"False Distribution"

Uwe Nestmann (Kirstin Peters)

June 20, 2014 OPCT Bertinoro

"False Distribution"

$$\llbracket P \mid Q \rrbracket \stackrel{?}{=} \llbracket P \rrbracket \mid \llbracket Q \rrbracket \rrbracket$$

"False Distribution"

$$\begin{bmatrix} P \mid Q \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} P \end{bmatrix} \mid \begin{bmatrix} Q \end{bmatrix}$$

$$\begin{bmatrix} P \mid Q \end{bmatrix} = C[[P] \mid [Q]]$$

The first unsolved problem I want to talk about is the problem of developing a fundamental theory of concurrency. By a fundamental theory, I mean one that's not based upon arbitrary formal models or specific languages, but one that's really fundamental.

1983 Invited Address

Solved Problems, Unsolved Problems and Non-Problems in Concurrency

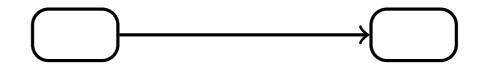
Leslie Lamport¹

The first unsolved problem I want to talk about is the problem of developing a fundamental theory of concurrency. By a fundamental theory, I mean one that's not based upon arbitrary formal models or specific languages, but one that's really fundamental.

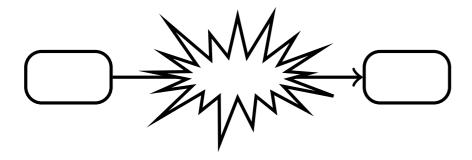
Asynchrony & Stributability

(A) Synchronous Interaction

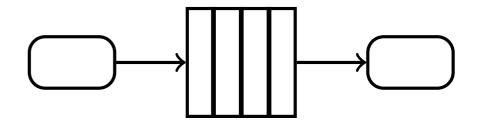
(* joint project with TU Braunschweig [Goltz, Schicke, Glabbeek] *)



Synchronous Communication:



Asynchronous Communication:



- instantaneous
- abstract specification

- takes time
- concrete implementation

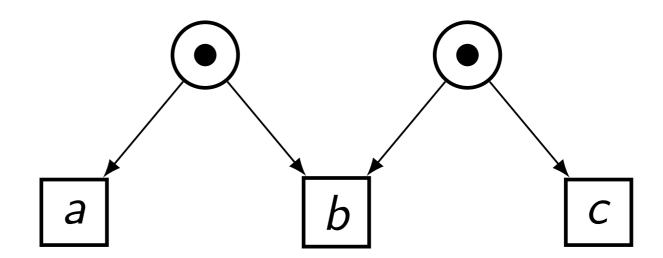
Distributability

Two activities can be implemented at different nodes, if they do not share anything they need to proceed.

Distributability

Two activities can be implemented at different nodes, if they do not share anything they need to proceed.

A fully reachable pure M in Petri nets [vGGS08, vGGS12]:

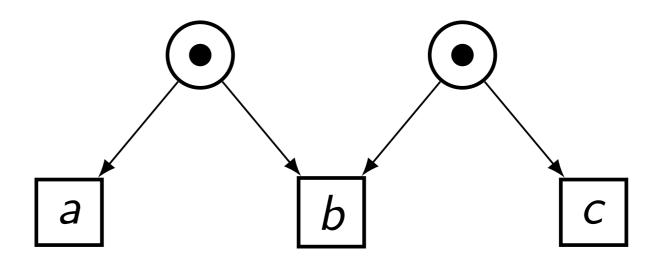


Distributability

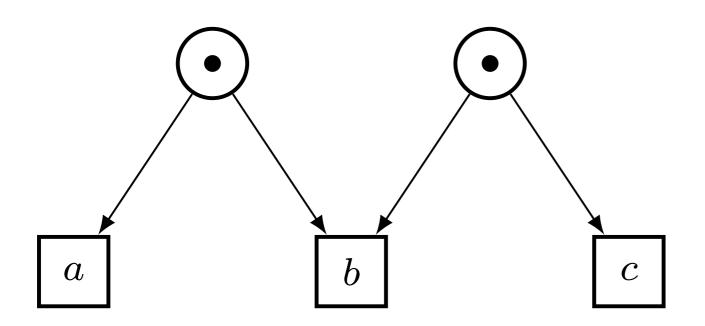
Two activities can be implemented at different nodes, if they do not share anything they need to proceed.

Theorem

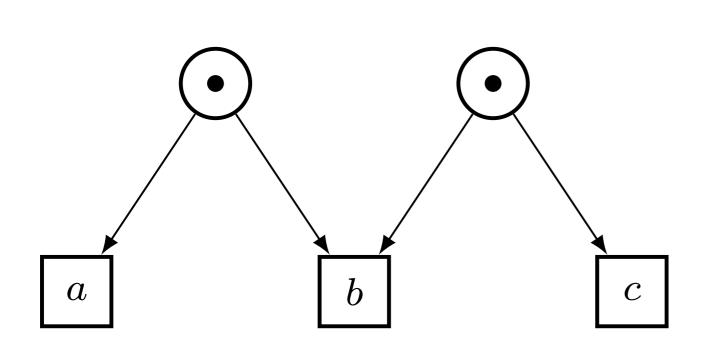
A Petri net is distributable if it does not contain a fully reachable pure M.

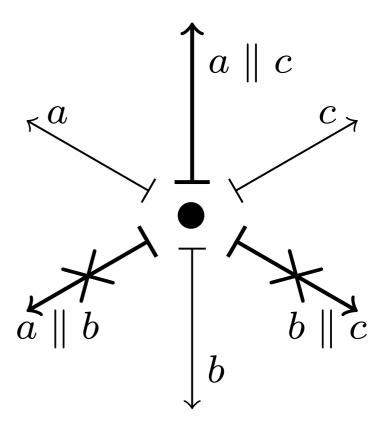


Distributability: Steps

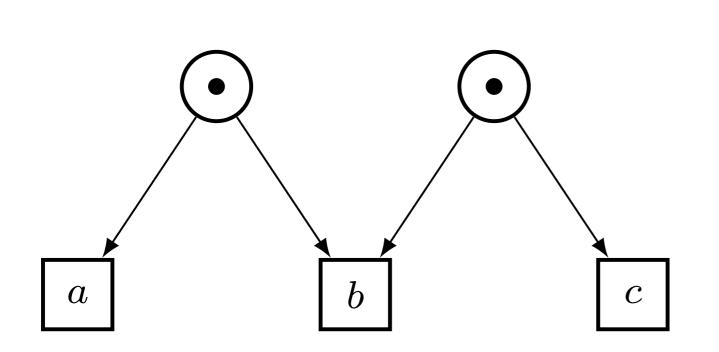


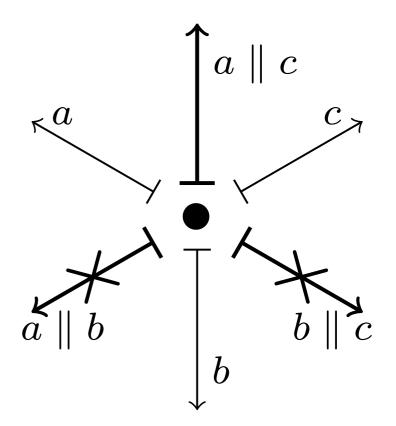
Distributability: Steps





Distributability: Steps





also compare: (non-)overlapping redexes in TRSs ...

