

Dynamic Analysis and Classification of Android Malware

17th International School on Foundations of Security Analysis and Design (FOSAD)

University Residential Center of Bertinoro, Italy

Aug 28-Sep 2, 2017

Lorenzo Cavallaro

lorenzo.cavallaro@rhul.ac.uk>

Research partially supported by the UK EPSRC grants EP/K033344/1 and EP/L022710/1

- Antifork Research
- ► sOftpj

- Antifork Research
- ▶ sOftpi

- ▶ BSc & MSc in Computer Science
- ▶ PhD in Computer Science (Computer Security)

- Antifork Research
- ▶ sOftpj

- ▶ BSc & MSc in Computer Science
- ► PhD in Computer Science (Computer Security)

- ▶ 2006-2008: Visiting PhD Scholar Prof. R. Sekar
- Systems security (mem err, taint tracking, anomaly detection)

- ▶ 2008-2010: PostDoc Profs G. Vigna & C. Kruegel
- Malware analysis & detection (mostly botnet)

- ▶ 2010-2012: PostDoc Prof. A. S. Tanenbaum
- ► OS Dependability (MINIX3) & Systems Security

\$ WHC

► Reader (Associate Professor) of Information Security

\$ WHC

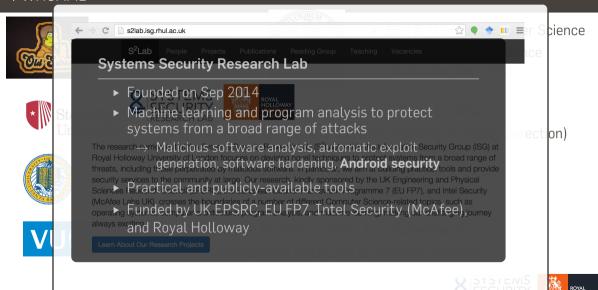
▶ Reader (Associate Professor) of Information Security

tifork Rosparch

- Founded in 1879 by Thomas Holloway
 - → Entrepreneur and Philanthropist
 → Holloway's pills and ointments
- ► Egham-still commuting distance to London!
- ► Featured in Avengers: Age of Ultron:-)
- Academic Centre of Excellence in Cyber Security Research Centre for Doctoral Traning in Cyber Security

lon

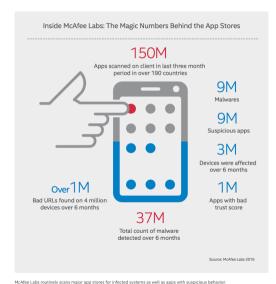
\$ WHOAMT



Google says there are now 1.4 billion active Android devices worldwide

BY JOHN CALLAHAM 🕒 Tuesday, Sep 29, 2015 at 12:13 pm EDT

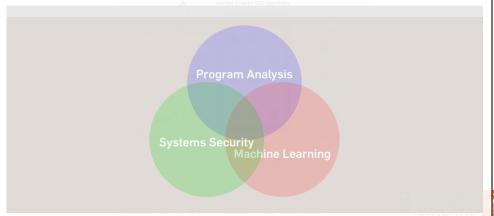
THE RISE IN ANDROID MALWARE



THE RISE IN ANDROID MALWARE

We need to automatically analyze programs

- ► Enable understanding of programs behaviors to aid analysts
- ► Facilitate additional automated analyses (e.g., machine learning, security policy enforcement, hardening)



Program Analysis — the process of **automatically** analyzing the **behavior** of computer programs with respect to specific properties (e.g., correctness, robustness, safety, security, liveness)¹

¹Herbert Wiklicky—https://www.doc.ic.ac.uk/%7Eherbert/teaching/00_TasterPrint.pdf

OUTLINE

Representation and Analysis of Software

Control Flow Graphs

Data Flow Information

Data and Control Dependence Graphs

Slicing

Dynamic Analysis for Androic

Classification of Android Malware

Machine Learning and Malicious Software: Quo Vadis?

REPRESENTATION AND ANALYSIS OF SOFTWARE

Disclaimer

Unless stated otherwise, all descriptions in this section (verbatim or rephrasing) and examples are taken from Harrold et al. Representation and Analysis of Software 2 , a text introducing and summarizing core program analysis techniques. Any erroneous simplification or misinterpretation is my own mistake 3 .

