Bridging the Gap Between Binary and Multiparty Communications

Jorge A. Pérez University of Groningen (NL)

Joint work with Luís Caires - Universidade NOVA de Lisboa (PT)

Open Problems in Concurrency Theory (OPCT)
Bertinoro, June 2014

Outline

An Open Problem

This Talk

Some Technical Details

Preliminaries

Medium Processes

Main Results

Concluding Remarks

Large-Scale Software Infrastructures

- Massive collections of heterogeneous, communicating services
- Correctness is a combination of several issues, including:
 - * Resource usage policies
 - * Security and trustworthiness requirements
 - * Conformance to predefined protocols

Large-Scale Software Infrastructures: Protocols

- Rely on advanced forms of mobility, concurrency, and distribution
- Conveniently described as chroreographies
 - * A global description of the overall interactive scenario
 - * Descriptions of the local behavior for each participant
 - Ways of ensuring that implementations "respect" global and local descriptions.
- Several analysis techniques proposed, including:
 - ⋆ Models/standards for (semi)formal description/analysis (e.g., BPMN)
 - ★ Automata-based approaches (e.g., MSCs/MSGs, CFSMs)
 - ⋆ Type-based approaches, such as session types

Session Types: A Class of Behavioral Types

Seminal approach to the analysis structured communications [Honda (1993); Honda, Vasconcelos, Kubo (1998)]

- Communication protocols structured into sessions
- Concurrent processes communicating through session channels
- Disciplined interactive behavior, abstracted as session types

Session Types: A Class of Behavioral Types

Seminal approach to the analysis structured communications [Honda (1993); Honda, Vasconcelos, Kubo (1998)]

- Communication protocols structured into sessions
- Concurrent processes communicating through session channels
- Disciplined interactive behavior, abstracted as session types

Correctness guarantees for specifications:

- Adhere to their ascribed session protocols Fidelity
- Do not feature runtime errors Safety
- Do not get stuck Progress / Lock-Freedom
- Do not have infinite reduction sequences Termination

STs for Multiparty Communications

- Multiparty Session Types (MPSTs) [Honda, Yoshida, Carbone (2008)]
 - ★ Protocols may involve more than two partners
 - * Global and local types, related by a projection function
 - * Underlying theory is subtle; analysis techniques hard to obtain

STs for Multiparty Communications

- Multiparty Session Types (MPSTs) [Honda, Yoshida, Carbone (2008)]
 - ⋆ Protocols may involve more than two partners
 - ★ Global and local types, related by a projection function
 - ★ Underlying theory is subtle; analysis techniques hard to obtain

Foundational significance:

Sound and complete characterization though communicating automata. [Deniélou and Yoshida (2013)]

STs for Multiparty and Binary Communications

- Multiparty Session Types (MPSTs) [Honda, Yoshida, Carbone (2008)]
 - ★ Protocols may involve more than two partners
 - * Global and local types, related by a projection function
 - ★ Underlying theory is subtle; analysis techniques hard to obtain

Foundational significance:

Sound and complete characterization though communicating automata. [Deniélou and Yoshida (2013)]

- Binary Session Types (BSTs) [Honda, Vasconcelos, Kubo (1998)]
 - ★ Protocols involve exactly two partners
 - ★ Correctness depends on action compatibility, realized via type duality
 - * Well-understood theory and analysis techniques

STs for Multiparty and Binary Communications

- Multiparty Session Types (MPSTs) [Honda, Yoshida, Carbone (2008)]
 - * Protocols may involve more than two partners
 - ★ Global and local types, related by a projection function
 - ★ Underlying theory is subtle; analysis techniques hard to obtain

Foundational significance:

Sound and complete characterization though communicating automata. [Deniélou and Yoshida (2013)]

- Binary Session Types (BSTs) [Honda, Vasconcelos, Kubo (1998)]
 - ★ Protocols involve exactly two partners
 - ★ Correctness depends on action compatibility, realized via type duality
 - ★ Well-understood theory and analysis techniques

Foundational significance:

Linear logic propositions as session types, in the style of Curry-Howard [Caires and Pfenning (2010); Wadler (2012)]

- A reduction would be
 - * theoretically insightful
 - ⋆ practically useful

- A reduction would be
 - * theoretically insightful
 - ⋆ practically useful
- Could we decompose global specifications into binary fragments, preserving sequencing information in interactions?

- A reduction would be
 - * theoretically insightful
 - ⋆ practically useful
- Could we decompose global specifications into binary fragments, preserving sequencing information in interactions? – Non trivial!

