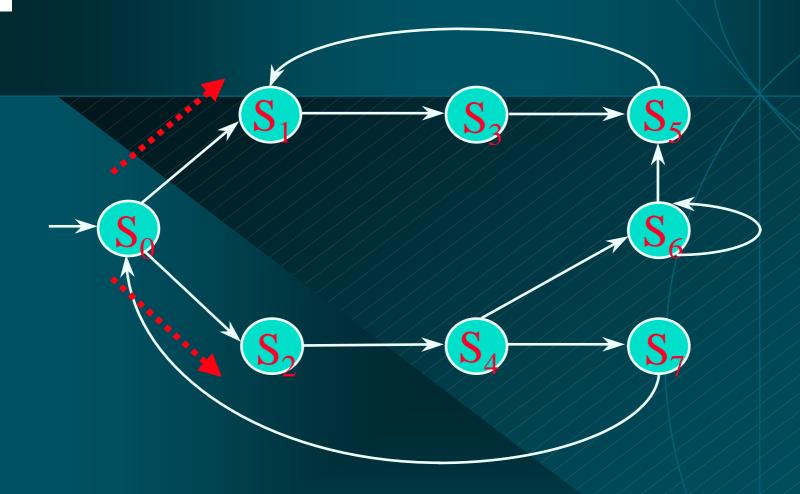


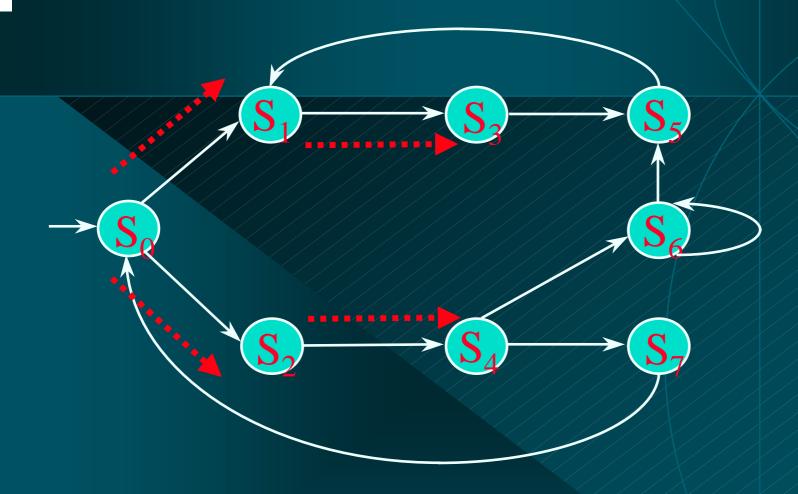


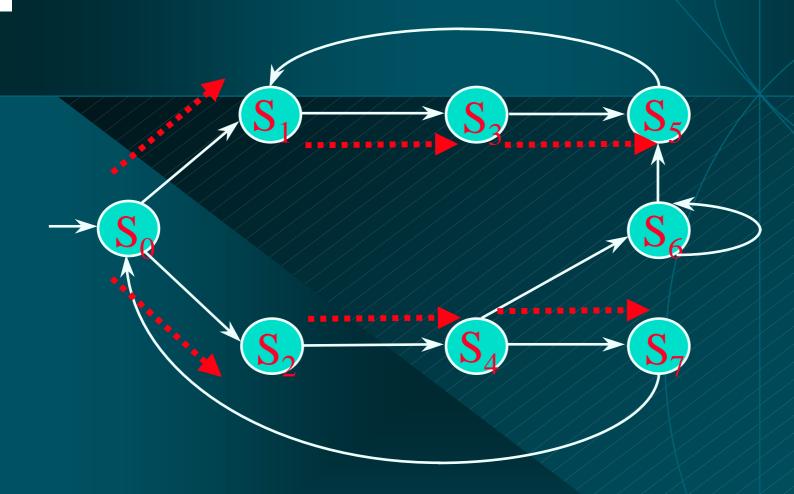


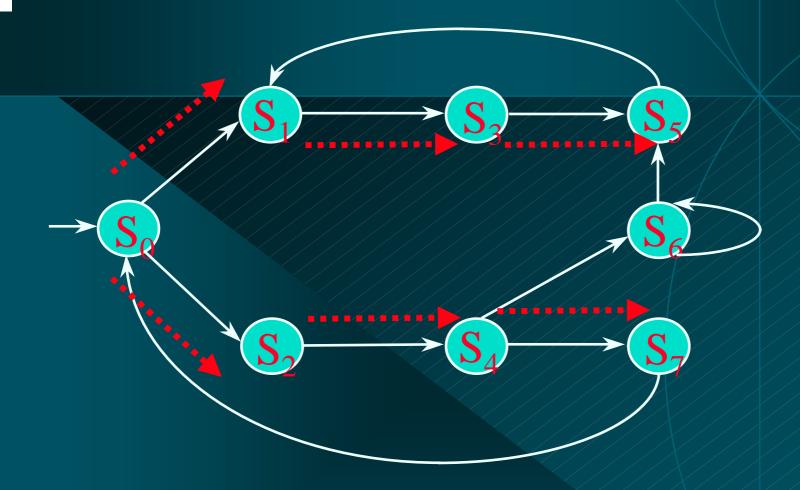
INEFFICIENT (it deals one state at a time)