Distributability: Components

for Petri Nets:

groups of transitions that do not share places with other groups of transitions

for process calculi, in essence: all parallel components at syntactic top-level

Gorla-Criteria

(weak) compositionality

$$\llbracket P \mid Q \rrbracket = C \llbracket P \rrbracket \mid \llbracket Q \rrbracket \rbrack$$
 is allowed!

name invariance

- operational correspondence
 (soundness/completeness of transition sequences, up to some target equivalence)
- divergence-reflection
- success-sensitiveness

Distributability-Preservation

Distributability-Preservation

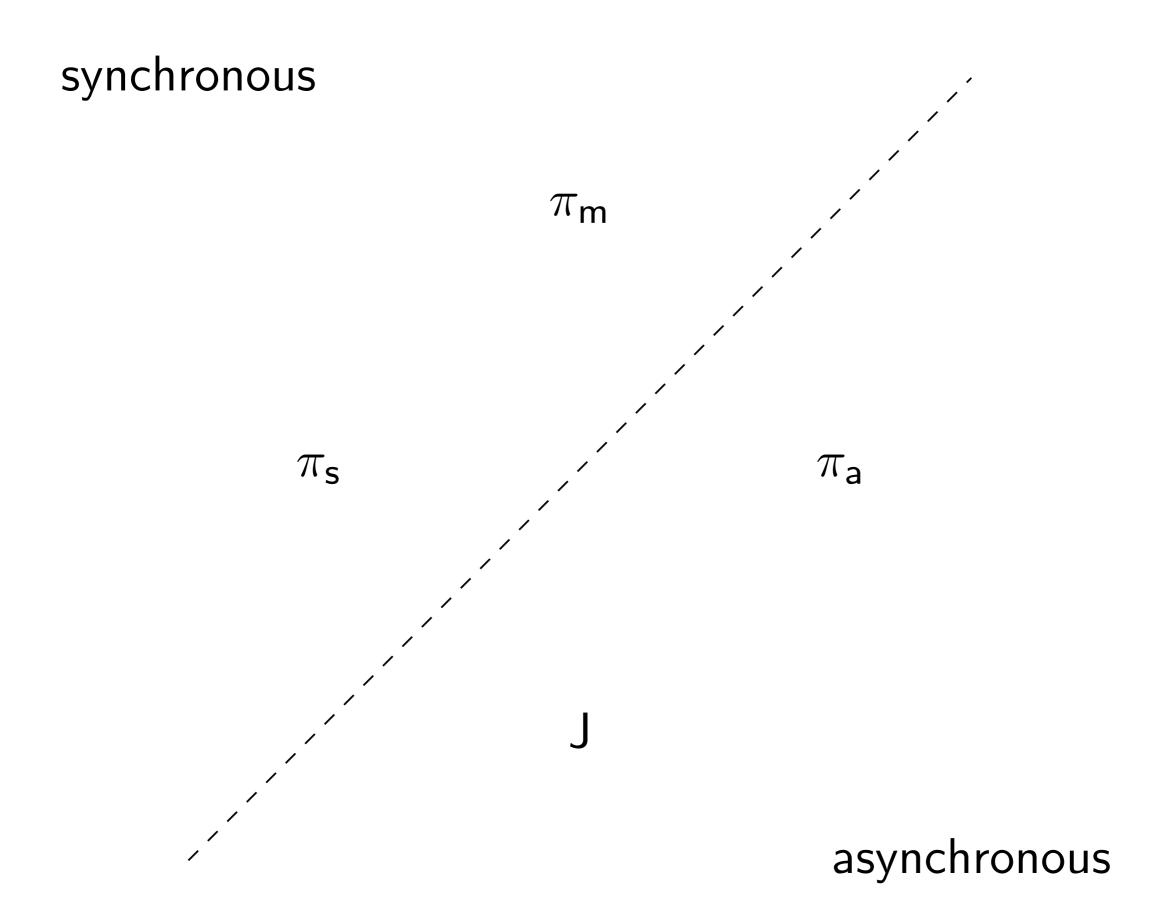
distributability-preserving encodings preserve M!

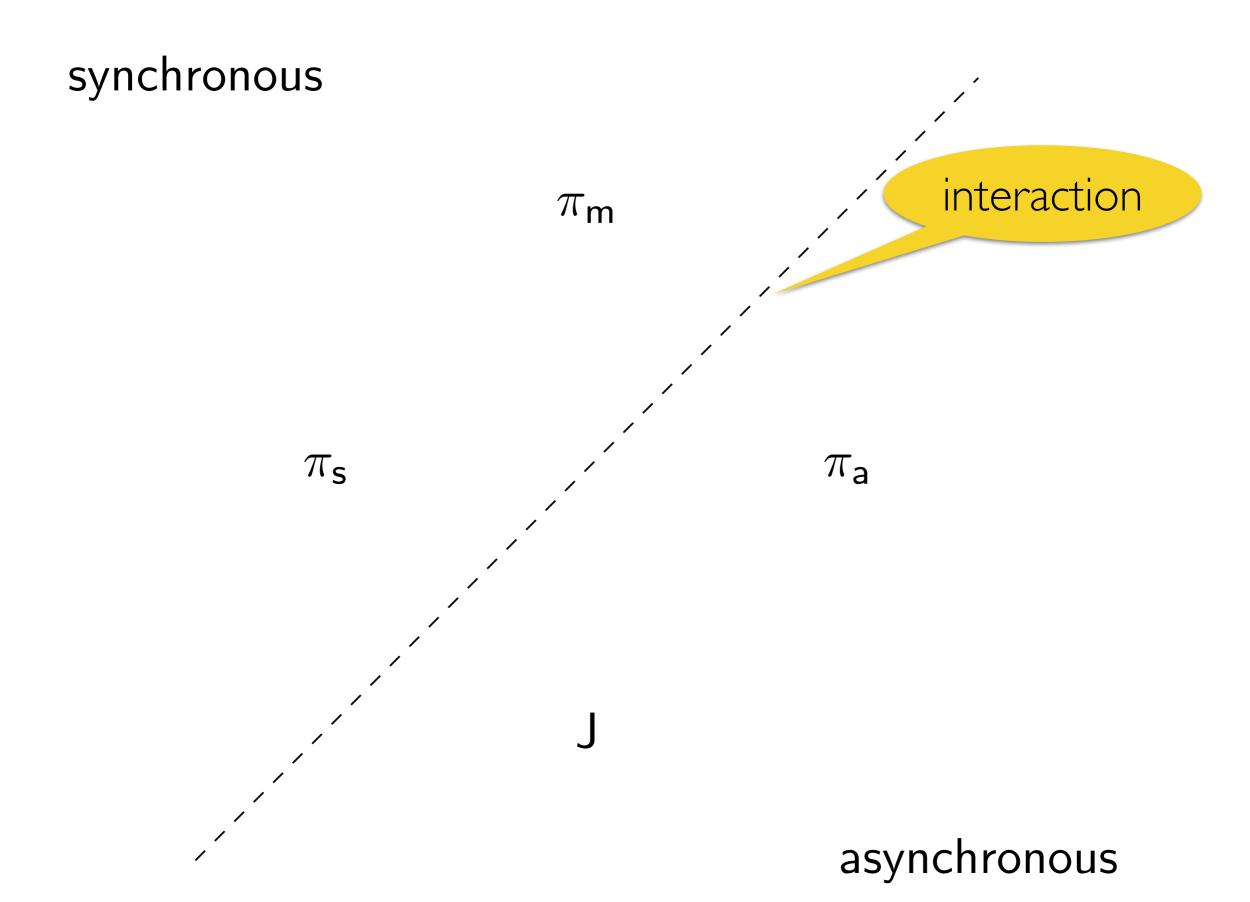
Distributability-Preservation

distributability-preserving encodings preserve M!

good for separation results!