- A reduction would be
 - * theoretically insightful
 - * practically useful
- Could we decompose global specifications into binary fragments, preserving sequencing information in interactions? – Non trivial!
- Practice suggests that MPSTs are more expressive than BSTs

- A reduction would be
 - * theoretically insightful
 - ⋆ practically useful
- Could we decompose global specifications into binary fragments, preserving sequencing information in interactions? – Non trivial!
- Practice suggests that MPSTs are more expressive than BSTs
- Open problem: We don't know of any formal results

Outline

An Open Problem

This Talk

Some Technical Details

Preliminaries

Medium Processes

Main Results

Concluding Remarks

This Talk: A Positive Result

We present a formal, two-way correspondence between

- MPSTs with labeled communication and parallel composition, following [Honda, Yoshida, Carbone (2008), Deniélou and Yoshida (2013)]
- BSTs based on linear logic, following [Caires and Pfenning (2010)]: fidelity, safety, termination, and (dead)lock-freedom by typing.

Our Approach

- We decouple a multiparty communication from p to q:
 - * A send action from p to some intermediate entity
 - * A forwarding action from the entity to q

Our Approach: Medium Processes

- We decouple a multiparty communication from p to q:
 - * A send action from p to some intermediate entity
 - * A forwarding action from the entity to q
- ullet Given a global type G, extract its medium process ${\sf M}[\![G]\!]$
 - ⋆ Intermediate party in all multiparty exchanges
 - \star Captures sequencing information in G by decoupling interactions
 - ★ Local implementations need not know about the medium

MPSTs and BSTs: A Two-Way Correspondence

- 1. Let G be a well-formed global type. M[G] is well-typed under an environment in which participants are assigned types corresponding to the projections of G.
- 2. Let M[G] be a well-typed medium process under an environment in which participants are assigned some binary types. Such binary types correspond, in a precise sense, to the projections of G.

A Possible Methodology

Revising the one proposed in [Honda, Yoshida, Carbone (2008)]

- (i) A developer describes an intended interaction scenario as a global type G.
- (ii) She extracts M[G] and the set of (local) binary session types representing the projection of G onto all participants.
- (iii) Using logic-based BSTs she checks that M[G] is well-typed with respect to the set of (local) binary types just extracted. This ensures deadlock-freedom.
- (iv) She develops code, one for each participant, validating its conformance to the corresponding (local) session type.

Two Different Worlds, Connected via Mediums

- Multiparty interactions now explained from two different angles
- Half-way between two essentially distinct, foundational theories
- Clean justifications, based on linear logic, for MPSTs concepts:
 - ⋆ semantics of global types
 - ⋆ definitions of projection/well-formedness
- Naturally handles name passing, delegation, parallel composition
- Direct connection from choreographies to process implementations
- Techniques for binary processes applicable on global specifications:
 - * Deadlock freedom
 - * Typed behavioral equivalences

Outline

An Open Problem

This Talk

Some Technical Details

Preliminaries Medium Processes Main Results

Concluding Remarks

Outline

An Open Problem

This Talk

Some Technical Details

Preliminaries

Medium Processes Main Results

Concluding Remarks

A Standard Session π -calculus

• Given names (x, y, z, \ldots) , processes (P, Q, R) are defined by

$$P ::= \mathbf{0} \qquad | \qquad P \mid Q \qquad | \qquad (\boldsymbol{\nu}y)P$$

$$| \qquad \overline{x}y.P \qquad | \qquad x(y).P \qquad | \qquad !x(y).P$$

$$| \qquad x \triangleleft \mathbf{1}_i; P \qquad | \qquad x \triangleright \{\mathbf{1}_i : P_i\}_{i \in I} \qquad | \qquad [x \leftrightarrow y]$$

- We write $\overline{x}(y)$ to stand for the bound output $(\nu y)\overline{x}\,y$.
- An associated LTS with expected labels:

$$\lambda ::= \tau \mid x(y) \mid x \triangleleft 1 \mid \overline{x}y \mid \overline{x}(y) \mid \overline{x} \triangleleft \overline{1}$$

MPSTs: Syntax

- The language of global types subsumes those given in [Honda, Yoshida, Carbone (2008), Deniélou and Yoshida (2013)]
- Define global and local types as

$$\begin{array}{lll} G & ::= & \operatorname{end} \mid \operatorname{p} \twoheadrightarrow \operatorname{q} : \{\operatorname{l}_i \langle U_i \rangle . G_i\}_{i \in I} \mid G_1 \mid G_2 \\ T & ::= & \operatorname{end} \mid \operatorname{p} ? \{\operatorname{l}_i \langle U_i \rangle . T_i\}_{i \in I} \mid \operatorname{p} ! \{\operatorname{l}_i \langle U_i \rangle . T_i\}_{i \in I} \\ U & ::= & \operatorname{bool} \mid \operatorname{nat} \mid \operatorname{str} \mid \ldots \mid T \end{array}$$

- $G
 subset p_i$ is the (merge-based) projection of G onto participant p_i
- Well-formedness of G is defined as correct projectability on all p_i