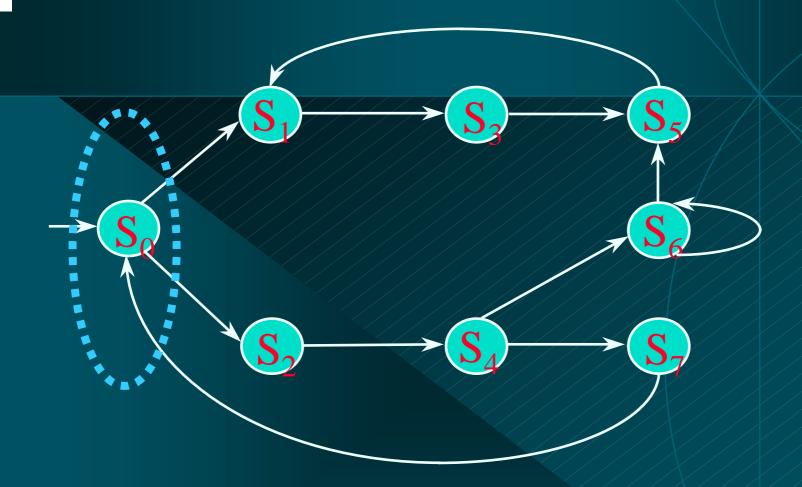


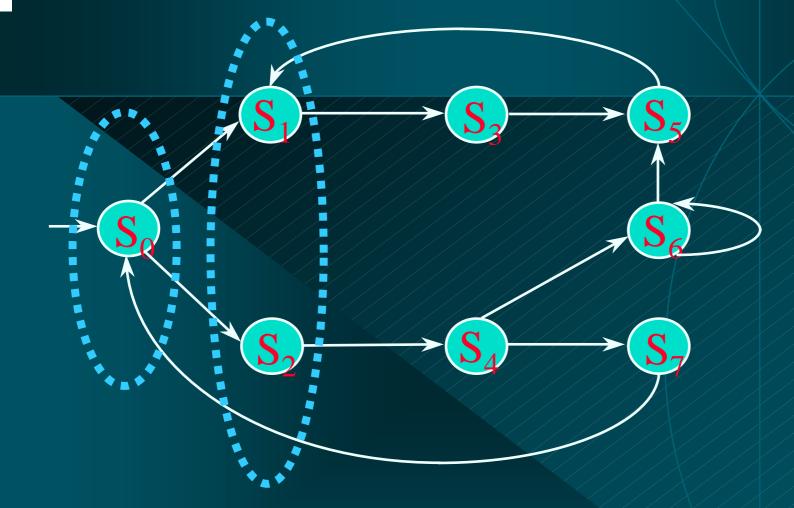


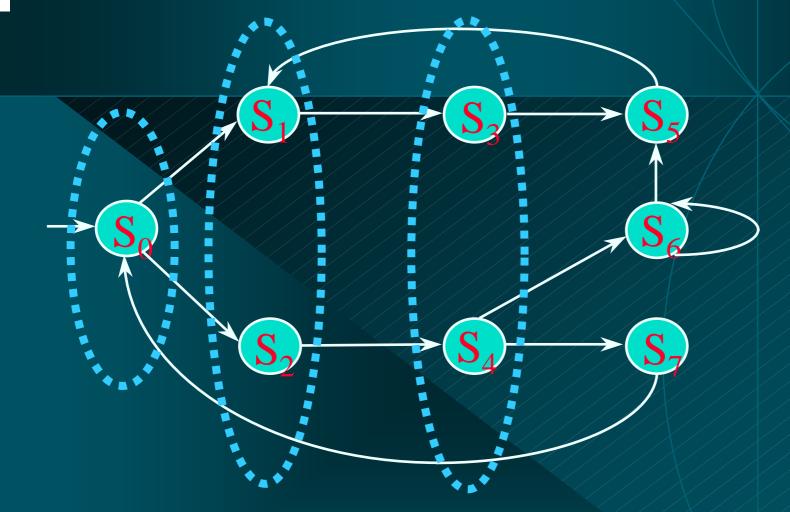


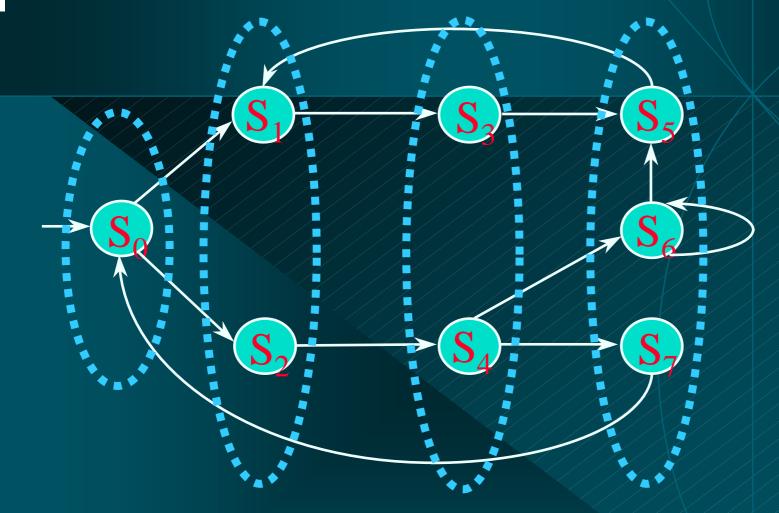


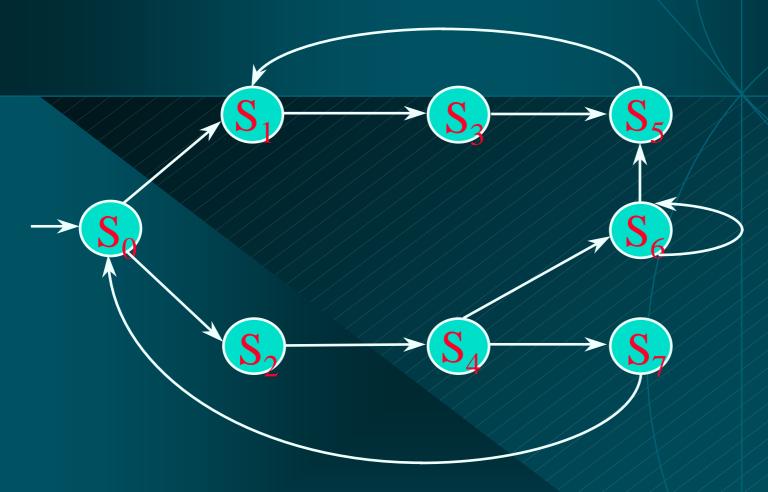


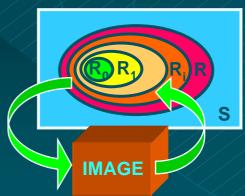












Representations

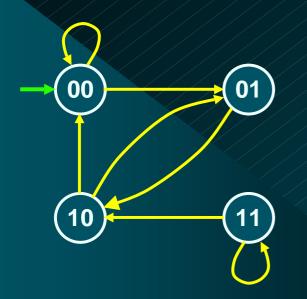
Explicit reachability analysis

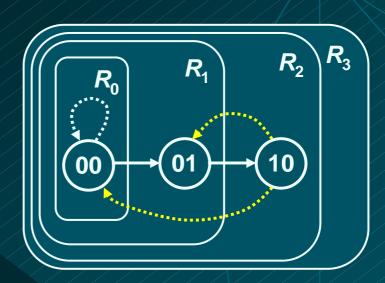
- Represent states explicitly (e.g. as bit string) => limited capacity
- Use hashtable to find quickly whether state was reached before
- Image operation: simple simulation
- Preimage operation: SAT run

Symbolic reachability analysis

- Represent states and transition relation symbolically
 E.g. BDDs, circuits, DNF, etc.
- Use BDD operations to perform image and preimage operation (simple AND or AND_EXIST)
- Lots of heuristic improvements to keep BDD size under control

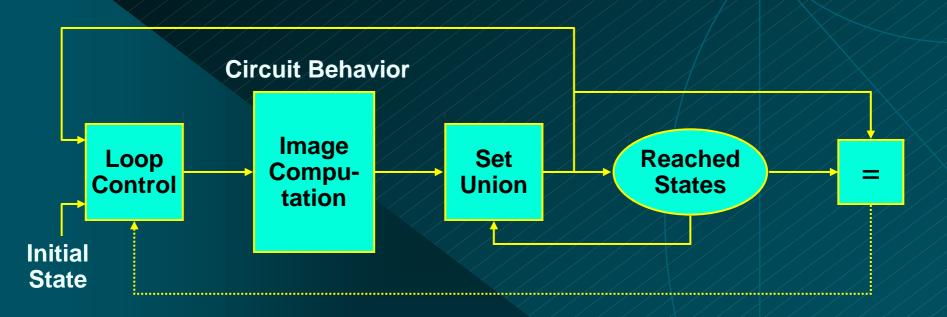
Breadth-First reachability analysis





- R set of states that can be reached in / transitions
- Reach fixed point when $R_n = R_{n+1}$
 - Guaranteed since finite state

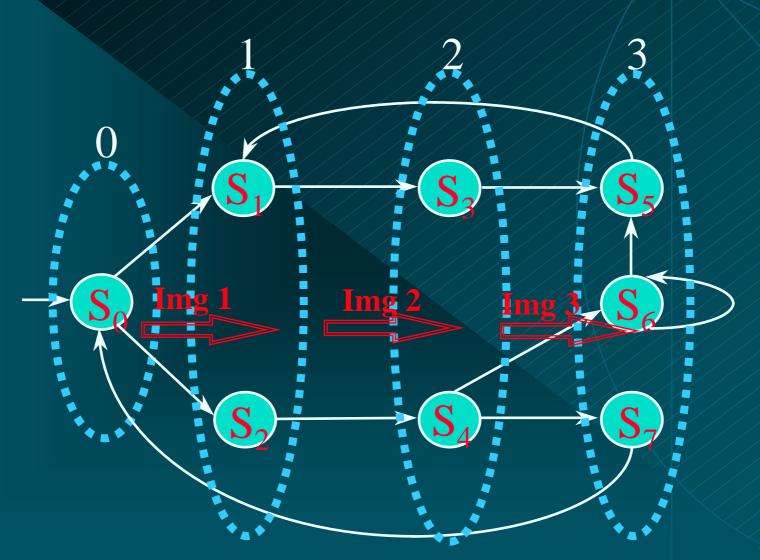
Breadth-First reachability analysis



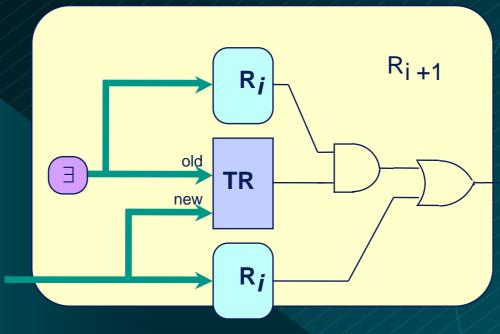
- Determine set of all reachable states of circuit
- Key step in model checking
 - Many (but not all) properties can be checked by some form of reachability computation

Forward Reachability Analysis (Forward Traversal)

Sequence of image computations ... until fix-point ...