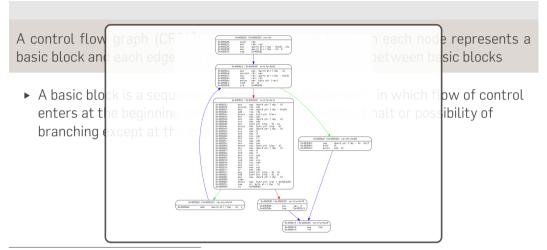
 $^{^3}$ This is not strictly speaking a lecture on program analysis—that said, I hope there is none :-)

²http://www.ics.uci.edu/%7Elopes/teaching/inf212W12/readings/rep-analysis-soft.pdf

A control flow graph $(CFG)^4$ is a directed graph in which each node represents a basic block and each edge represents the flow of control between basic blocks

► A basic block is a sequence of consecutive statements in which flow of control enters at the beginning and leaves at the end without halt or possibility of branching except at the end

⁴A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Reading, MA, 1986.

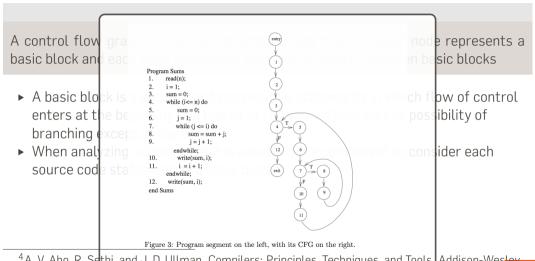


⁴A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Reading, MA, 1986.

A control flow graph $(CFG)^4$ is a directed graph in which each node represents a basic block and each edge represents the flow of control between basic blocks

► When analyzing source code, it is usually more convenient to consider each source code statement as a basic block

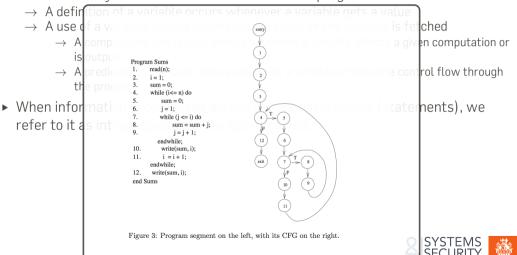
⁴A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tool Reading, MA, 1986.



⁴A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools. Additional Reading, MA, 1986.

- ▶ We can classify each reference to a variable in a program as a definition or a use
 - \rightarrow A definition of a variable occurs whenever a variable gets a value
 - ightarrow A use of a variable occurs whenever the value of the variable is fetched
 - ightarrow A computation use (c-use) occurs whenever a variable affects a given computation or is output
 - $\,\rightarrow\,$ A predicate use (p-use) occurs whenever a variable affects the control flow through the program
- When information is computed across across basic blocks (statements), we refer to it as intraprocedural data flow analysis

▶ We can classify each reference to a variable in a program as a definition or a use



- ▶ We can classify each reference to a variable in a program as a definition or a use
 - ightarrow A definition of a variable occurs whenever a variable gets a value

Reaching Definitions

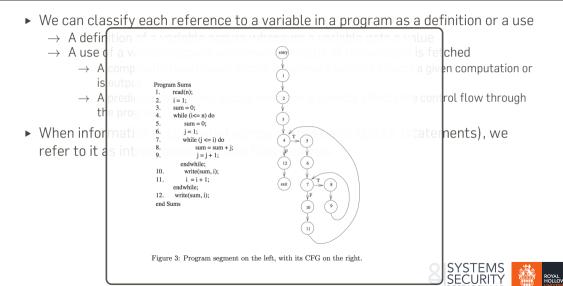
ation or

Given a program P with CFG G, a definition d reaches a point at p in G if there is a path in G from the point immediately following d to p such that d is not killed (e.g., redefined) along that path

hrough

A way to compute reaching definitions for all the variables in a program is to consider each definition d individually and propagate it along all paths from the definition until either d is killed or an exit from the program is reached