Some Calculi





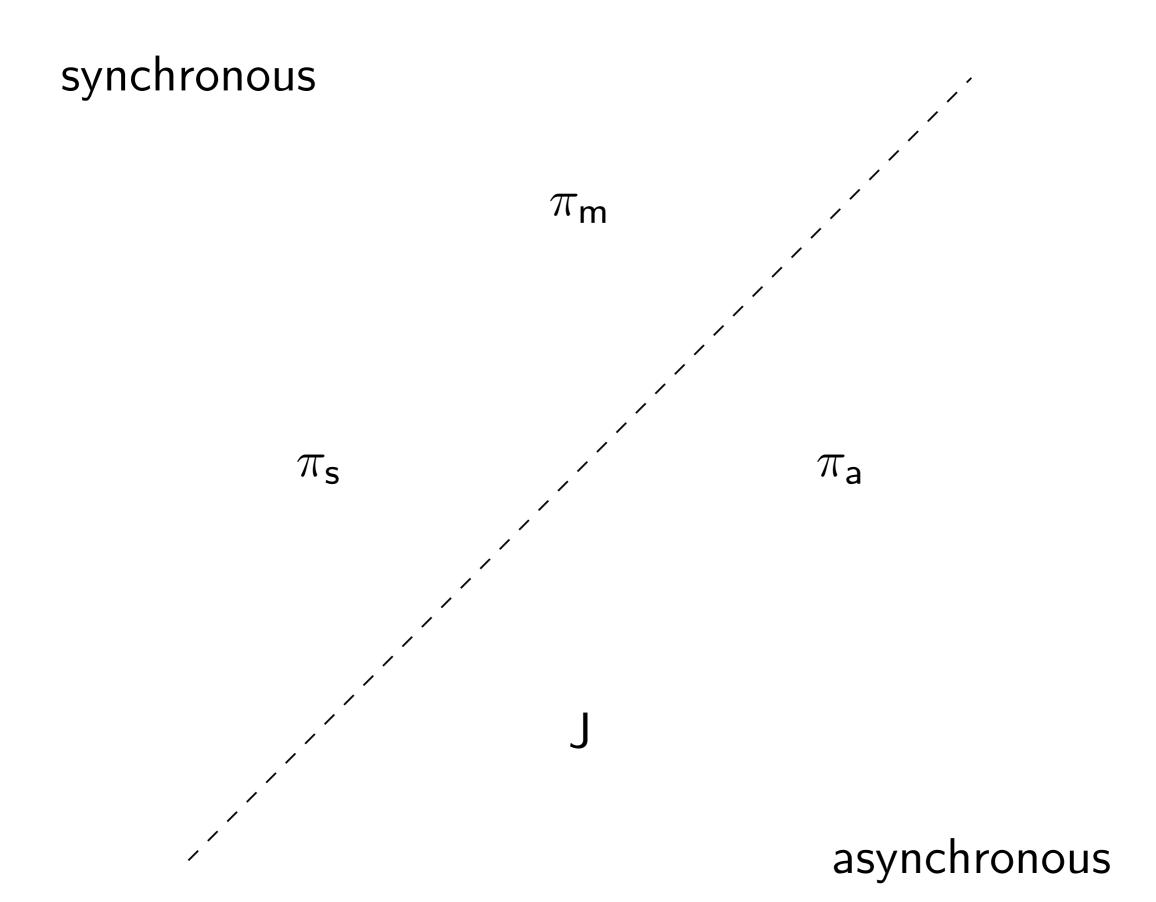
$$\mathcal{L} = \langle \mathcal{P}, \longmapsto \rangle$$

Process Terms:

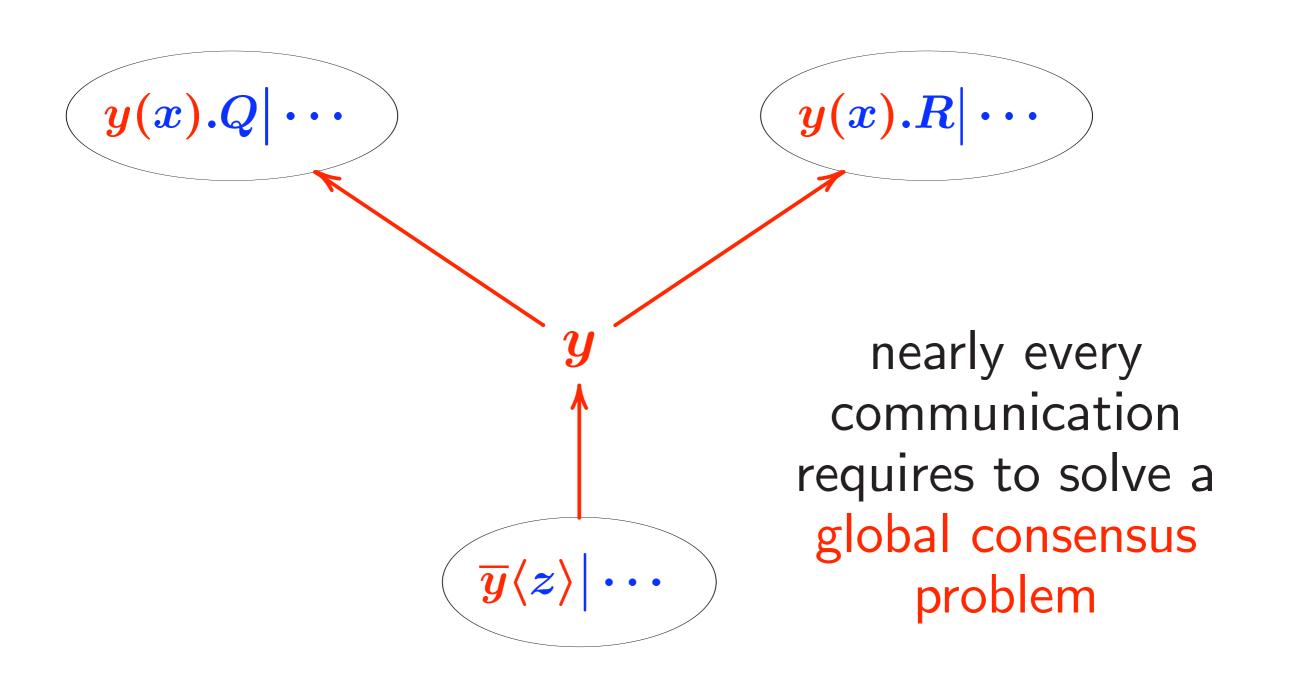
$$\mathcal{P}_{\mathsf{a}} ::= 0 \quad | \quad P_{1} \mid P_{2} \quad | \quad (\nu x) P \quad | \quad \overline{y} \langle z \rangle . 0 \quad | \quad y(x) . P \quad | \quad y^{\star}(x) . P$$