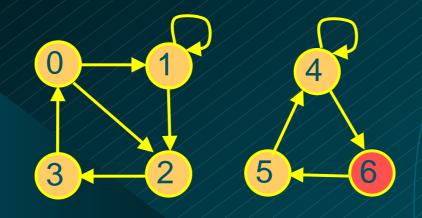
Iterative computation



$$R_0 = Q_0$$
do $R_{i+1}(s) = R_i(s) \lor \exists_{s'}[R_i(s') \land \delta(s',s)]$
 $i \leftarrow i+1$
until $R_i = R_{i-1}$ ALGORITHM

```
FwdTraversal (TR, S<sub>0</sub>)
   Reached = From = New = S_0 (s)
   while ( New \neq \phi )
      To = Img(TR, From)
      To |<sub>y→s</sub>
      New = To \land \neg Reached
      Reached = Reached V New
      From = Best_BDD (New, Reached)
   return (Reached (s))
```

Example

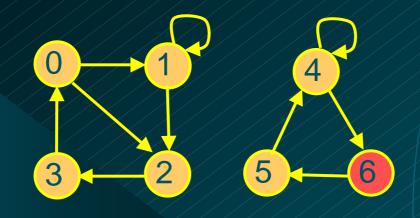


Iteration:	1	2 3	
From:	{0}	{1,2} {1,2,3}	
To:	{1,2}	{1,2,3} {0,1,2,3}	
Reached:	{0}	{0,1,2} {0,1,2,3}	

Backward State Traversal

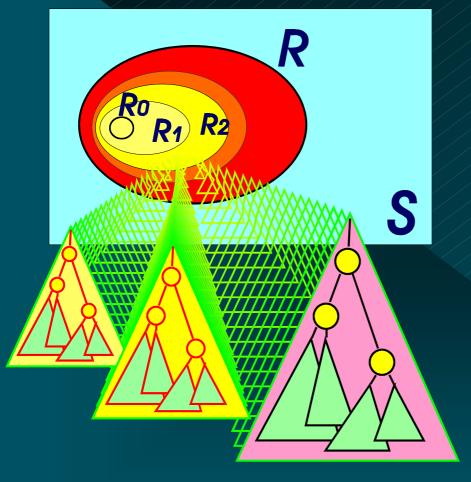
```
BwdTraversal (TR, S<sub>0</sub>)
   Reached = From = New = S_0 (s)
  while (New \neq \phi)
      To = Prelmg (TR, From)
      To |<sub>v→s</sub>
      New = To \land \neg Reached
      Reached = Reached V New
      From = Best_BDD (New, Reached)
   return (Reached (s))
```

Example



Iteration:	1	2///	3
From (current):	{6 }	{4 }	{4,5}
To (previous):	{4 }	{4,5}	{4,5,6}
Reached:	{6 }	{4,6}	{4,5,6}

To sum up



Forward Traversal

R₀ = Initial State Set

 $R_{i+1} = R_i + Img (TR, R_i)$

Backward Traversal

 $R_0 = Initial State Set$

 $R_{i+1} = R_i + Prelmg (TR, R_i)$

Image and inverse image

Img
$$(f, X) = f(X) = \{ y \in B^m \mid x \in X \land y = f(x) \}$$

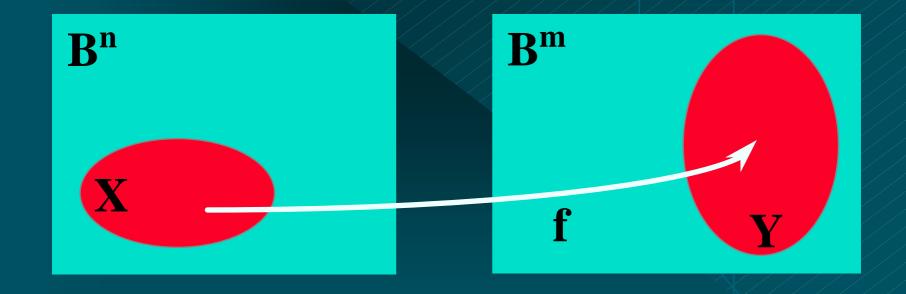


Image and inverse image

Img
$$(f, X) = f(X) = \{ y \in B^m \mid x \in X \land y = f(x) \}$$

PreImg
$$(f, Y) = f^{-1}(Y) = \{ x \in B^n \mid y \in Y \land y = f(x) \}$$

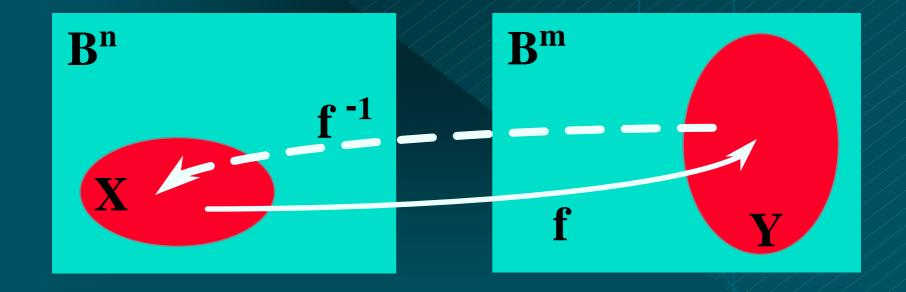
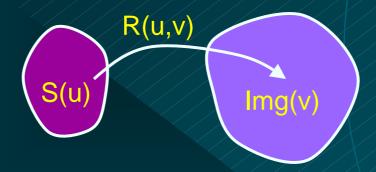


Image Computation

Computing set of next states from a given initial state (or set of states)

Img(S,R) =
$$\exists_u$$
 S(u) • R(u,v)



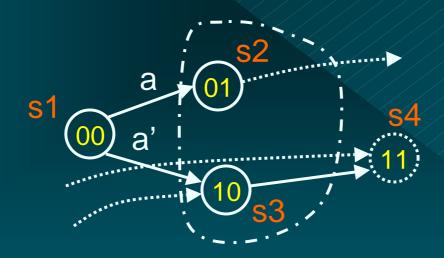
FSM: when transitions are labeled with input predicates
 x, quantify w.r.to all inputs (primary inputs and state var)

Img(S,R) =
$$\exists_{\mathbf{x}} \exists_{\mathbf{u}} S(\mathbf{u}) \cdot R(\mathbf{x},\mathbf{u},\mathbf{v})$$

Image Computation - example

Compute a set of next states from state s1

- Encode the states: s1=00, s2=01, s3=10, s4=11
- Write transition relations for the encoded states: R = (ax'y'X'Y + a'x'y'XY' + xy'XY +)



Example - cont'd

Compute Image from s1 under R

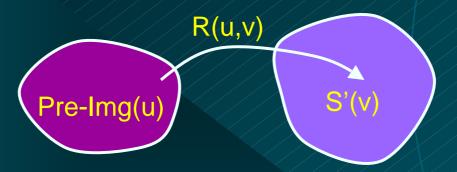
Img(s1,R) =
$$\exists_a \exists_{xy} s1(x,y) \cdot R(a,x,y,X,Y)$$

= $\exists_a \exists_{xy} (x'y') \cdot (ax'y'X'Y + a'x'y'XY' + xy'XY + ...)$
= $\exists_{axy} (ax'y'X'Y + a'x'y'XY') = (X'Y + XY')$
= $\{01, 10\} = \{s2, s3\}$
s1 00 a' s4 states for all inputs $s1 \rightarrow \{s2, s3\}$

Pre-Image Computation

Computing a set of present states from a given next state (or set of states)

Pre-Img(S',R) =
$$\exists_{v}$$
 R(u,v))• S'(v)



- Similar to Image computation, except that quantification is done w.r.to next state variables
- The result: a set of states backward reachable from state set S', expressed in present state variables u
- Useful in computing CTL formulas: AF, EF

Existential Quantification

Existential quantification (abstraction)

$$\exists_{x} f = f \big|_{x=0} + f \big|_{x=1}$$

***** Example:

$$\exists_x (x y + z) = y + z$$

 \diamond Note: $\exists_x f$ does not depend on x (smoothing)

Useful in symbolic image computation (sets of states)

Existential Quantification - cont'd

* Function can be existentially quantified w.r.to a vector: $X = x_1x_2...$

$$\exists_{\mathsf{X}} f = \exists_{\mathsf{x}1\mathsf{x}2\ldots} f = \exists_{\mathsf{x}1} \exists_{\mathsf{x}2} \exists_{\ldots} f$$

- Can be done efficiently directly on a BDD
- Very useful in computing sets of states
 - Image computation: next states
 - Pre-Image computation: previous states

from a given set of initial states

State Traversal Techniques

Forward Traversal

- Start from initial state(s)
- Traverse forward to check whether "bad"
- State(s) is reachable

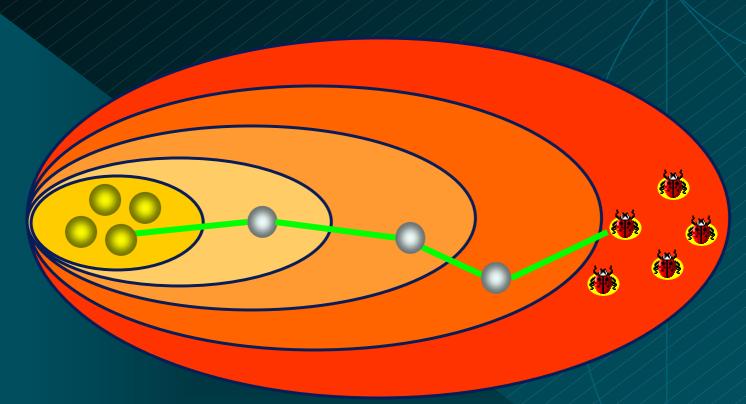
Backward Traversal

- Start from bad state(s)
- Traverse backward to check whether intial
- State(s) can reach them

