Process equivalences for Multiparty interactions

Hernán Melgratti

based on (an ongoing) joint work with Marzia Buscemi and Rocco de Nicola

Theory of contracts

Theory of contracts

 Contract is an abstraction of the behavior of a service

Theory of contracts

Contract is an abstraction of the behavior of a service

$$p ::= \mathbf{0} \mid \mu.p \mid \sum_{i \in I} p_i \mid \bigoplus_{i \in I} p_i \mid A$$

 Compliance states when a service "interacts well" with a client

- Compliance states when a service "interacts well" with a client
 - Client is happy

- Compliance states when a service "interacts well" with a client
 - Client is happy

Happiness means graceful termination

- Compliance states when a service "interacts well" with a client
 - Client is happy
 - Server is happy

- Compliance states when a service "interacts well" with a client
 - Client is happy
 - Server is happy
 - Client and server are happy

- Compliance states when a service "interacts well" with a client
 - Client is happy
 - Server is happy
 - Client and server are happy

In what follows we will consider happy clients

Subcontract

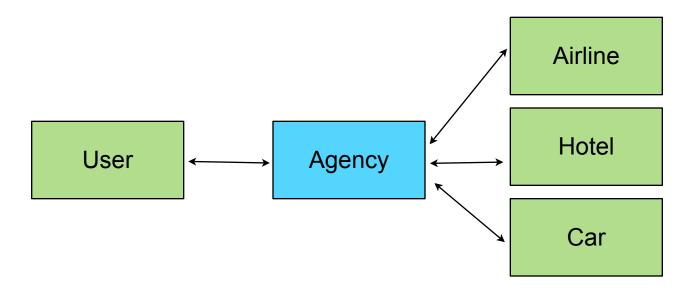
- Compliance induces a subcontract relation
 (<):
 - if p < p'. A client happy with p is equally happy with p'.

Subcontract


- Compliance induces a subcontract relation
 (<):
 - if p < p'. A client happy with p is equally happy with p'.
- Ensures safe replacement
- It can be used for service discovery

Compliance & Subcontract

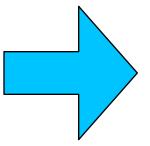
Focus on two-party interaction


Compliance & Subcontract

Focus on two-party interaction

Compliance & Subcontract

Focus on two-party interaction

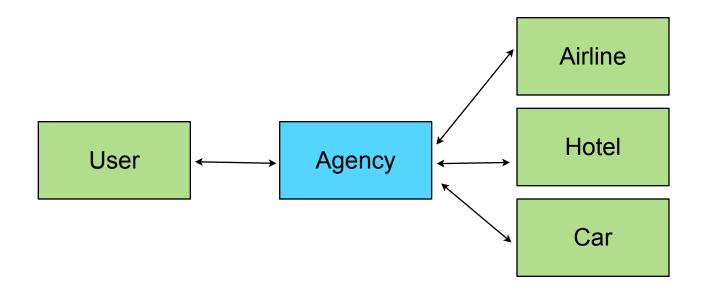

Two-party compliance induces a subcontract notion that may be to fine-grained in some multiparty context

Controllability in OWNs

 A service is controllable if it has a compatible client

Controllability in OWNs

- A service is controllable if it has a compatible client
 - Centralized
 - Decentralized
 - Local


Characterizes the degree of coordination in the clients

Decentralized client

- A set of partners that
 - communicate with the server
 - but do not communicate with each other

Decentralized client

- A set of partners that
 - communicate with the server
 - but do not communicate with each other

Contracts [BH13]

$$p ::= \mathbf{1} \mid \mu.p \mid \sum_{i \in I} p_i \mid A$$
$$\mu \in \mathsf{Act} \cup \{\tau\}$$