Choreographies as MPSTs: A Commit Protocol

Structured interaction among three participants p_A , p_B , and p_C :

$$\begin{split} G &= p_{\mathtt{A}} \! \twoheadrightarrow \! p_{\mathtt{B}} \! : \! \big\{ \mathtt{act} \langle \mathsf{int} \rangle. \\ & p_{\mathtt{B}} \! \twoheadrightarrow \! p_{\mathtt{C}} \! : \! \big\{ \mathtt{sig} \langle \mathsf{str} \rangle. \\ & p_{\mathtt{A}} \! \twoheadrightarrow \! p_{\mathtt{C}} \! : \! \big\{ \mathtt{comm} \langle \mathbf{1} \rangle. \mathtt{end} \big\} \big\} \;, \\ & \mathtt{quit} \langle \mathsf{int} \rangle. \\ & p_{\mathtt{B}} \! \twoheadrightarrow \! p_{\mathtt{C}} \! : \! \big\{ \mathtt{save} \langle \mathbf{1} \rangle. \\ & p_{\mathtt{A}} \! \twoheadrightarrow \! p_{\mathtt{C}} \! : \! \big\{ \mathtt{fin} \langle \mathbf{1} \rangle. \mathtt{end} \big\} \; \big\} \; \end{split}$$

The projections of G onto p_A and p_C :

$$\begin{split} G\!\!\upharpoonright\! p_\mathtt{A} &= p_\mathtt{A}! \big\{ \mathtt{act}\langle \mathsf{int}\rangle. p_\mathtt{A}! \{ \mathtt{comm}\langle \mathbf{1}\rangle. \mathtt{end} \big\}, \\ &\qquad \qquad \mathtt{quit}\langle \mathsf{int}\rangle. p_\mathtt{B}! \{ \mathtt{sig}\langle \mathsf{str}\rangle. \mathtt{end} \} \ \big\} \\ G\!\!\upharpoonright\! p_\mathtt{C} &= p_\mathtt{B}? \big\{ \mathtt{sig}\langle \mathsf{str}\rangle. p_\mathtt{A}? \{ \mathtt{comm}\langle \mathbf{1}\rangle. \mathtt{end} \big\}, \\ &\qquad \qquad \qquad \mathtt{save}\langle \mathbf{1}\rangle. p_\mathtt{A}? \{ \mathtt{fin}\langle \mathbf{1}\rangle. \mathtt{end} \} \ \big\} \end{split}$$

Outline

An Open Problem

This Talk

Some Technical Details

Preliminaries

Medium Processes

Main Results

Concluding Remarks

Medium Process of a Global Type

The medium of global type G, noted M[G], is defined inductively as:

- M[end] = 0
- $\bullet \ \mathsf{M}[\![\,\mathsf{p} \! \twoheadrightarrow \! \mathsf{q} : \! \{\mathsf{l}_i \langle U_i \rangle . G_i\}_{i \in I}\,]\!] =$

$$c_{\mathtt{p}} \triangleright \big\{ \mathtt{l}_i : c_{\mathtt{p}}(u).c_{\mathtt{q}} \triangleleft \mathtt{l}_i; \overline{c_{\mathtt{q}}}(v).([u \mathop{\leftrightarrow} v] \mid \mathsf{M}[\![G_i]\!]) \big\}_{i \in I}$$

• $M[G_1 \mid G_2] = M[G_1] \mid M[G_2]$

$$\mathsf{M}[\![G]\!] \qquad = \qquad c_{\mathtt{p}} \, \triangleright \big\{ \mathtt{l}_i : c_{\mathtt{p}}(u).c_{\mathtt{q}} \, \triangleleft \mathtt{l}_i; \overline{c_{\mathtt{q}}}(v).([u \, \leftrightarrow \! v] \mid \mathsf{M}[\![G_i]\!]) \big\}_{i \in I}$$

$$\begin{split} \mathsf{M}[\![G]\!] &= c_{\mathsf{p}} \, \triangleright \big\{ \mathbf{1}_i : c_{\mathsf{p}}(u).c_{\mathsf{q}} \, \triangleleft \mathbf{1}_i; \overline{c_{\mathsf{q}}}(v).([u \! \leftrightarrow \! v] \mid \mathsf{M}[\![G_i]\!]) \big\}_{i \in I} \\ &\xrightarrow{c_{\mathsf{p}} \triangleleft \mathbf{1}_j} c_{\mathsf{p}}(u).c_{\mathsf{q}} \, \triangleleft \mathbf{1}_j; \overline{c_{\mathsf{q}}}(v).([u \! \leftrightarrow \! v] \mid \mathsf{M}[\![G_j]\!]) \quad (j \in I) \end{split}$$