Combines Forward/Backward traversal

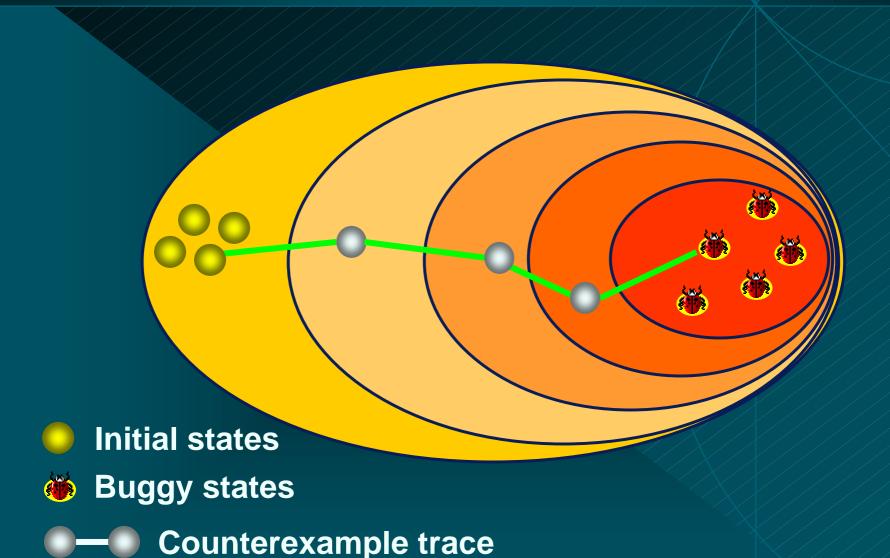
- compute over-approximation of reachable
- states by forward traversal
- for all bad states in over-approximation, start backward traversal to see whether intial state can reach them

BFS traversal (forward)



- Initial states
- Buggy states
- Counterexample trace

BFS traversal (backward)



BFV ModelCheck (invariant check)

```
BfvMC (TR, S, T)
   Reached = from = new = S
   for (i=0; new \neq \phi; i++)
      if (from \cap T \neq \emptyset)
        return (counterEx (TR, frontier, T))
      to = Img(TR, from)
      new = frontier<sub>i</sub> = to \cap \neg Reached
      Reached = Reached ∪ new
      from = new
   return (OK)
```

Forward-Backward BMC

BFV focused/guided by combination of forward and backward approx/exact traversals

FSM Analysis Impact

- Systems Represented as Finite State Machines
 - Sequential circuits
 - Communication protocols
 - Synchronization programs
- Analysis Tasks
 - State reachability
 - State machine comparison
 - Temporal logic model checking
- Traditional Methods Impractical for Large Machines
 - Polynomial in number of states
 - Number of states exponential in number of state variables
 - Example: single 32-bit register has 4,294,967,296 states!

BDD-based MC: Current status

- Symbolic model checkers can analyze sequential circuits with ~200- 400 flip flops
 - For specific circuit types, larger state spaces have been analyzed
- Challenges
 - Memory/runtime bottlenecks
 - Adoption of TLs for property specification
- Frontier constantly being pushed
 - Abstraction & approximation techniques
 - Symmetry reduction
 - Compositional reasoning
 - Advances in BDD technology ...

Performance bottleneck: Memory blow-up within Image

Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)]

Image is computed through:

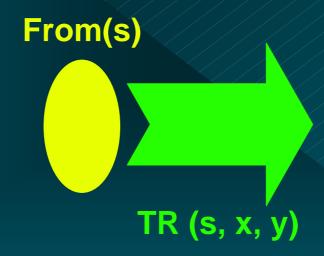
a conjunction-abstraction operation between present state set and transition relation.

Generally existential quantification reduces BDD size. BUT BDD can blow-up while computing:

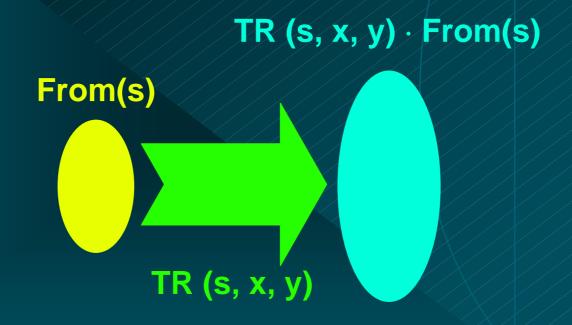
TR(s,x,y) = Π_i (y_i = δ_i (s,x)) TR (s, x, y) · From(s)

Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)]

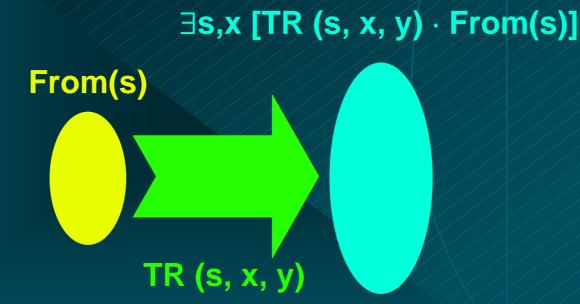
Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)]



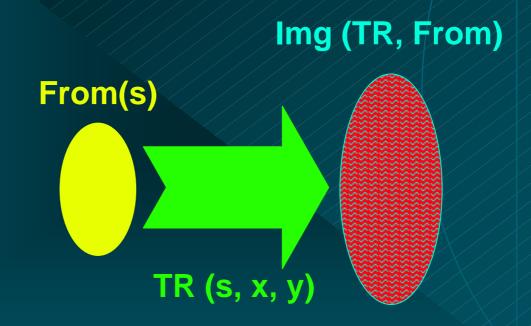
Img (TR, From) =
$$\exists_{s,x}$$
 [TR (s, x, y) · From(s)]



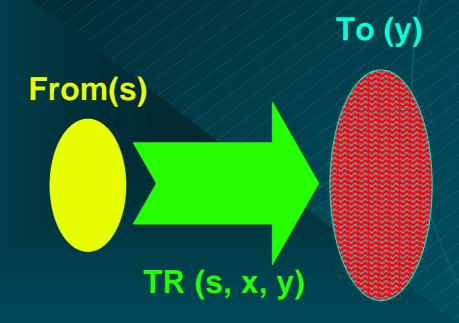
Img (TR, From) =
$$\exists_{s,x}$$
 [TR (s, x, y) · From(s)]



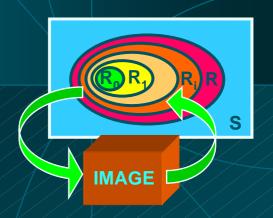
Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)]



To (y) = Img (TR, From) = $\exists_{s,x}$ [TR (s, x, y) · From(s)]



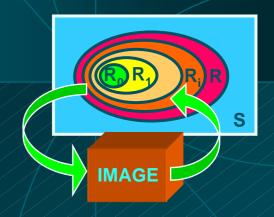
To (y) =
=
$$\exists_{sx}$$
[TR (s,x,y) • From (s)]



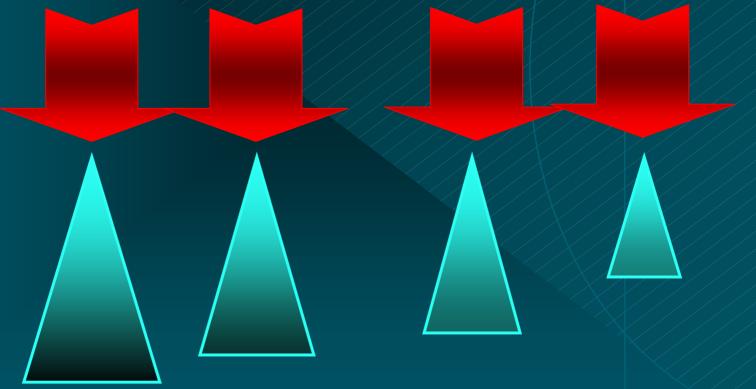
To
$$(y) =$$

 $= \exists_{sx}[TR(s,x,y) \cdot From(s)]$

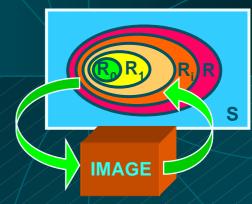
$$= \exists_{sx}[(y_1 \equiv \delta_1) \cdot (y_2 \equiv \delta_2) \cdot \dots \cdot (y_n \equiv \delta_n) \cdot \text{From (s) }]$$



To (y) = $= \exists_{sx}[TR (s,x,y) \cdot From (s)]$ $= \exists_{sx}[(y_1 \equiv \delta_1) \cdot (y_2 \equiv \delta_2) \cdot ... \cdot (y_n \equiv \delta_n) \cdot From (s)]$