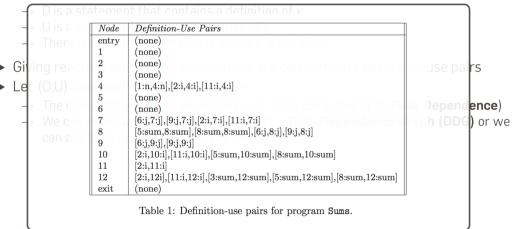
^aA more efficient approach is iterative dataflow analysis—see http://www.ics.uci.edu/%7Elopes/teaching/inf212W12/readings/rep-analysis-soft.pdf

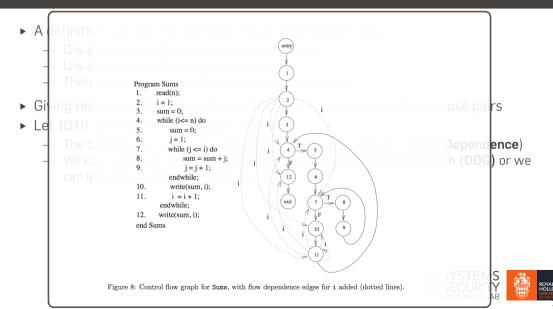


- \blacktriangleright A definition-use pair for variable v is an ordered pair (D,U)
 - ightarrow D is a statement that contains a definition of v
 - ightarrow U is a statement that contains a use of v
 - \rightarrow There is a subpath from D to U where v is not killed

- \blacktriangleright A definition-use pair for variable v is an ordered pair (D,U)
 - \rightarrow D is a statement that contains a definition of v
 - \rightarrow U is a statement that contains a use of v
 - \rightarrow There is a subpath from D to U where v is not killed
- ► Giving reaching definitions information, we can compute definition-use pairs
- ▶ Let (D,U) be a definition-use pair, then
 - → The computation at U is dependent upon data computed at D (Data Dependence)
 - ightarrow We can represent data dependences with a **Data Dependence Graph (DDG)** or we can add data dependence edge to the CFG

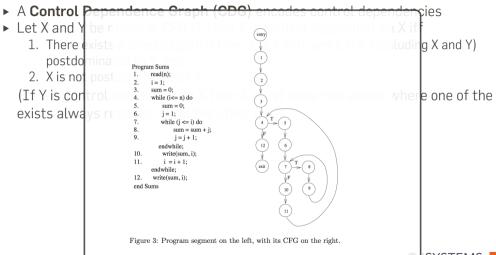
 \blacktriangleright A definition-use pair for variable v is an ordered pair (D,U)

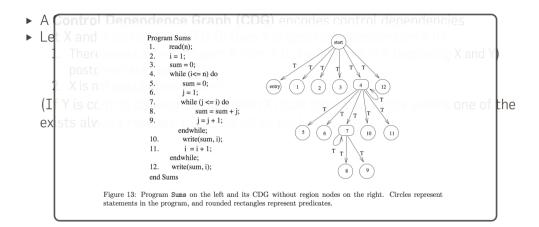


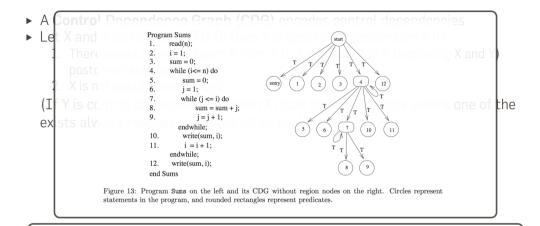


- ► A Control Dependence Graph (CDG) encodes control dependencies
- ▶ Let X and Y be nodes in CFG G; then Y is control dependent on X iff
 - 1. There exists a directed path P from X to Y with any Z in P (excluding X and Y) postdominated by Y, and
 - 2. X is not postdominated by Y

(If Y is control dependent on X then X must have two exists where one of the exists always reaches Y and the other not)







Program Dependence Graph

A program dependence graph embeds both control and data dependences

SLICING

A slice of a program with respect to program point P and set of program variables V consists of all statements and predicates in the program that may affect the values of variables in V at P $\,$

▶ It can be computed from the program CFG and data flow analysis or its PDG

SLICING

A slice of a program with respect to program point P and set of program variables V consists of all statements and predicates in the program that may affect the values of variables in V at P