$$\begin{split} \mathsf{M}[\![G]\!] &= c_{\mathtt{p}} \triangleright \left\{ \mathbf{1}_i : c_{\mathtt{p}}(u).c_{\mathtt{q}} \triangleleft \mathbf{1}_i; \overline{c_{\mathtt{q}}}(v).([u \! \leftrightarrow \! v] \mid \mathsf{M}[\![G_i]\!]) \right\}_{i \in I} \\ &\xrightarrow{c_{\mathtt{p}} \triangleleft \mathbf{1}_j} c_{\mathtt{p}}(u).c_{\mathtt{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathtt{q}}}(v).([u \! \leftrightarrow \! v] \mid \mathsf{M}[\![G_j]\!]) \quad (j \in I) \\ &\xrightarrow{c_{\mathtt{p}}(y)} c_{\mathtt{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathtt{q}}}(v).([y \! \leftrightarrow \! v] \mid \mathsf{M}[\![G_j]\!]) \end{split}$$

$$\begin{split} \mathsf{M}[\![G]\!] &= c_{\mathsf{p}} \triangleright \left\{ \mathbf{1}_i : c_{\mathsf{p}}(u).c_{\mathsf{q}} \triangleleft \mathbf{1}_i; \overline{c_{\mathsf{q}}}(v).([u \! \mapsto \! v] \mid \mathsf{M}[\![G_i]\!]) \right\}_{i \in I} \\ &\xrightarrow{c_{\mathsf{p}} \triangleleft \mathbf{1}_j} c_{\mathsf{p}}(u).c_{\mathsf{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathsf{q}}}(v).([u \! \mapsto \! v] \mid \mathsf{M}[\![G_j]\!]) \quad (j \in I) \\ &\xrightarrow{\frac{c_{\mathsf{p}}(y)}{\longrightarrow}} c_{\mathsf{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathsf{q}}}(v).([y \! \mapsto \! v] \mid \mathsf{M}[\![G_j]\!]) \\ &\xrightarrow{\overline{c_{\mathsf{q}} \triangleleft \mathbf{1}_j}} \overline{c_{\mathsf{q}}}(v).([y \! \mapsto \! v] \mid \mathsf{M}[\![G_j]\!]) \end{split}$$

$$\begin{split} \mathsf{M}[\![G]\!] &= c_{\mathsf{p}} \triangleright \left\{ \mathbf{1}_i : c_{\mathsf{p}}(u).c_{\mathsf{q}} \triangleleft \mathbf{1}_i; \overline{c_{\mathsf{q}}}(v).([u \! \mapsto \! v] \mid \mathsf{M}[\![G_i]\!]) \right\}_{i \in I} \\ &\xrightarrow{c_{\mathsf{p}} \triangleleft \mathbf{1}_j} c_{\mathsf{p}}(u).c_{\mathsf{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathsf{q}}}(v).([u \! \mapsto \! v] \mid \mathsf{M}[\![G_j]\!]) \quad (j \in I) \\ &\xrightarrow{c_{\mathsf{p}}(y)} c_{\mathsf{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathsf{q}}}(v).([y \! \mapsto \! v] \mid \mathsf{M}[\![G_j]\!]) \\ &\xrightarrow{\overline{c_{\mathsf{q}} \triangleleft \mathbf{1}_j}} \overline{c_{\mathsf{q}}}(v).([y \! \mapsto \! v] \mid \mathsf{M}[\![G_j]\!]) \\ &\xrightarrow{\overline{c_{\mathsf{q}}}(v)} (\boldsymbol{\nu}v)([y \! \mapsto \! v] \mid \mathsf{M}[\![G_j]\!]) \end{split}$$

$$\begin{split} \mathsf{M}[\![G]\!] &= c_{\mathsf{p}} \triangleright \left\{ \mathbf{1}_i : c_{\mathsf{p}}(u).c_{\mathsf{q}} \triangleleft \mathbf{1}_i; \overline{c_{\mathsf{q}}}(v).([u \leftrightarrow v] \mid \mathsf{M}[\![G_i]\!]) \right\}_{i \in I} \\ &\xrightarrow{c_{\mathsf{p}} \triangleleft \mathbf{1}_j} c_{\mathsf{p}}(u).c_{\mathsf{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathsf{q}}}(v).([u \leftrightarrow v] \mid \mathsf{M}[\![G_j]\!]) \quad (j \in I) \\ &\xrightarrow{c_{\mathsf{p}}(y)} c_{\mathsf{q}} \triangleleft \mathbf{1}_j; \overline{c_{\mathsf{q}}}(v).([y \leftrightarrow v] \mid \mathsf{M}[\![G_j]\!]) \\ &\xrightarrow{\overline{c_{\mathsf{q}} \triangleleft \mathbf{1}_j}} \overline{c_{\mathsf{q}}}(v).([y \leftrightarrow v] \mid \mathsf{M}[\![G_j]\!]) \\ &\xrightarrow{\overline{c_{\mathsf{q}}}(v)} (\boldsymbol{\nu}v)([y \leftrightarrow v] \mid \mathsf{M}[\![G_j]\!]) \\ &\xrightarrow{\tau} \mathsf{M}[\![G_j]\!] \end{split}$$