Contracts [BH13]

$$p ::= \mathbf{1} \mid \mu.p \mid \sum_{i \in I} p_i \mid A$$
$$\mu \in \mathsf{Act} \cup \{\tau\}$$

$$\frac{1 \xrightarrow{\checkmark} \mathbf{0}}{p \xrightarrow{\mu} p'} \qquad \frac{q \xrightarrow{\mu} q'}{p + q \xrightarrow{\mu} p'} \qquad \frac{p \xrightarrow{\mu} p'}{p + q \xrightarrow{\mu} p'} \qquad \frac{p \xrightarrow{\mu} p'}{A \xrightarrow{\mu} p'} \qquad A \stackrel{def}{=} p$$

Service composition

$$\frac{c \xrightarrow{\mu} c'}{c \parallel d \xrightarrow{\mu} c \parallel d} \qquad \frac{c \xrightarrow{\mu} c'}{c \parallel d \xrightarrow{\mu} c \parallel d'}$$

$$\frac{c \xrightarrow{\alpha} c'}{c \parallel d \xrightarrow{\tau} c'} \qquad \frac{c \xrightarrow{\alpha} c'}{c \parallel d \xrightarrow{\tau} c'} \qquad \frac{c \xrightarrow{\omega} c'}{c \parallel d \xrightarrow{\tau} c'} \qquad \frac{c \xrightarrow{\omega} c'}{c \parallel d \xrightarrow{\tau} c'}$$

Maximal computation

$$p_0 \parallel c_0 \xrightarrow{\tau} \dots \xrightarrow{\tau} p_k \parallel c_k \xrightarrow{\tau} \dots$$

• p must c iff for any maximal computation of $p \parallel c$, $\exists k. \ c_k \xrightarrow{\checkmark}$

Maximal computation

$$p_0 \parallel c_0 \xrightarrow{\tau} \dots \xrightarrow{\tau} p_k \parallel c_k \xrightarrow{\tau} \dots$$

- p must c iff for any maximal computation of $p \parallel c$, $\exists k. \ c_k \xrightarrow{\checkmark}$
- $p \sqsubseteq_{\mathbf{must}} q$ iff p must c implies q must c

- Let $\mathbb{I}=\{I_i\}_{i\in 0...n}$ be a partition of names
- $c=p_0\parallel\ldots\parallel p_n$ is a decentralized test over \mathbb{I} when $n(p_i)\subseteq I_i$

- Let $\mathbb{I}=\{I_i\}_{i\in 0...n}$ be a partition of names
- $c=p_0\parallel\ldots\parallel p_n$ is a decentralized test over $\mathbb I$ when $n(p_i)\subseteq I_i$
- $p \sqsubseteq_{\mathbf{dmust}_{\mathbb{I}}} q$ when considering only decentralized tests over \mathbb{I}

• $a.b + a + b \sqsubseteq_{\mathbf{dmust}_{\{\{a\},\{b\}\}}} b.a + a + b$

• $a.b + a + b \sqsubseteq_{\mathbf{dmust}_{\{\{a\},\{b\}\}}} b.a + a + b$

• $a.b \not\sqsubseteq_{\mathbf{dmust}_{\{\{a\},\{b\}\}}} b.a$

•
$$a.b + a + b \sqsubseteq_{\mathbf{dmust}_{\{\{a\},\{b\}\}}} b.a + a + b$$

• $a.b \not\sqsubseteq_{\mathbf{dmust}_{\{\{a\},\{b\}\}}} b.a$ take the decentralized test

$$\overline{a}$$
.1 || 1

• $a.b + a + b \sqsubseteq_{\mathbf{dmust}_{\{\{a\},\{b\}\}}} b.a + a + b$

• $a.b \not\sqsubseteq_{\mathbf{dmust}_{\{\{a\},\{b\}\}}} b.a$ take the decentralized test

 \overline{a} .1 || 1

Priori knowledge of partners (design-time coordination)

Local testing

• $a.\overline{c} + b.\overline{d} \not\approx_{\mathbf{dmust}_{\{\{a,b\},\{c,d\}\}}} a.\overline{d} + b.\overline{c}$ $c_1 = \overline{a}.\mathbf{1} \parallel c.\mathbf{1}$ $c_2 = \overline{a}.\mathbf{1} \parallel d.\mathbf{1}$