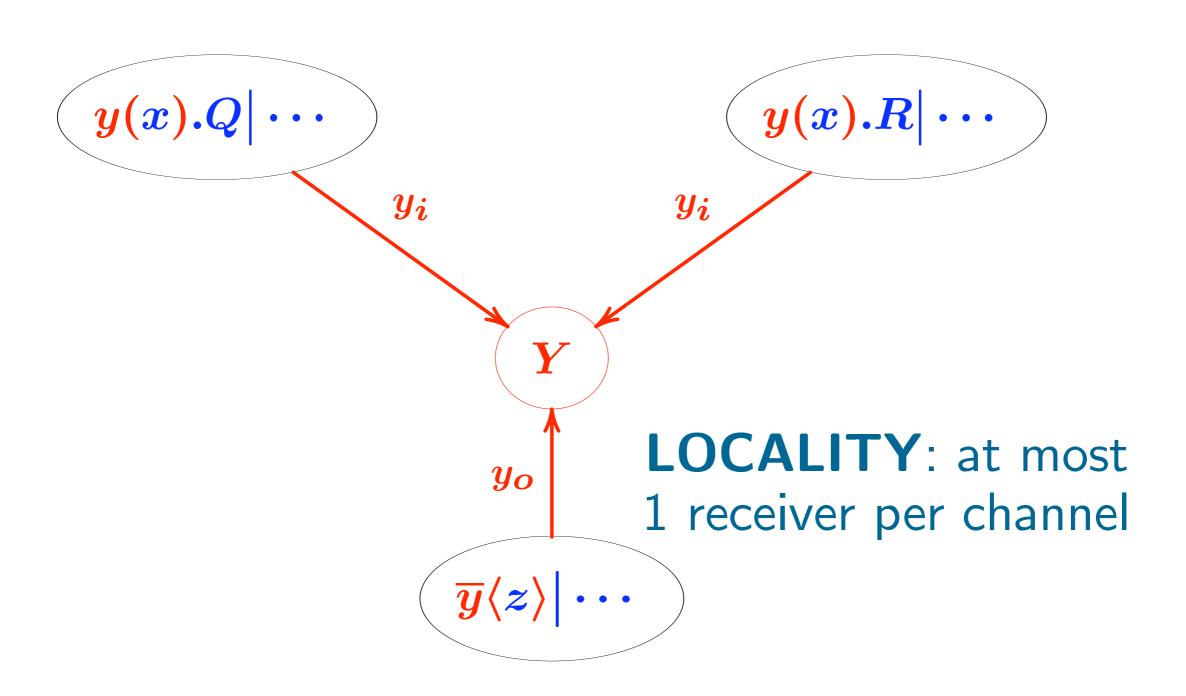
$$\mathcal{P}_{\mathsf{s}} ::= \dots \quad | \quad \overline{y} \langle z \rangle . P \quad | \quad \dots \quad | \quad \sum_{i \in I} \overline{y_{i}} \langle z_{i} \rangle . P_{i} \quad | \quad \sum_{i \in I} y_{i}(x_{i}) . P_{i}$$

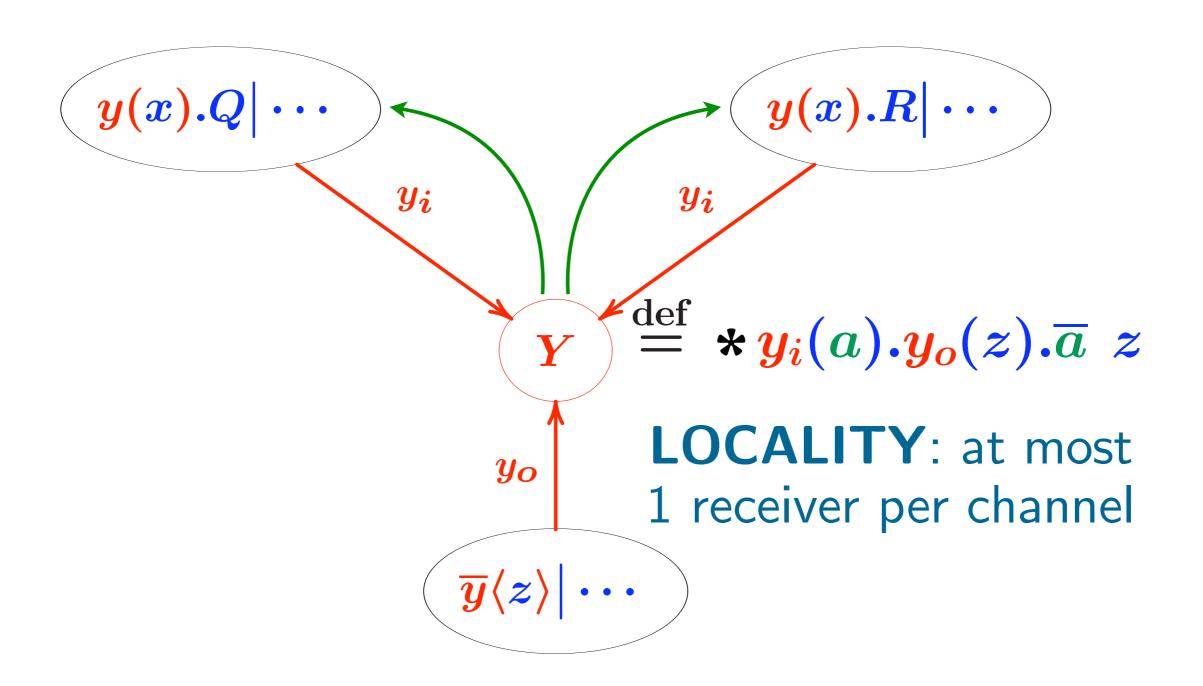
$$\mathcal{P}_{\mathsf{m}} ::= \dots \quad | \quad \sum_{i \in I} \pi_{i} . P_{i} \quad \text{where } \pi ::= \overline{y} \langle z \rangle \quad | \quad y(x)$$



Join Calculus







$$egin{array}{c} (
u y) P \ y(x).P \ *P \end{array}$$

```
(\nu y) (*y(x).P | Q)
```

$$egin{array}{c} (
u y) P \ y(x).P \ *P \end{array}$$

$$(\nu y) \left(* y(x).P \mid Q \right)$$

$$\det y(x) = P \text{ in } Q$$

channel managers are like function definitions

Core Join

[Fournet, Gonthier, Lévy, ... 1995-2000]

simultaneous multi-channel reception

Expressiveness!

```
egin{bmatrix} \llbracket \left( 
u y 
ight) P 
bracket & \stackrel{	ext{def}}{=} & \operatorname{def} y_o(x_o, x_i) | y_i(\kappa) = \kappa(x_o, x_i) 	ext{in} \llbracket P 
bracket \\ \llbracket \overline{y} \langle z 
angle 
bracket & \stackrel{	ext{def}}{=} & y_o(z_o, z_i) \ \end{bmatrix} \ \begin{bmatrix} y(x).P 
bracket & \stackrel{	ext{def}}{=} & \operatorname{def} \kappa(x_o, x_i) = \llbracket P 
bracket 	ext{in} y_i(\kappa) \end{bmatrix}
```

Expressiveness!

```
egin{bmatrix} \llbracket \left( 
u y 
ight) P 
bracket & \stackrel{	ext{def}}{=} & \operatorname{def} y_o(x_o, x_i) | y_i(\kappa) = \kappa(x_o, x_i) \operatorname{in} \llbracket P 
bracket \\ \llbracket \overline{y} \langle z 
angle 
bracket & \stackrel{	ext{def}}{=} & y_o(z_o, z_i) \\ \llbracket y(x).P 
bracket & \stackrel{	ext{def}}{=} & \operatorname{def} \kappa(x_o, x_i) = \llbracket P 
bracket \operatorname{in} y_i(\kappa) \end{matrix}
```