An Example: The Commit Protocol

$$\begin{split} G = p_{\mathtt{A}} \twoheadrightarrow p_{\mathtt{B}} : & \Big\{ \mathtt{act} \langle \mathsf{int} \rangle. p_{\mathtt{B}} \twoheadrightarrow p_{\mathtt{C}} : \Big\{ \mathtt{sig} \langle \mathsf{str} \rangle. p_{\mathtt{A}} \twoheadrightarrow p_{\mathtt{C}} : \Big\{ \mathtt{comm} \langle \mathbf{1} \rangle. \mathtt{end} \Big\} \Big\} \;, \\ & \qquad \qquad \mathsf{quit} \langle \mathsf{int} \rangle. p_{\mathtt{B}} \twoheadrightarrow p_{\mathtt{C}} : \Big\{ \mathtt{save} \langle \mathbf{1} \rangle. p_{\mathtt{A}} \twoheadrightarrow p_{\mathtt{C}} : \Big\{ \mathtt{fin} \langle \mathbf{1} \rangle. \mathtt{end} \Big\} \Big\} \;\; \Big\} \end{split}$$

An Example: The Commit Protocol

• The medium process M[G]:

```
\begin{split} a \, \triangleright \big\{ \, \text{act} : a(v).b \, \triangleleft \text{act}; \overline{b}(w).([w \, \leftrightarrow \, v] \mid \\ b \, \triangleright \big\{ \text{sig} : b(n).c \, \triangleleft \text{sig}; \overline{c}(m).([n \, \leftrightarrow \, m] \mid \\ a \, \triangleright \big\{ \text{comm} : a(u).c \, \triangleleft \text{comm}; \overline{c}(y).([u \, \leftrightarrow \, y] \mid \mathbf{0}) \big\} \, ) \big\} \, ), \\ \text{quit} : a(v).b \, \triangleleft \text{quit}; \overline{b}(w).([w \, \leftrightarrow \, v] \mid \\ b \, \triangleright \big\{ \text{save} : b(n).c \, \triangleleft \text{save}; \overline{c}(m).([n \, \leftrightarrow \, m] \mid \\ a \, \triangleright \big\{ \text{fin} : a(u).c \, \triangleleft \text{fin}; \overline{c}(y).([u \, \leftrightarrow \, y] \mid \mathbf{0}) \big\} \, ) \big\} \, ) \big\} \end{split}
```

An Example: The Commit Protocol

ullet The projections of G – the interface of local implementations:

```
\begin{split} &G \upharpoonright p_{\mathtt{A}} = p_{\mathtt{A}} ! \{ \mathtt{act} \langle \mathsf{int} \rangle. p_{\mathtt{A}} ! \{ \mathtt{comm} \langle \mathbf{1} \rangle. \mathsf{end} \}, \ \mathsf{quit} \langle \mathsf{int} \rangle. p_{\mathtt{B}} ! \{ \mathtt{sig} \langle \mathsf{str} \rangle. \mathsf{end} \} \} \\ &G \upharpoonright p_{\mathtt{B}} = p_{\mathtt{A}} ? \{ \mathtt{act} \langle \mathsf{int} \rangle. p_{\mathtt{B}} ! \{ \mathtt{sig} \langle \mathsf{str} \rangle. \mathsf{end} \}, \ \mathsf{quit} \langle \mathsf{int} \rangle. p_{\mathtt{B}} ! \{ \mathtt{save} \langle \mathbf{1} \rangle. \mathsf{end} \} \} \\ &G \upharpoonright p_{\mathtt{C}} = p_{\mathtt{B}} ? \{ \mathtt{sig} \langle \mathsf{str} \rangle. p_{\mathtt{A}} ? \{ \mathtt{comm} \langle \mathbf{1} \rangle. \mathsf{end} \}, \ \mathtt{save} \langle \mathbf{1} \rangle. p_{\mathtt{A}} ? \{ \mathtt{fin} \langle \mathbf{1} \rangle. \mathsf{end} \} \} \end{split}
```

• The medium process M[G]:

```
\begin{split} a \, \triangleright \big\{ \, \text{act} : a(v).b \, \triangleleft \text{act}; \overline{b}(w).([w \, \leftrightarrow \, v] \mid \\ b \, \triangleright \big\{ \text{sig} : b(n).c \, \triangleleft \text{sig}; \overline{c}(m).([n \, \leftrightarrow \, m] \mid \\ a \, \triangleright \big\{ \text{comm} : a(u).c \, \triangleleft \text{comm}; \overline{c}(y).([u \, \leftrightarrow \, y] \mid \mathbf{0}) \big\} \, \big) \big\} \, \big), \\ \text{quit} : a(v).b \, \triangleleft \text{quit}; \overline{b}(w).([w \, \leftrightarrow \, v] \mid \\ b \, \triangleright \big\{ \text{save} : b(n).c \, \triangleleft \text{save}; \overline{c}(m).([n \, \leftrightarrow \, m] \mid \\ a \, \triangleright \big\{ \text{fin} : a(u).c \, \triangleleft \text{fin}; \overline{c}(y).([u \, \leftrightarrow \, y] \mid \mathbf{0}) \big\} \, \big) \big\} \, \big) \big\} \end{split}
```