To (y) = $= \exists_{sx}[TR (s,x,y) \cdot From (s)]$



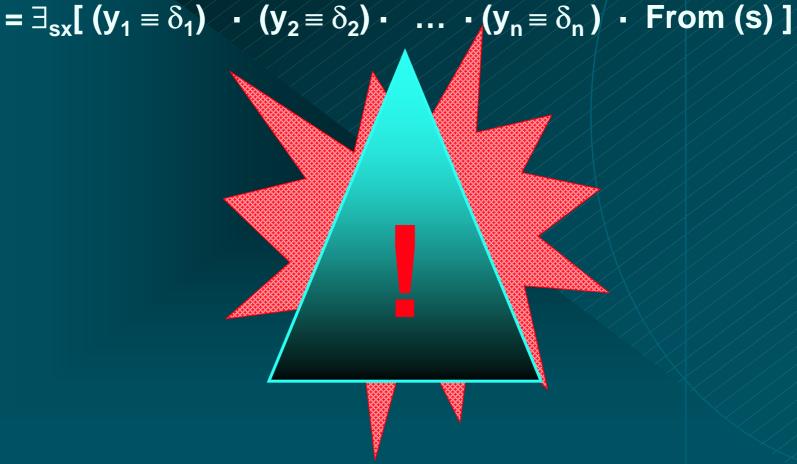
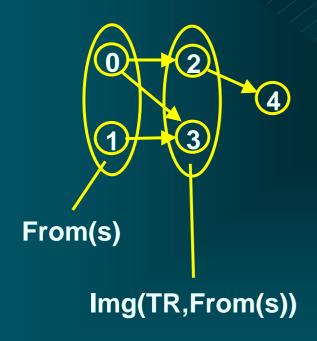


Image and Pre-Image of States: An Example

Image of a set of states From(s)

Example:



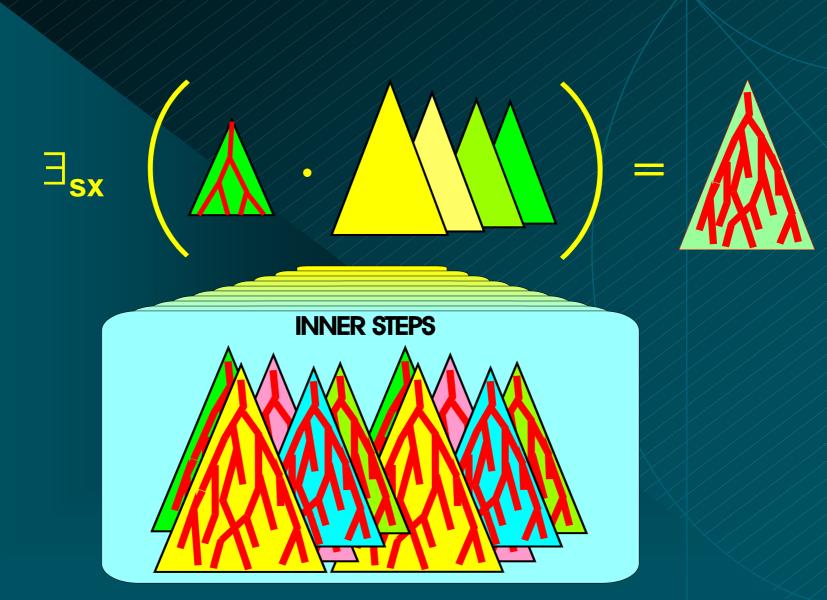
From (s) =
$$(s \equiv 0) \lor (s \equiv 1)$$
 {0,1}

TR (s, y) =
$$(s \equiv 0) \land (y \equiv 2) \lor$$
 {(0,2),
$$(s \equiv 0) \land (y \equiv 3) \lor$$
 (0,3),
$$(s \equiv 1) \land (y \equiv 3) \lor$$
 (1,3),
$$(s \equiv 2) \land (y \equiv 4)$$
 (2,4)}

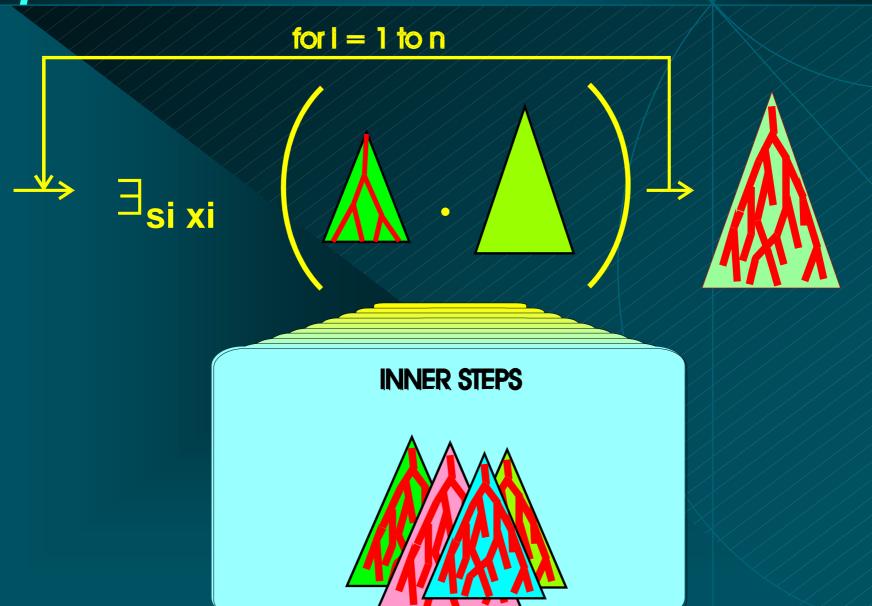
TR (s, y) \land From (s) =
$$(s \equiv 0) \land (y \equiv 2) \lor$$
 {(0,2),
$$(s \equiv 0) \land (y \equiv 3) \lor$$
 (0,3),
$$(s \equiv 1) \land (y \equiv 3) \lor$$
 (1,3)}

To (y) = \exists s (TR \land From) =
$$(y \equiv 2) \lor (y \equiv 3) \lor$$
 {(2,3)}

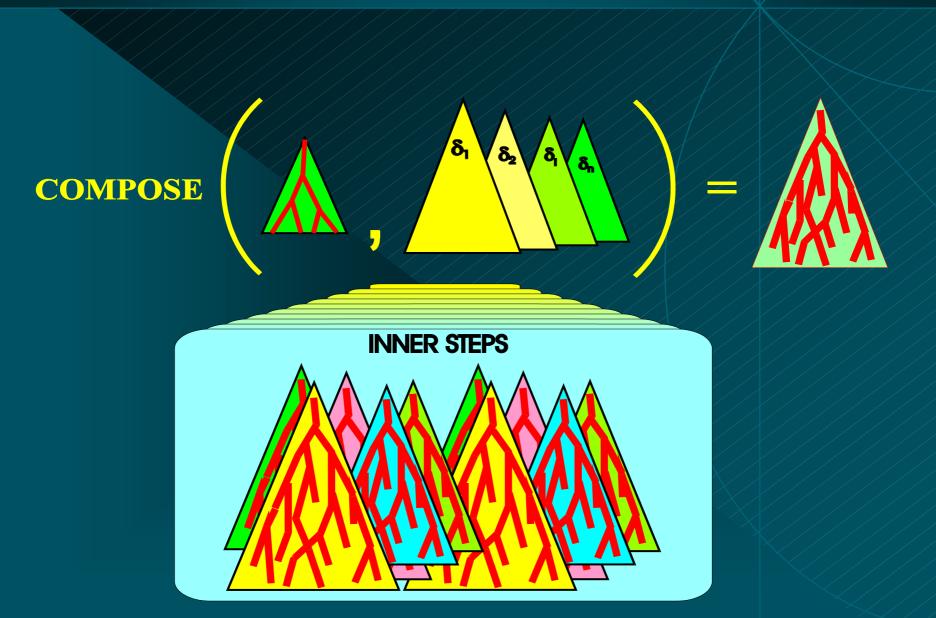
Image Computation: conjunctive partitioning