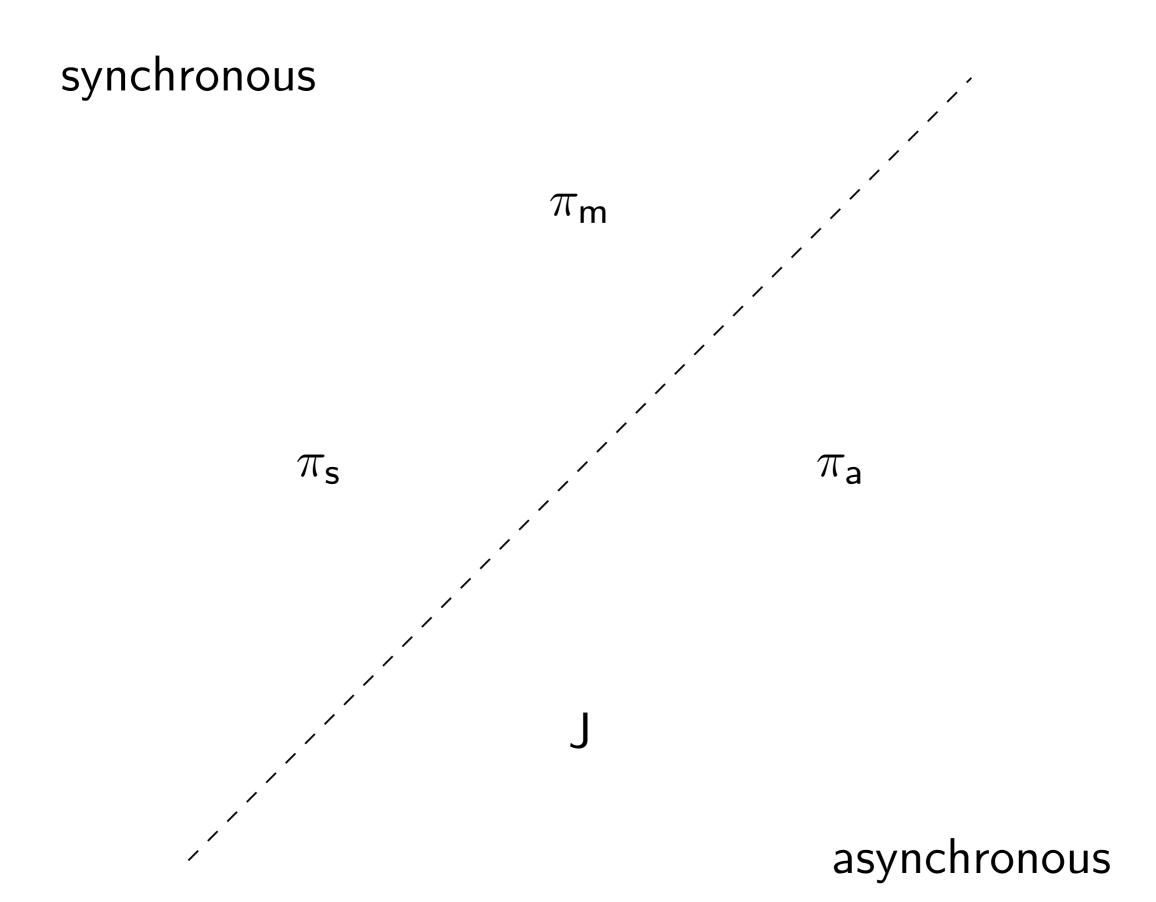
```
\llbracket \operatorname{def} y(x) | u(w) = P \operatorname{in} Q \rrbracket \stackrel{\operatorname{def}}{=} (\nu x, u) (y(x).u(w).\llbracket P \rrbracket | \llbracket Q \rrbracket)
\llbracket x(u) \rrbracket \stackrel{\operatorname{def}}{=} \overline{x} \langle u \rangle
\llbracket P \Vert Q \rrbracket \stackrel{\operatorname{def}}{=} \llbracket P \rrbracket | \llbracket Q \rrbracket
```

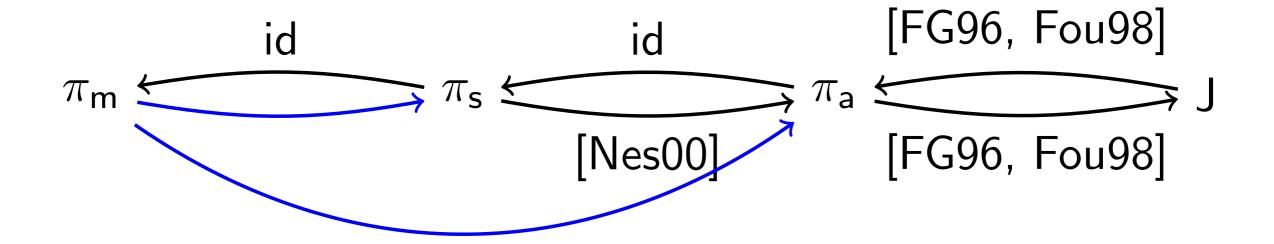
Expressiveness!

```
egin{bmatrix} \llbracket \left( 
u y 
ight) P 
bracket & \stackrel{	ext{def}}{=} & \operatorname{def} y_o(x_o, x_i) | y_i(\kappa) = \kappa(x_o, x_i) \operatorname{in} \llbracket P 
bracket \\ \llbracket \overline{y} \langle z 
angle 
bracket & \stackrel{	ext{def}}{=} & y_o(z_o, z_i) \\ \llbracket y(x).P 
bracket & \stackrel{	ext{def}}{=} & \operatorname{def} \kappa(x_o, x_i) = \llbracket P 
bracket \operatorname{in} y_i(\kappa) \end{matrix}
```

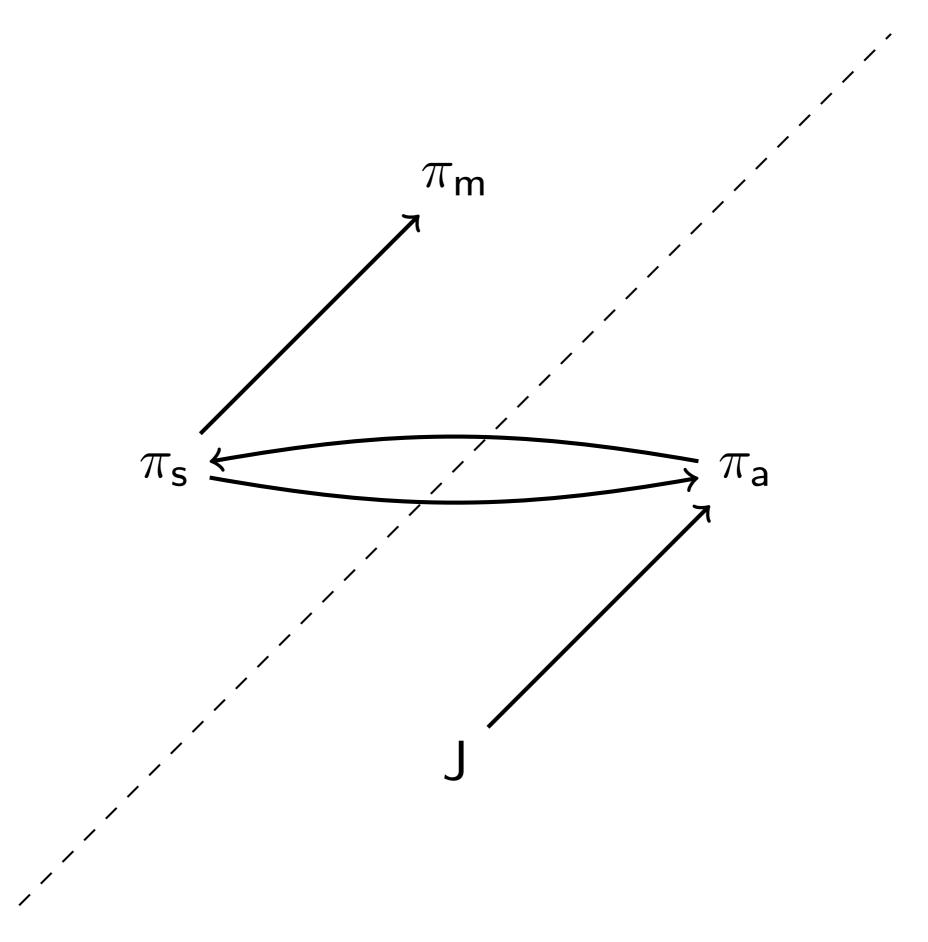
```
\llbracket \operatorname{def} y(x) | u(w) = P \operatorname{in} Q \rrbracket \stackrel{\operatorname{def}}{=} (\nu x, u) (y(x).u(w).\llbracket P \rrbracket | \llbracket Q \rrbracket)
\llbracket x(u) \rrbracket \stackrel{\operatorname{def}}{=} \overline{x} \langle u \rangle
\llbracket P \Vert Q \rrbracket \stackrel{\operatorname{def}}{=} \llbracket P \rrbracket | \llbracket Q \rrbracket
```