Outline

An Open Problem

This Talk

Some Technical Details

Preliminaries

Medium Processes

Main Results

Concluding Remarks

Correspondence between MPSTs and BSTs

- Conditions under which a medium M[G] is well-typed in the logically motivated BSTs of [Caires & Pfenning (2010)]
- A bidirectional correspondence that relates
 - (a) binary session types associated to $\mathsf{M}[\![G]\!]$
 - (b) the local types for G

MPSTs and BSTs: Two-Way Correspondence (1)

• The type judgment Γ ; $\Delta \vdash P :: z:C$ (from [Caires & Pfenning (2010)]): P provides behavior C at channel z, building on "services" in Γ ; Δ

MPSTs and BSTs: Two-Way Correspondence (1)

- The type judgment $\Gamma; \Delta \vdash P :: z:C$ (from [Caires & Pfenning (2010)]): P provides behavior C at channel z, building on "services" in $\Gamma; \Delta$
- A compositional typing gives a binary type for all participants.
- Mapping $\langle\!\langle \cdot \rangle\!\rangle$ from local types T to binary session types A

Theorem (From Well-Formedness To Typed Mediums)

Let G be a global type, with $part(G) = \{p_1, \dots, p_n\}$. If G is well-formed then

$$\Gamma$$
; c_1 : $\langle\langle G \upharpoonright p_1 \rangle\rangle$, ..., c_n : $\langle\langle G \upharpoonright p_n \rangle\rangle \vdash M \llbracket G \rrbracket :: -:1$

is a compositional typing for M[G], for some Γ .

MPSTs and BSTs: Two-Way Correspondence (2)

- The type judgment Γ ; $\Delta \vdash P :: z:C$ (from [Caires & Pfenning (2010)]): P provides behavior C at channel z, building on "services" in Γ ; Δ
- A compositional typing gives a binary type for all participants.
- Mapping $\langle\!\langle \cdot \rangle\!\rangle$ from local types T to binary session types A

Theorem (From Well-Typedness To WF Global Types) Let G be a global type. If

$$\Gamma; c_1:A_1,\ldots,c_n:A_n \vdash \mathsf{M}\llbracket G \rrbracket :: -:\mathbf{1}$$

is a compositional typing for M[G] then there exist local types T_1, \ldots, T_n s.t. $G \upharpoonright \mathbf{r}_j \preceq^{\sqcup} T_j$ and $\langle\!\langle T_j \rangle\!\rangle = A_j$, for all $\mathbf{r}_j \in G$.

A Behavioral Characterization of Swapping

 The swap relation, written ≃_{sw}, enables safe transformations over global types [Carbone and Montesi (2013)]. For instance:

$$\begin{aligned} & \{ \mathbf{p_1}, \mathbf{q_1} \} \# \{ \mathbf{p_2}, \mathbf{q_2} \} \\ & \mathbf{p_1} \! \rightarrow \! \mathbf{q_1} \! : \! \left\{ \mathbf{1}_i \langle U_i \rangle. \mathbf{p_2} \! \rightarrow \! \mathbf{q_2} \! : \! \left\{ \mathbf{1}_j' \langle U_j' \rangle. G_{ij} \right\}_{j \in J} \right\}_{i \in I} \\ & \simeq_{\mathsf{sw}} \\ & \mathbf{p_2} \! \rightarrow \! \mathbf{q_2} \! : \! \left\{ \mathbf{1}_j' \langle U_j' \rangle. \mathbf{p_1} \! \rightarrow \! \mathbf{q_1} \! : \! \left\{ \mathbf{1}_i \langle U_i \rangle. G_{ij} \right\}_{i \in I} \right\}_{j \in J} \end{aligned}$$

A Behavioral Characterization of Swapping

 The swap relation, written ≃_{sw}, enables safe transformations over global types [Carbone and Montesi (2013)]. For instance:

$$\begin{split} & \qquad \qquad \{\mathbf{p_1}, \mathbf{q_1}\} \# \{\mathbf{p_2}, \mathbf{q_2}\} \\ & \qquad \qquad \mathbf{p_1} \! \rightarrow \! \mathbf{q_1} \! : \! \left\{ \mathbf{1}_i \langle U_i \rangle. \mathbf{p_2} \! \rightarrow \! \mathbf{q_2} \! : \! \left\{ \mathbf{1}_j' \langle U_j' \rangle. G_{ij} \right\}_{j \in J} \right\}_{i \in I} \\ & \qquad \qquad \simeq_{\mathsf{sw}} \\ & \qquad \qquad \mathbf{p_2} \! \rightarrow \! \mathbf{q_2} \! : \! \left\{ \mathbf{1}_j' \langle U_j' \rangle. \mathbf{p_1} \! \rightarrow \! \mathbf{q_1} \! : \! \left\{ \mathbf{1}_i \langle U_i \rangle. G_{ij} \right\}_{i \in I} \right\}_{j \in J} \end{split}$$

On logic-based BSTs, we have prefix commutations on processes.
 To justify such transformations, we use context bisimilarity.
 Two typed processes P and Q, are context bisimilar, denoted Γ; Δ ⊢ P ≈ Q :: x:A if, once composed with requirements Γ and Δ, they perform the same actions on x (as described by A).