Local testing

•
$$a.\overline{c} + b.\overline{d} \not\approx_{\mathbf{dmust}_{\{a,b\},\{c,d\}\}}} a.\overline{d} + b.\overline{c}$$

$$c_1 = \overline{a}.\mathbf{1} \parallel c.\mathbf{1}$$

$$c_2 = \overline{a}.\mathbf{1} \parallel d.\mathbf{1}$$

 When having only partial view both look the same

$$a+b$$
 $\overline{c}\oplus \overline{d}$

Hiding

$$\frac{p \xrightarrow{\alpha} p' \quad \alpha \in V}{p/V \xrightarrow{\alpha} p'/V}$$

$$\frac{p \xrightarrow{\alpha} p' \quad \alpha \not\in V}{p/V \xrightarrow{\tau} p'/V}$$

Local testing

• $p \sqsubseteq_{\mathbf{Imust}_{\mathbb{I}}} q$ iff p/I_i $\mathbf{must}\ c$ implies q/I_i $\mathbf{must}\ c$ (for all $I_i \in \mathbb{I}$ and c)

Local testing

• $p \sqsubseteq_{\mathbf{Imust}_{\mathbb{I}}} q$ iff $p/I_i \ \mathbf{must} \ c$ implies $q/I_i \ \mathbf{must} \ c$ (for all $I_i \in \mathbb{I}$ and c)

- $a.b \approx_{\mathbf{lmust}_{\{\{a\},\{b\},\}}} b.a$
- $a.c + b.d \approx_{\mathbf{lmust}_{\{\{a,b\},\{c,d\},\}}} a.d + b.c$

Characterization of must

Characterization of must

 $lack p \sqsubseteq_{\mathbf{must}} q \text{ iff, for all } s \text{ , if } p \Downarrow s \text{ then }$

 $q \Downarrow s$

• $\forall B \in \mathbf{Acc}(q,s), \exists A \in \mathbf{Acc}(p,s) \text{ s.t. } A \subseteq B$

• if $q \stackrel{s}{\Longrightarrow}$ then $p \stackrel{s}{\Longrightarrow}$

Mazurkiewicz traces

• Least congruence \equiv_D s.t.

$$(a,b) \in I_D \implies ab \equiv_D ba$$

ullet $[t]_D$ denotes the equivalence class of t

Characterization of dmust

 $lack p \sqsubseteq_{\mathbf{dmust}_{\mathbb{I}}} q$ iff, for all s, if $p \Downarrow [s]_D$ then

• $q \Downarrow [s]_D$

- $\forall B \in \mathbf{Acc}(q, [s]_D), \exists A \in \mathbf{Acc}(p, [s]_D)$ s.t. $A \subseteq B$
- if $q \stackrel{[s]_D}{\Longrightarrow}$ then $p \stackrel{[s]_D}{\Longrightarrow}$

Noisy traces

• $s\in I_i$, $t\in \mathsf{Act}^*$. Then $s\equiv_{I_i} t$ when $ss'\equiv_{\{I_i,\mathsf{Act}\setminus I_i\}} t$ for some $s'\in (\mathsf{Act}\setminus I_i)^*$

 $ullet \ [[s]]_{I_i}$ the set of all noisy traces of s

Characterization of Imust

- $p \sqsubseteq_{\mathbf{lmust}_{\mathbb{I}}} q$ iff, for all $I \in \mathbb{I}, s \in I*$ if $p \Downarrow [[s]]_I$ then
 - $q \Downarrow [[s]]_I$

- $\forall B \in \mathbf{Acc}(q, [[s]]_I), \exists A \in \mathbf{Acc}(p, [[s]]_I)$ s.t. $A \subseteq B$
- if $q \stackrel{[[s]]_I}{\Longrightarrow}$ then $p \stackrel{[[s]]_I}{\Longrightarrow}$

Things we would like to explore

- Equational characterizations (Algorithm deduction)
- Coinductive characterizations
- Interplay with client and p2p preorders
- Expressing different kinds of coordination power of the context
 - Can we use choreography descriptions to collect such information?
- Relationship with sub-typing in MST