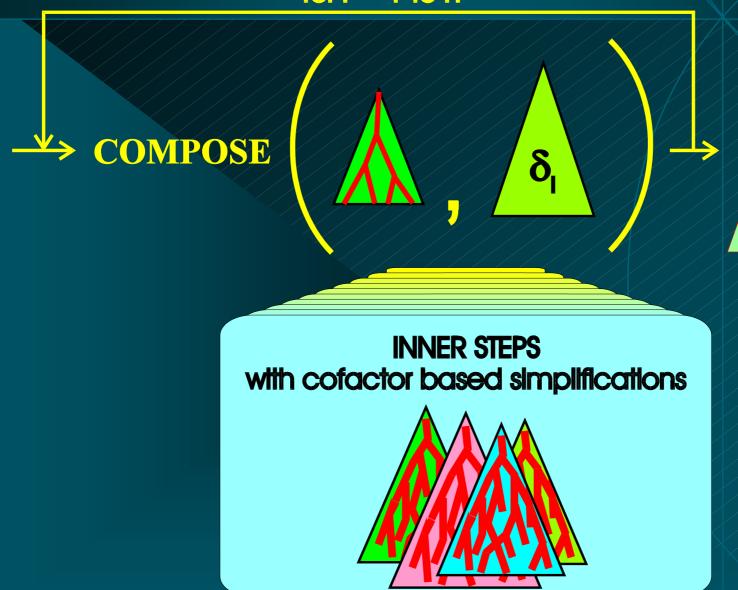
Conjunctive partitioning with early quantification



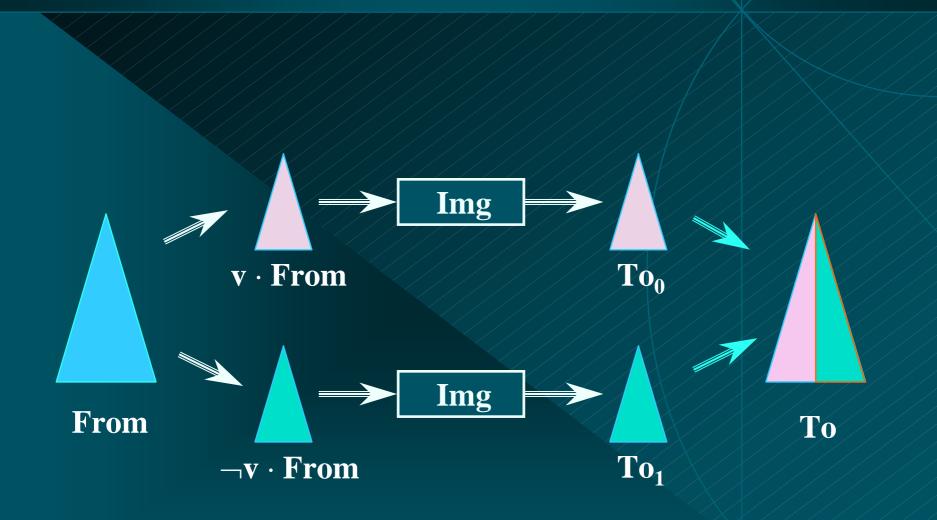
Pre-Image Computation

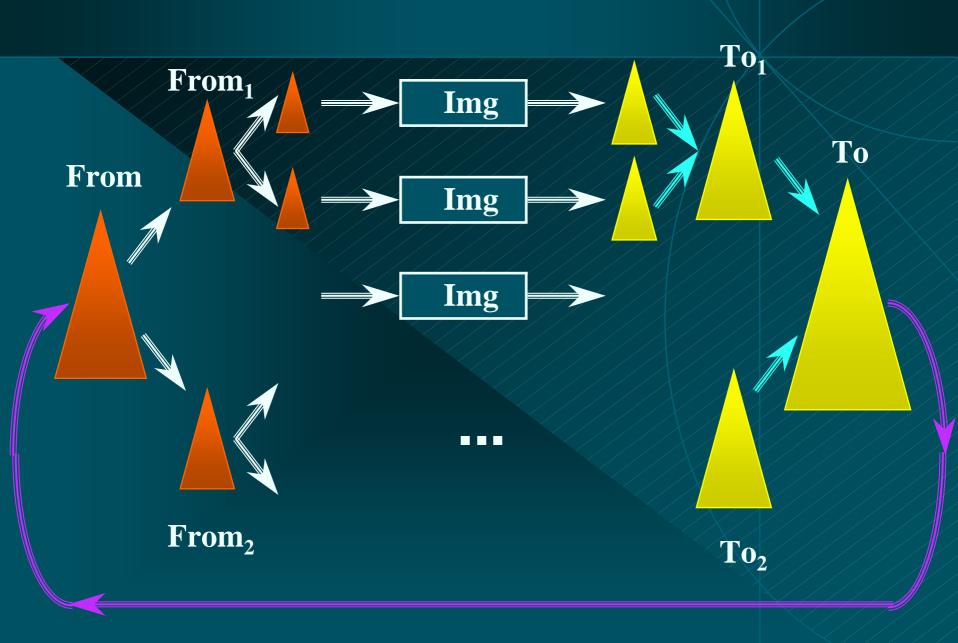


for I = 1 to n



Disjunctively Partitioned IMAGE





```
Partitioned_Traversal (\delta, S_0, th) {
   R_p = F_p = N_p = S_0;
   while (N_p \neq \phi) {
    T_{p} = \phi;
     foreach f \in F_n  {
      T_p = (T_p, Img(\delta, f));
      N_p = F_p = Set_Diff(T_p, R_p); R_p = Set_Union(N_p, R_p);
      F_p = Re_Partition (F_p, th); R_p = Re_Partition (R_p, th);
  return (R<sub>p</sub>);
```

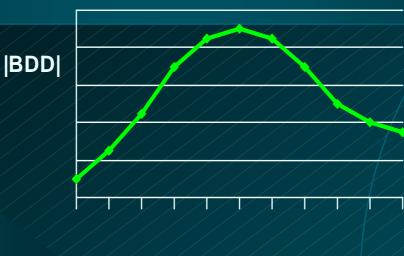
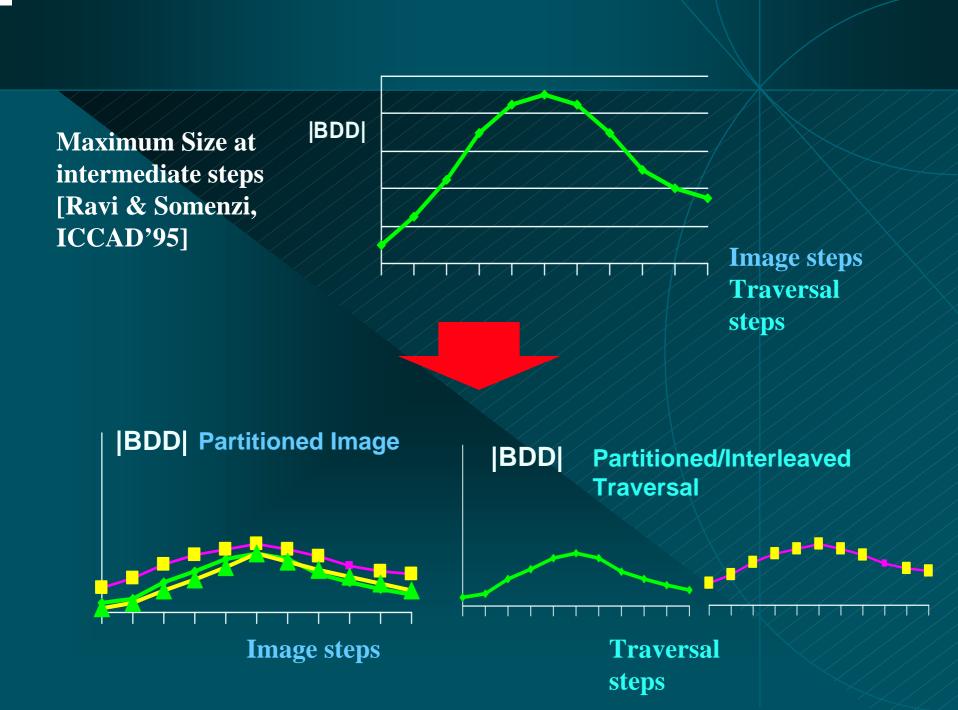



Image steps Traversal steps



- Conjunctively pertitioned IMG (sort clustering Exist)
- Disj part img
- Disj part trav

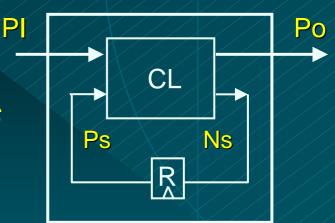
EQUIVALENCE CHECKING

Equivalence Checking

Two circuits are functionally equivalent if they exhibit the same behavior

- Combinational circuits
 - for all possible input values

- Sequential circuits
 - for all possible input sequences



Combinational Equivalence Checking

Functional Approach

- transform output functions of combinational circuits into a unique (canonical) representation
- two circuits are equivalent if their representations are identical
- efficient canonical representation: BDD

Structural

- identify structurally similar internal points
- prove internal points (cut-points) equivalent
- find implications