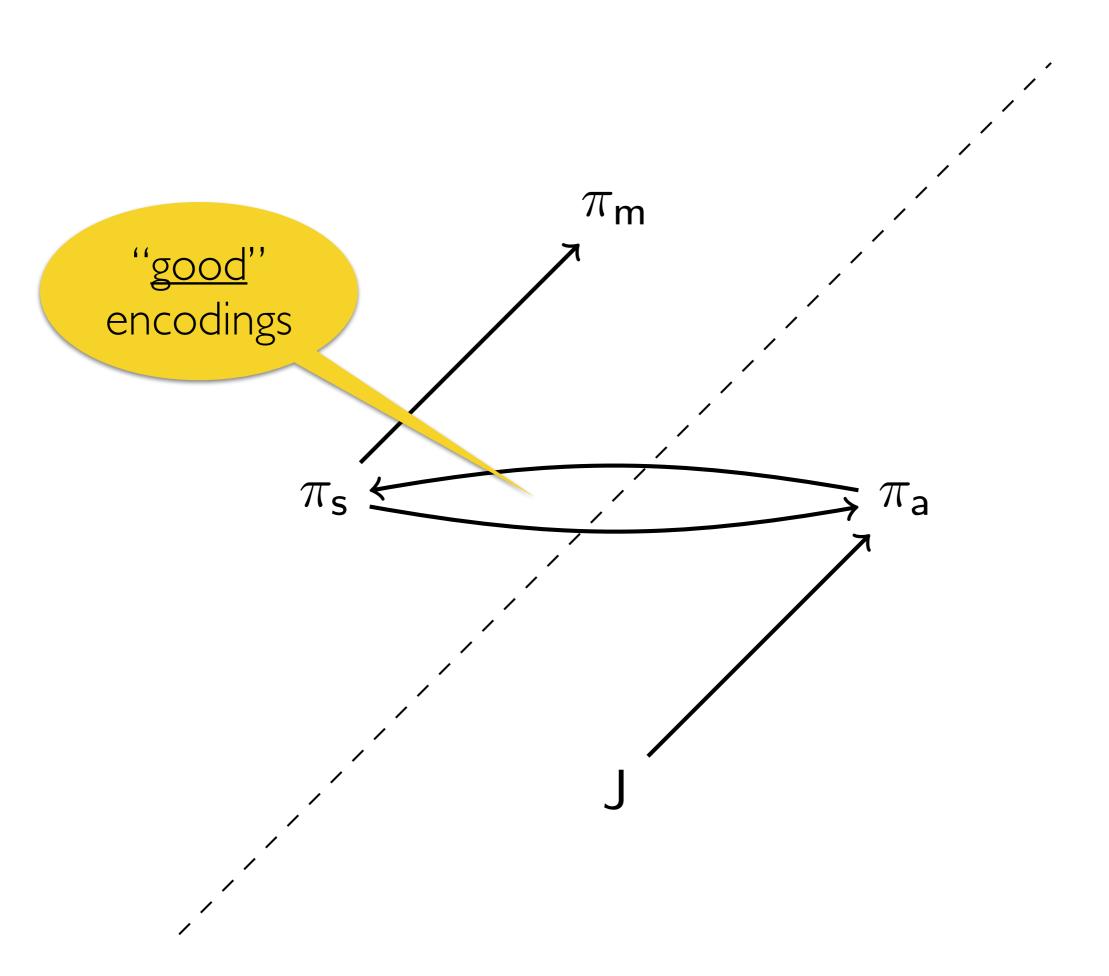
(* and they are even fully abstract! *)