A Behavioral Characterization of Swapping

Theorem

If $G_1 \simeq_{\sf sw} G_2$ then $\Gamma; \Delta \vdash \mathsf{M}\llbracket G_1 \rrbracket \approx \mathsf{M}\llbracket G_2 \rrbracket :: -: 1$.

- A semantic justification of key structural identities on global types
- Useful to relax sequential constraints induced by process structure
- The converse does not hold in general. Example:

$$G = \mathbf{p} \twoheadrightarrow \mathbf{q} : \left\{ \mathbf{1}_i \langle U_i \rangle. \mathbf{r} \twoheadrightarrow \mathbf{p} : \left\{ \mathbf{1}'_j \langle U'_j \rangle. G_{ij} \right\}_{j \in I} \right\}_{i \in I}$$

It cannot be swapped and yet prefixes for q and r in $M[\![G]\!]$ could be commuted.

Operational Correspondence

- A formal connection between MPSTs and mediums.
 Intuition: the medium faithfully mirrors the choreography.
- The annotated medium of a global type G, denoted $\mathcal{M}[\![G]\!]_k$, uses a session on fresh name k to mimic each action of G.
- The correspondence can then be recasted as follows: If G is well-formed then we have the type judgment, for some Γ :

$$\Gamma; c_1: \langle \langle G \upharpoonright p_1 \rangle \rangle, \ldots, c_n: \langle \langle G \upharpoonright p_n \rangle \rangle \vdash \mathcal{M}[\![G]\!]_k :: k: \langle [G]\!]$$

(G) denotes a binary type that captures the sequentiality in G.

- Let $S = (\nu \widetilde{c})(P_1 \mid \cdots \mid P_n \mid \mathcal{M}[\![G]\!]_k)$ be a system realizing G.
- Every move of G can be mimicked by an action of S on k.

Outline

An Open Problem

This Talk

Some Technical Details

Preliminaries

Medium Processes

Main Results

Concluding Remarks

Concluding Remarks (1)

- Medium processes define a simple characterization of the multiparty interactions that underlie actual choreographic protocols
- They offer a formal connection between typed frameworks for multiparty and binary communications
- Not merely a pleasant reduction: our approach establishes a natural bridge between session types and well-established theories

Concluding Remarks (2)

- Logically motivated BSTs reveal strong and tight correspondences between typed mediums and the local projections of a global type.
- These correspondences are useful! Key guarantees
 - ⋆ preservation
 - ⋆ progress / lock-freedom
 - ⋆ termination
 - ⋆ behavioral equivalences

can be transferred from BSTs to MPSTs.

Concluding Remarks (2)

- Logically motivated BSTs reveal strong and tight correspondences between typed mediums and the local projections of a global type.
- These correspondences are useful! Key guarantees
 - ⋆ preservation
 - ⋆ progress / lock-freedom
 - * termination
 - ⋆ behavioral equivalences

can be transferred from BSTs to MPSTs.

- Moreover, logically motivated theories of BSTs with
 - * recursion [Toninho et al., 2014]
 - * asynchrony [DeYoung et al., 2012]
 - ★ dependent types [Toninho et al., 2011]
 - * parametric polymorphism [Caires et al., 2013]
 - * ...

can be lifted to MPSTs!

Bridging the Gap Between Binary and Multiparty Communications

Jorge A. Pérez University of Groningen (NL)

Joint work with Luís Caires - Universidade NOVA de Lisboa (PT)

Open Problems in Concurrency Theory (OPCT)
Bertinoro, June 2014

Session types as linear logic propositions

The type syntax coincides with dual intuitionistic linear logic:

$$A, B \qquad ::= \mathbf{1} \mid A \otimes B \mid A \multimap B \mid !A$$
$$\mid \& \{\mathbf{1}_i : A_i\}_{i \in I} \mid \oplus \{\mathbf{1}_i : A_i\}_{i \in I}$$

[No atomic formulas, \top , 0]

Session types as linear logic propositions

The type syntax coincides with dual intuitionistic linear logic:

$$A, B \qquad ::= \mathbf{1} \mid A \otimes B \mid A \multimap B \mid !A$$
$$\mid \& \{\mathbf{1}_i : A_i\}_{i \in I} \mid \oplus \{\mathbf{1}_i : A_i\}_{i \in I}$$

[No atomic formulas, \top , 0]