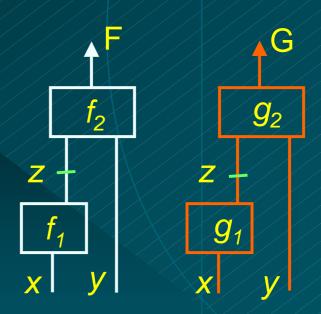
Functional Equivalence

- If BDD can be constructed for each circuit
 - represent each circuit as shared (multi-output) BDD
 use the same variable ordering!
 - BDDs of both circuits must be identical

- If BDDs are too large
 - cannot construct BDD, memory problem
 - use partitioned BDD method
 - decompose circuit into smaller pieces, each as BDD
 - check equivalence of internal points

Functional Decomposition

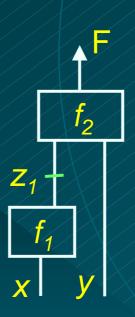
- Decompose each function into functional blocks
 - represent each block as a BDD (partitioned BDD method)
 - define cut-points (z)
 - verify equivalence of blocks at cut-points starting at primary inputs

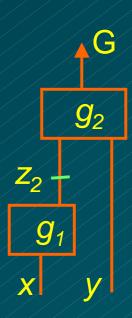


Cut-Points Resolution Problem

- \star If all pairs of cut-points (z_1, z_2) are equivalent
 - so are the two functions, F,G
- \diamond If intermediate functions (f_2,g_2) are not equivalent
 - the functions (F,G) may still be equivalent
 - this is called false negative

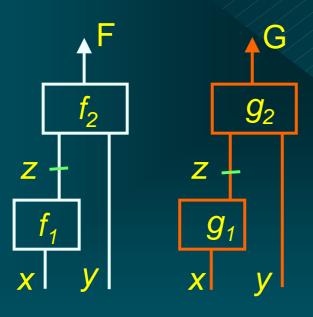
- Why do we have false negative?
 - functions are represented in terms of intermediate variables
 - to prove/disprove equivalence must represent the functions in terms of primary inputs (BDD composition)





Cut-Point Resolution – Theory

- - if $f_2(z,y) \equiv g_2(z,y)$, $\forall z,y$ then $f_2(f_1(x),y) \equiv g_2(f_1(x),y) \Rightarrow F \equiv G$
 - if $f_2(z,y) \neq g_2(z,y)$, $\forall z,y \neq \Rightarrow f_2(f_1(x),y) \neq g_2(f_1(x),y) \Rightarrow F \neq G$

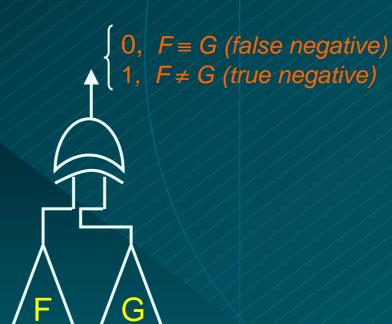


We cannot say if F ≡ G or not

- False negative
 - two functions are equivalent,
 but the verification algorithm
 declares them as different.

Cut-Point Resolution — cont'd

- How to verify if negative is false or true?
- Procedure 1: create a miter (XOR) between two potentially equivalent nodes/functions
 - perform ATPG test for stuck-at 0
 - find test pattern to prove F ≠ G
 - efficient for true negative (gives test vector, a proof)
 - inefficient when there is no test



Cut-Point Resolution — cont'd

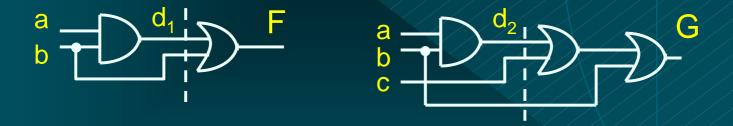
- Procedure 2: create a BDD for F ⊕ G
 - perform satisfiability analysis (SAT) of the BDD
 - \Rightarrow if BDD for $F \oplus G = \emptyset$, problem is *not* satisfiable, *false* negative
 - \diamond BDD for $F \oplus G \neq \emptyset$, problem is satisfiable, *true* negative

are equivalent, or expressed in terms of primary inputs

- the SAT solution, if exists, provides a test vector (proof of non-equivalence) – as in ATPG
- unlike the ATPG technique, it is effective for false negative (the BDD is empty!)

Structural Equivalence Check

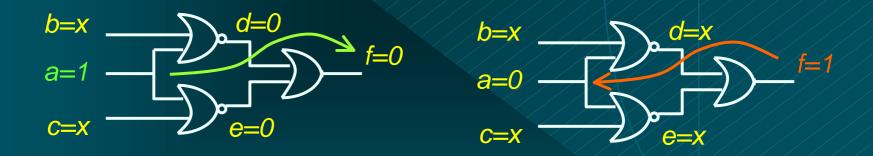
- Given two circuits, each with its own structure
 - identify "similar" internal points, cut sets
 - exploit internal equivalences
- False negative problem may arise
 - F = G, but differ structurally (different local support)
 - verification algorithm declares F,G as different



 Solution: use BDD-based or ATPG-based methods to resolve the problem. Also: implication, learning techniques.

Implication Techniques

- Techniques that extract and exploit internal correspondences to speed up verification
- Implications direct and indirect

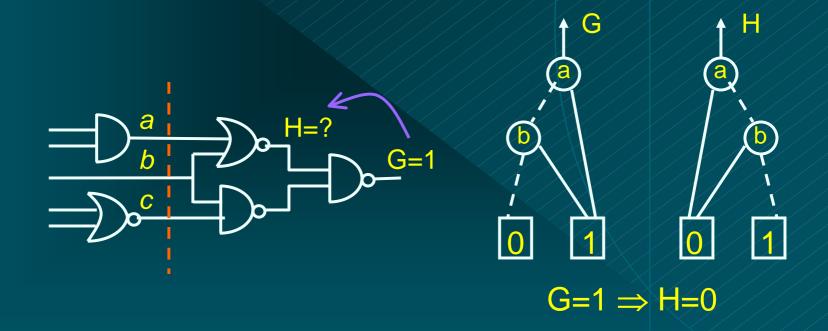


Direct: $a=1 \Rightarrow f=0$

Indirect (learning): $f=1 \Rightarrow a=0$

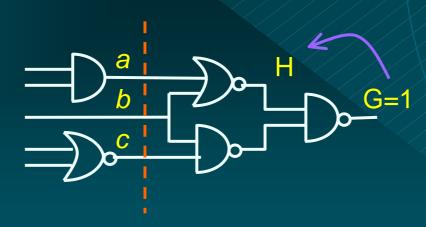
Learning Techniques

- Learning
 - process of deriving indirect implications
 - Recursive learning
 - → recursively analyzes effects of each justification
 - Functional learning



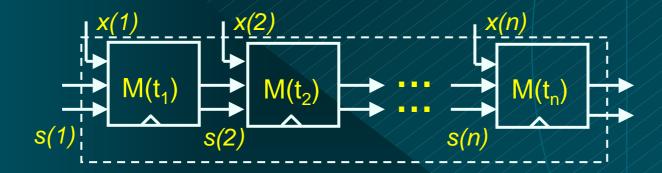
Learning Techniques - cont'd

- ♦ Other methods to check implications G=1 ⇒ H=0
 - Build a BDD for G H'
 - ♦ If this function is satisfiable (G·H'=1), the implication holds and gives a test vector
 - Otherwise it does not hold
 - Since $G=1 \Rightarrow H=0 = (G'+H')=1$, build a BDD for (G'+H')
 - The implication holds if (G'+H') ≡1 (tautology, trivial BDD)



Sequential Equivalence Checking

- Represent each sequential circuit as an FSM
 - verify if two FSMs are equivalent
- Approach 1: reduction to combinational circuit
 - unroll FSM over n time frames (flatten the design)



Combinational logic: F(x(1,2,...n),s(1,2,...n))

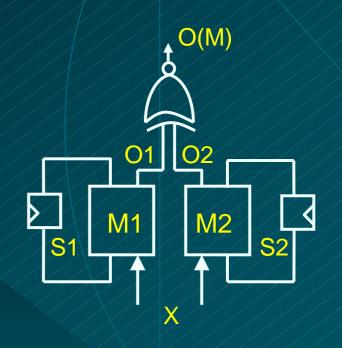
- check equivalence of the resulting combinational circuits
- problem: the resulting circuit can be too large too handle

Sequential Verification

- Approach 2: based on isomorphism of state transition graphs
 - two machines M1, M2 are equivalent if their state transition graphs (STGs) are isomorphic
 - perform state minimization of each machine
 - check if STG(M1) and STG(M2) are isomorphic