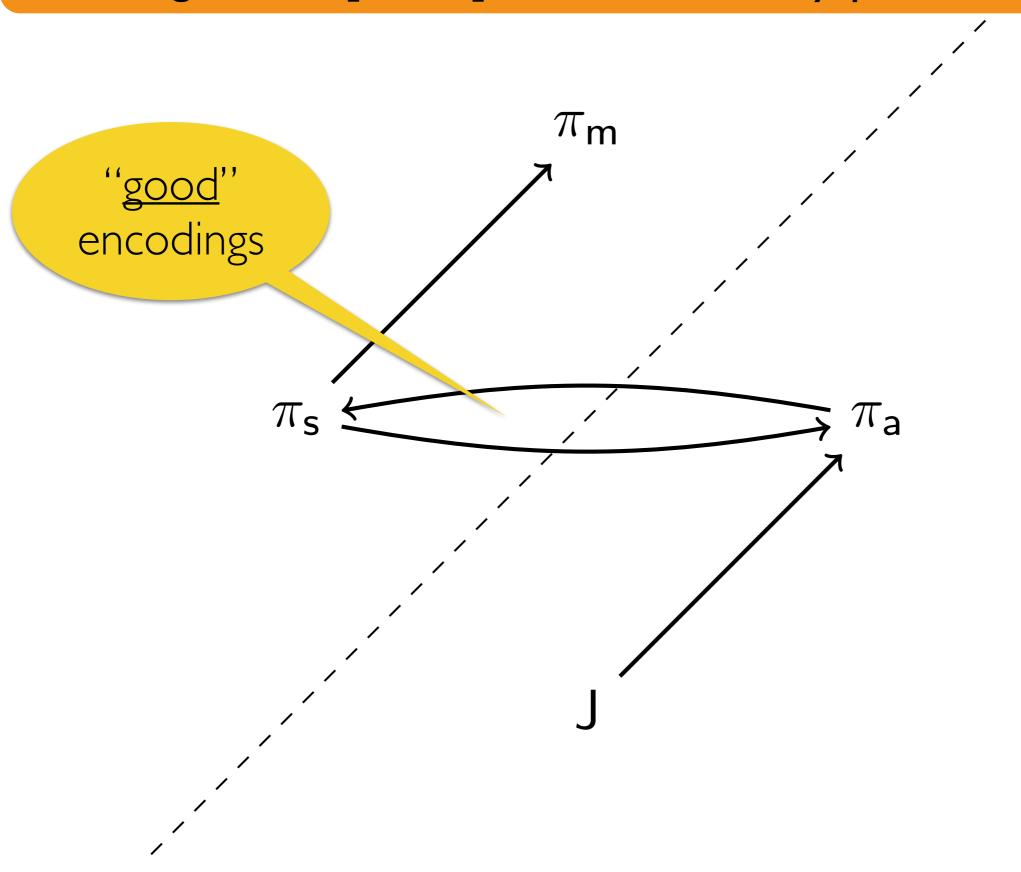


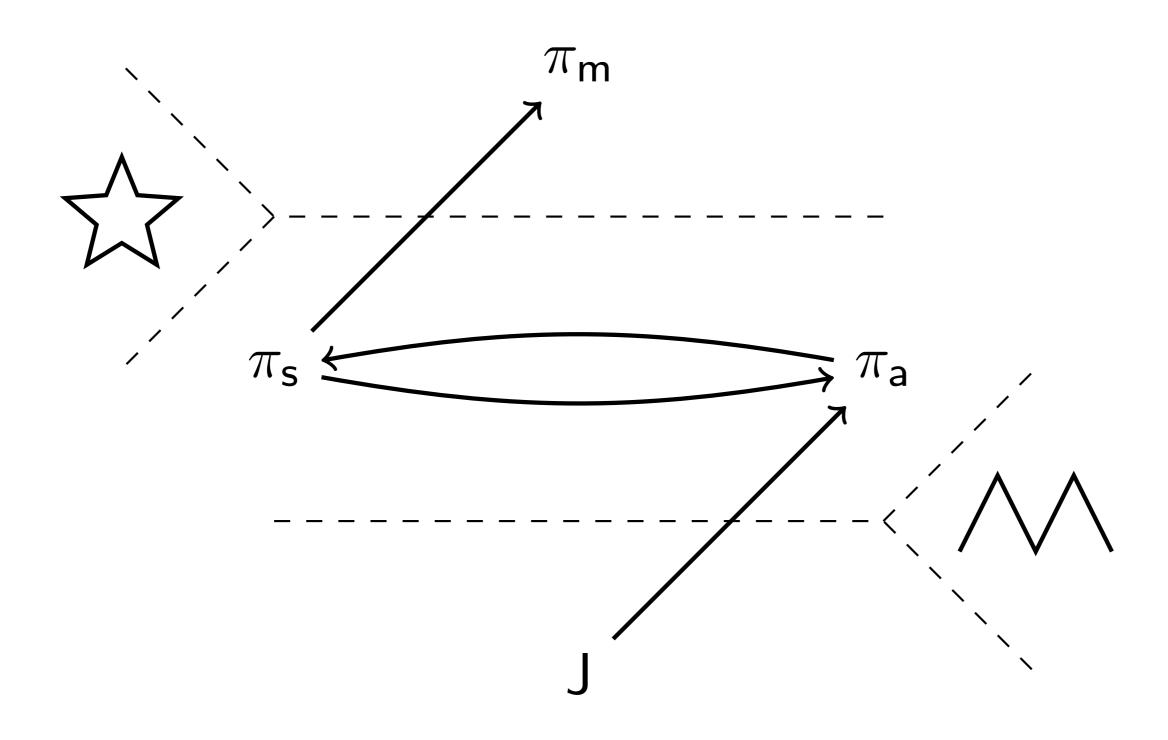
[PN12], with weak compositionality

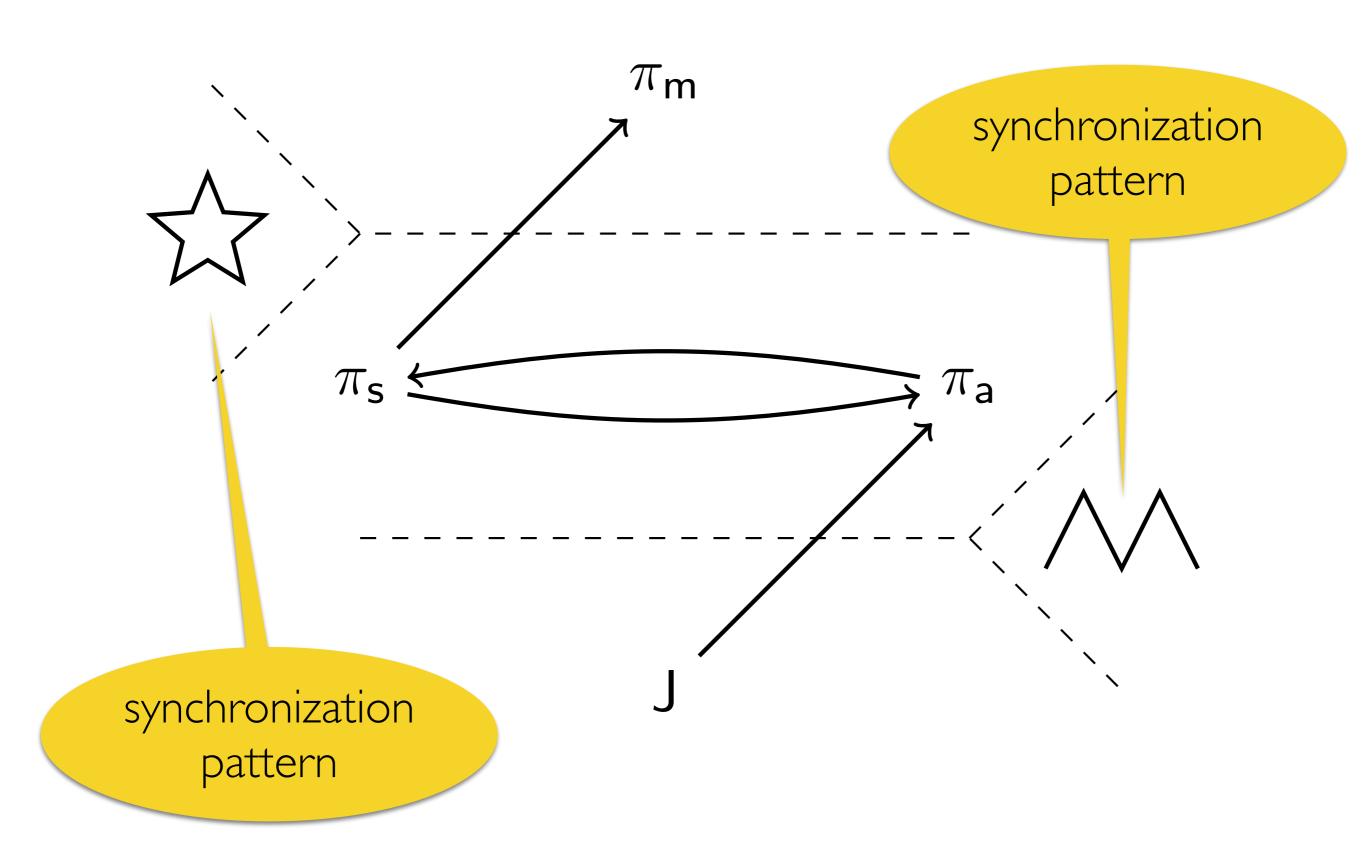




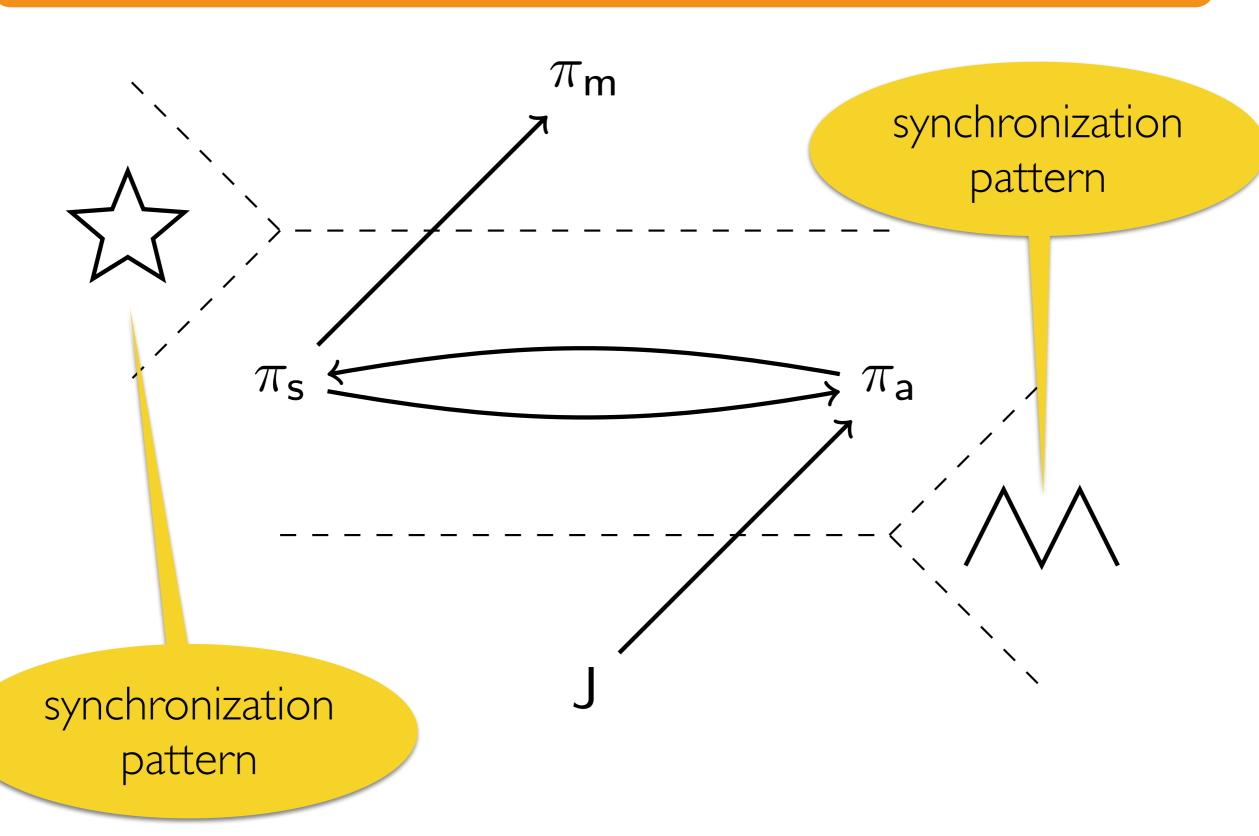
"good" = [Gorla] + "distributability-preserving"