Types are assigned to names and describe their session behavior:

 $x:A\otimes B$

Output an A along x and behave as B on x

 $x:A\multimap B$

Input an A along x and behave as B on x

x: A

Persistently offer A along x

 $x: \& \{\mathbf{1}_i: A_i\}_{i \in I}$

Offer a choice between an A_i along x

 $x: \oplus \{\mathbf{1}_i: A_i\}_{i\in I}$

Select one of the A_i along x

 $x: \mathbf{1}$

Terminated interaction on x

Local Types and Logic-Based Types

Definition

The mapping $\langle\!\langle \cdot \rangle\!\rangle$ from local types T into binary session types A is inductively defined as:

$$\begin{array}{rcl} & \langle\!\langle \mathsf{end} \rangle\!\rangle & = & \mathbf{1} \\ & \langle\!\langle \mathsf{p}! \{ \mathbb{1}_i \langle U_i \rangle. T_i \}_{i \in I} \rangle\!\rangle & = & \oplus \{ \mathbb{1}_i : U_i \otimes \langle\!\langle T_i \rangle\!\rangle \}_{i \in I} \\ & \langle\!\langle \mathsf{p}? \{ \mathbb{1}_i \langle U_i \rangle. T_i \}_{i \in I} \rangle\!\rangle & = & \& \{ \mathbb{1}_i : U_i \multimap \langle\!\langle T_i \rangle\!\rangle \}_{i \in I} \end{array}$$

Annotated Mediums

Definition

Let G be a global type. Also, let k be a fresh name.

The annotated medium of G with respect to and k, denoted $\mathcal{M}[\![G]\!]_k$, is defined inductively as follows:

- ullet $\mathcal{M}[\![\mathtt{end}]\!]_k = \mathbf{0}$
- $\mathcal{M}[\![\mathbf{p} \rightarrow \mathbf{q}: \{\mathbf{1}_i \langle U_i \rangle.G_i\}_{i \in I}]\!]_k = c_{\mathbf{p}} \triangleright \{\mathbf{1}_i: k \triangleleft \mathbf{1}_i; c_{\mathbf{p}}(u).\overline{k}(\mathbf{p}).(\mathbf{0}_{\mathbf{p}} \mid c_{\mathbf{q}} \triangleleft \mathbf{1}_i; k \triangleright \{\mathbf{1}_i: \overline{c_{\mathbf{q}}}(v).([u \leftrightarrow v] \mid k(\mathbf{q}).\mathcal{M}[\![G_i]\!]_k)\}_{\{i\}})\}_{i \in I}$

where p and q are names assumed distinct from any other name $c_{\mathrm{p}_i}.$

Global Types and Logic-Based Types

Definition

Let $\sigma(\cdot)$ denote a mapping from participants to logic-based types. The mapping $(|\cdot|)$ from global types G into binary session types A is inductively defined as:

$$(\!(\mathtt{end})) = \mathbf{1}$$

$$(\!(\mathtt{p} \twoheadrightarrow \mathtt{q} : \{ \mathbf{1}_i \langle U_i \rangle.G_i \}_{i \in I})) = \oplus \{ \mathbf{1}_i : \sigma(\mathtt{p}) \otimes \& \{ \mathbf{1}_i : \sigma(\mathtt{q}) \multimap (\!(G_i)\!) \}_{\{i\}} \}_{i \in I}$$

Medium of a Global Type with Recursion

Definition

Let G be a global type with recursion $\mu \mathcal{X}.G$. Also, let 1 be a label. The *medium* of G with respect to 1, noted $M[G]^1$, is defined inductively as follows:

- $\bullet \ \mathsf{M}[\![\mathsf{end}]\!]^1 = k \, \sphericalangle 1; \mathbf{0}$
- $$\begin{split} \bullet & \ \mathsf{M}[\![\mathbf{p} \! \twoheadrightarrow \! \mathbf{q} : \! \{ \mathbf{1}_i \langle U_i \rangle . G_i \}_{i \in I}]\!]^{1'} = \\ & c_{\mathbf{p}} \rhd \! \left\{ \mathbf{1}_i : c_{\mathbf{p}}(u) . c_{\mathbf{q}} \lhd \! \mathbf{1}_i ; \overline{c_{\mathbf{q}}}(v) . ([u \! \leftrightarrow \! v] \mid \mathsf{M}[\![G_i]\!]^{\mathbf{1}_i}) \right\}_{i \in I} \end{split}$$
- $\bullet \ \mathsf{M}[\![\mu\mathcal{X}.G]\!]^1 = (\mathbf{corec}\,\mathcal{X}(k).\mathsf{M}[\![G]\!]^1)\,k$
- $\bullet \ \mathsf{M}[\![\mathcal{X}]\!]^{\mathbf{1}} = k \, \sphericalangle \mathbf{1}; \mathcal{X}(k)$

where name k is assumed to be distinct from any other name $c_{\mathbf{p}_i}$.