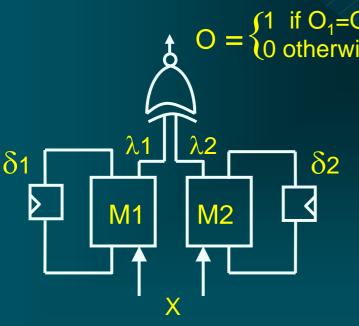
Sequential Verification

- Approach 3: symbolic FSM traversal of the product machine
- Given two FSMs: M₁(X,S₁, δ₁, λ₁,O₁),
 M₂(X,S₂, δ₂, λ₂,O₂)
- Create a product FSM: M = M₁× M₂
 - traverse the states of M and check its output for each transition
 - the output O(M) = 1, if outputs $O_1 = O_2$
 - if all outputs of M are 1, M₁ and M₂ are equivalent
 - otherwise, an error state is reached
 - *error trace* is produced to show: $M_1 \neq M_2$



Product Machine - Construction

- **Define** the product machine $M(X,S, \delta, \lambda,O)$
 - states, $S = S_1 \times S_2$
 - next state function, $\delta(s,x)$: $(S_1 \times S_2) \times X \rightarrow (S_1 \times S_2)$
 - output function, $\lambda(s,x) : (S_1 \times S_2) \times X \rightarrow \{0,1\}$



$$\lambda(s,x) = \lambda_1(s_1,x) \ \overline{\oplus} \ \lambda_2(s_2,x)$$

- Error trace (distinguishing sequence) that leads to an error state
 - sequence of inputs which produces 1 at the output of M
 - produces a state in M for which M1 and M2 give different outputs

FSM Traversal - Algorithm

- Traverse the product machine M(X,S,δ, λ,O)
 - start at an initial state S₀
 - iteratively compute symbolic image Img(S₀,R) (set of next states):

$$Img(S_0,R) = \exists_x \exists_s S_0(s) \cdot R(x,s,t)$$
$$R = \prod_i R_i = \prod_i (t_i \equiv \delta_i(s,x))$$

until an error state is reached

• transition relation R_i for each next state variable t_i can be computed as $t_i = (t \otimes \delta(s,x))$

(this is an alternative way to compute transition relation, when design is specified at gate level)

Construction of the Product FSM

- For each pair of states, s₁∈ M₁, s₂∈ M₂
 - create a combined state s = (s₁, s₂) of M
 - create transitions out of this state to other states of M
 - label the transitions (input/output) accordingly

$$M_{1} = \begin{cases} 0/1 & 1/0 \\ 1 & 0 \end{cases}$$

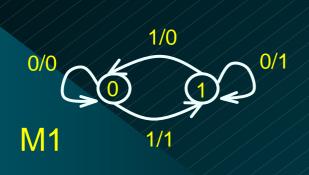
$$M_{2} = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$$

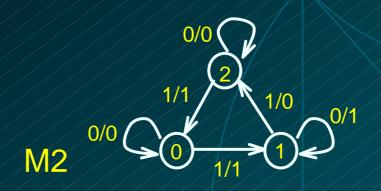
$$M_{2} = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$$

$$M_{2} = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$$

$$M_{2} = \begin{cases} 1 & 0 \\ 0 & 0 \end{cases}$$

FSM Traversal in Action

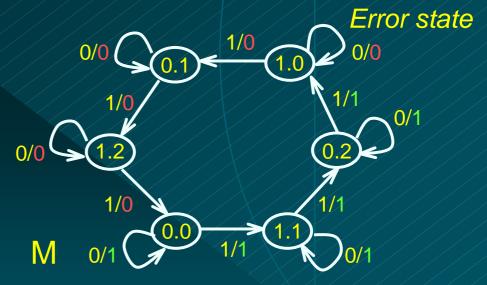




Initial states: $s_1=0$, $s_2=0$, s=(0.0)

	Out(M)
State reached	x=0 x=1

- New $^{0} = (0.0) 1 1$
- $New^1 = (1.1)$ 1 1
- $New^2 = (0.2)$ 1 1
- $New^3 = (1.0) \quad 0 \quad 0$



❖ STOP - backtrack to initial state to get *error trace: x*={1,1,1,0}

Symbolic CTL Model Checking

- Represent the required subsets of states as boolean functions and hence as ROBDDs.
- Represent the transition relation as a boolean function and hence as a ROBDD.
- Reduce the iterative fixed point computations of the model checking process to operations on ROBDDs.
- Check for the termination of the fixpoint computation by checking ROBDD equivalence.

CTL Formulas

Temporal logic formulas are evaluated w.r.to a state in the model

- State formulas
 - apply to a specific state
- Path formulas
 - apply to all states along a specific path

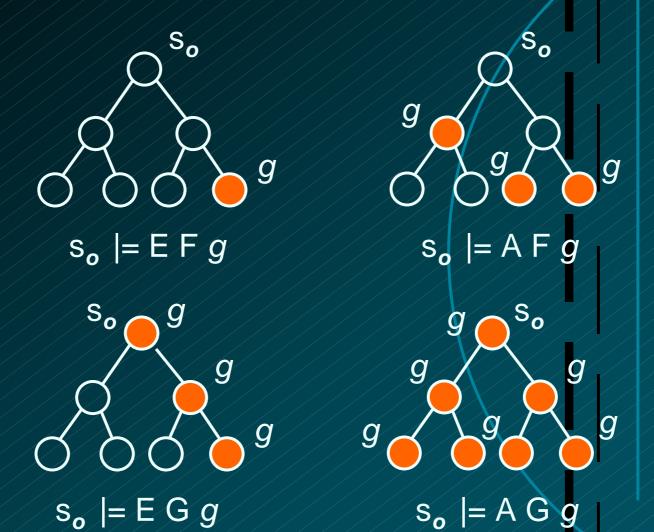
Basic CTL Formulas

- * E X (f)
 - true in state s if f is true in some successor of s (there exists a next state of s for which f holds)
- ❖ A X (f)
 - true in state s if f is true for all successors of s (for all next states of s f is true)
- **★** E G (f)
 - true in s if f holds in every state along some path emanating from s (there exists a path)
- * A G (f)
 - true in s if f holds in every state along all paths emanating from s (for all pathsglobally)

Basic CTL Formulas - cont 'd

- E F (g)
 - there exists a path which eventually contains a state in which g is true
- ❖ A F (g)
 - for all paths, eventually there is state in which g holds
- E F, A F are special case of E [f U g], A [f U g]
 - E F (g) = E [true U g], A F (g) = A [true U g]
- f U g (f until g)
 - true if there is a state in the path where g holds, and at every previous state f holds

CTL Operators - examples



Minimal set of CTL Formulas

- Full set of operators
 - ◆ Boolean: ¬, ∧, ∨, ⊕, →
 - temporal:
 E, A, X, F, G, U, R
- Minimal set sufficient to express any CTL formula
 - ◆ Boolean: ¬, ∨
 - temporal: E, X, U
- * Examples:

$$f \wedge g = \neg(\neg f \vee \neg g), \quad F f = true \cup f, \quad A(f) = \neg E(\neg f)$$

Semantics of X and U

* Semantics of X: $\pi = X p$

• Semantics of U:
$$\pi \models p \lor q$$

$$\pi \quad 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$$

$$\pi \mid = p$$

$$\pi \mid = p$$

$$\pi \mid = p$$

Typical CTL Formulas

- ❖ E F (start ∧ ¬ ready)
 - eventually a state is reached where start holds and ready does not hold
- \bullet A G (req \rightarrow A F ack)
 - any time request occurs, it will be eventually acknowledged
- * A G (E F restart)
 - from any state it is possible to get to the restart state

CTL symbolic Model Checking

- $| [\phi] | = f_{x_i}(x_1,...,x_n) = x_i$ (the OBDD for the boolean variable x_i)
- $| [\neg \phi] | = \neg f_{\phi}(x_1, ..., x_n)$ (apply negation to the OBDD for ϕ)
- $|[\phi \lor \psi]| = f_{\phi}(x_1,...,x_n) \lor f_{\psi}(x_1,...,x_n)$ (apply \lor operation to the OBDDs for ϕ and ψ)
- $| [\phi \wedge \psi] | = f_{\phi}(x_1, ..., x_n) \wedge f_{\psi}(x_1, ..., x_n)$ (apply \wedge operation to the OBDDs for ϕ and ψ)

CTL Symbolic Model Checking

```
* |[EX \phi]| =
\exists x'_1,...,x'_n(f_{\phi}(x'_1,...,x'_n) \land TR(x_1,...,x_n,x'_1,...,x'_n))
```

This is also the *pre-image of* [[\phi]] by *TR*

*
$$|[EU(\phi,\psi)]| = \mu Z.(f_{\psi}(x_1,...,x_n) \lor (f_{\phi}(x_1,...,x_n) \land EX|Z))$$

$$* |[EG \phi]| = \nu Z.(f_{\phi}(x_1, ..., x_n) \wedge EX Z)$$