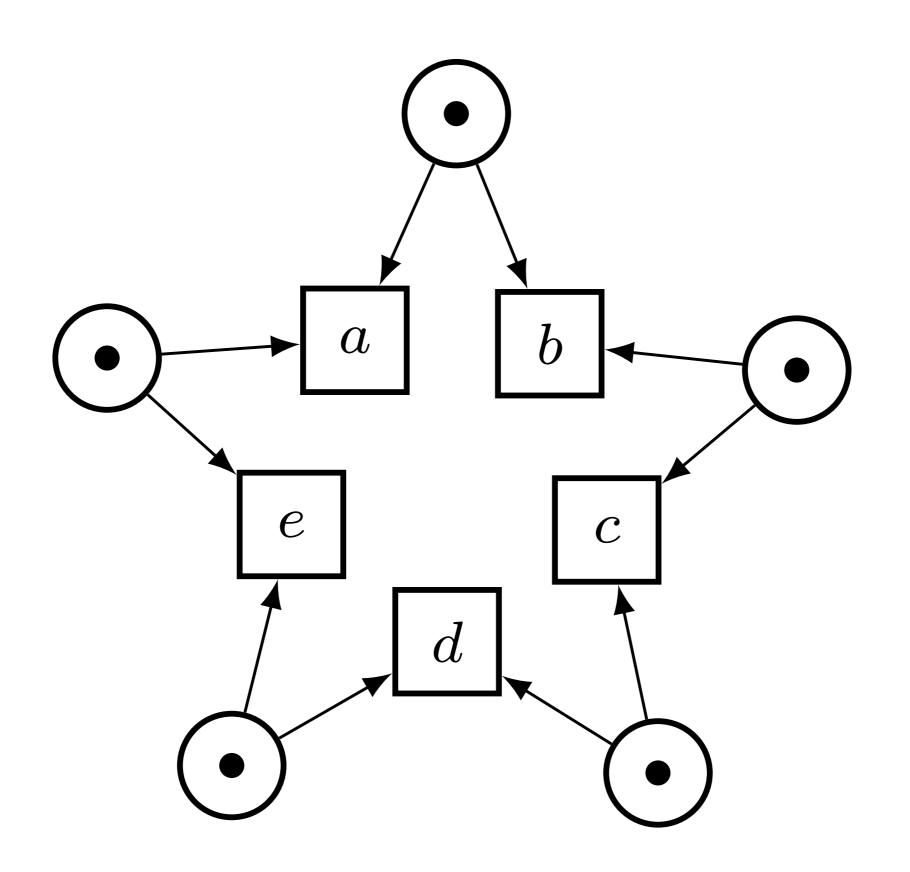






"distributability-preserving" preserves patterns

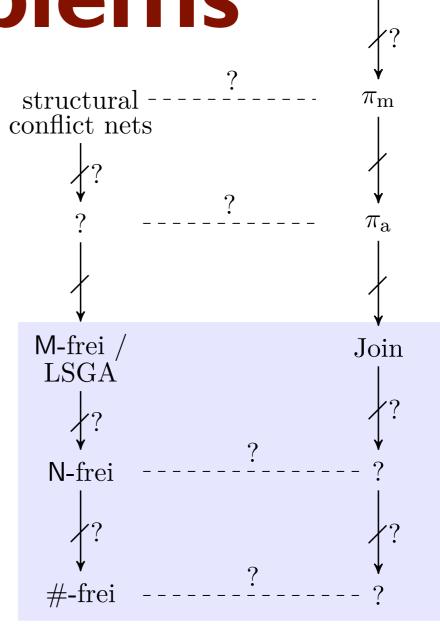




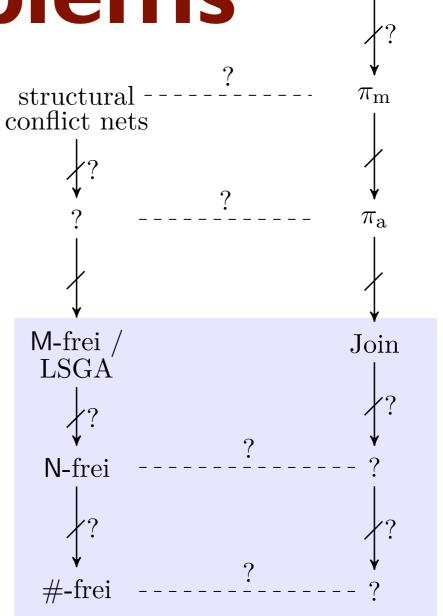
[Peters, Nestmann, Goltz: ESOP 2013]



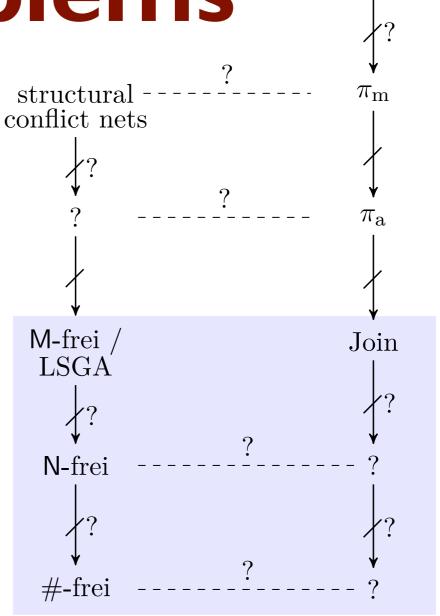
exact borderlines?



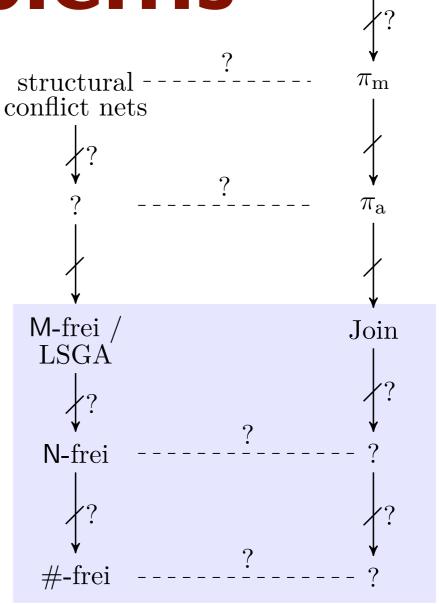
- exact borderlines?
- distributability of other calculi (ambients, Dpi, e^{pi}, ...)



- exact borderlines?
- distributability of other calculi (ambients, Dpi, e^{pi}, ...)
- IT vs NL/AU (with DE)



- exact borderlines?
- distributability of other calculi (ambients, Dpi, e^{pi}, ...)
- IT vs NL/AU (with DE)



• fundamental theory of concurrency ...