▶ It can be computed from the program CFG and data flow analysis of its PDG

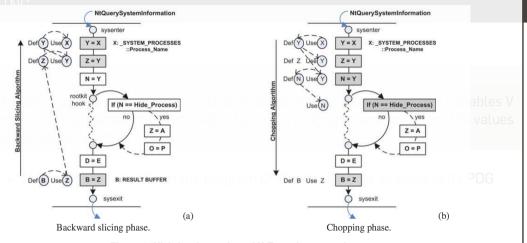


Figure 1. High-level overview of K-Tracer's approach.

а

^ahttp://www.internetsociety.org/doc/k-tracer-system-extracting-kernel-malware-behavior

(A few) other Applications in Security

- ► Practical control flow integrity influenced by alias analysis precision (e.g., indirect calls)^a respect to program point P and set of program variables V
- ▶ Programs graph isomorphism for malware detection but may affect the values
- ▶ Tainted graphs to detect and group similar malware in families^c
- ► And of course what we will see in the rest of the lecture!

ahttp://seclab.cs.sunysb.edu/seclab/pubs/oak13.pdf and https://www.usenix.org/node/190961

bhttps://www.cs.ucsb.edu/%7Exyan/papers/oakland20_malware.pdf and http://sycurelab.ecs.syr.edu/%7Emu/Zhang-DroidSIFT-CCS14.pdf

chttps://www.usenix.org/legacy/event/sec09/tech/full_papers/sec09_malware.pdf and https://www.cs.ucsb.edu/\pichris/research/doc/ndss09_cluster.pdf

STATUS QUO

	Method		T		Feature	# Malware	DR/FP(%)	ACC(%)
Year		Venue	Type Det Class					
2014	DroidAPIMiner	SecureComm	/	_	API,PKG,PAR	3,987	99/2.2	_
2014	DroidMiner	ESORICS	/	/	CG,API	2,466	95.3/0.4	92
2014	Drebin	NDSS	/	_	PER,STR,API,INT	5,560	94.0/1.0	_
2014	DroidSIFT	ACM CCS	/	/	API-F	2,200	98.0/5.15	93
2014	DroidLegacy	ACM PPREW	/	/	API	1,052	93.0/3.0	98
2015	AppAudit	IEEE S&P	/	_	API-F	1,005	99.3/0.61	_
2015	MudFlow	ICSE	/	_	API-F	10,552	90.1/18.7	_
2015	Marvin	ACM COMPSAC	/	_	PER, INT, ST, PN	15,741	98.24/0.0	_
2015	RevealDroid	TR GMU	/	/	PER,API,API-F,INT,PKG	9,054	98.2/18.7	93
2017	MaMaDroid	NDSS	/	_	Abstract APIs Markov Chain	80,000	99/1	_
2017	DroidSieve	ACM CODASPY	/	/	Syntactic- & Resource-centric	100,000	99.7/0	_
2016	Madam	IEEE TDSC	1	_	SYSC, API, PER, SMS, USR	2,800	96/0.2	_

STATUS QUO

Year	Method	Venue	T Det	ype Class	Feature	# Malware	DR/FP(%)	ACC(%)
2014	DroidAPIMiner	SecureComm	/	_	API,PKG,PAR	3,987	99/2.2	_
2014 201 4 2014			/-		cted features	2,466 5,560 2,200	95.3/0.4 94.0/1.0 98.0/5.15	92 — 93
				_	namically & native co			
					tracted features g	0?L0,552 15,741		
					of apps behaviors ble with rich semant	9,054 80,000 ics) _{0,000}		
			_	_	-accuracy results ification, sparse beh	2,800 aviors)		
				_	models: concept dissifier to identify dr		jects)	

OUTLINE

Representation and Analysis of Software

Dynamic Analysis for Android

Semantic-Reconstruction Issues

Understanding Android IPC

Automatic Reconstruction of Binder Arguments

(Open) Challenges and Living with them

Classification of Android Malware

Machine Learning and Malicious Software: Quo Vadis?

WHAT IS DYNAMIC ANALYSIS?

Dynamic analysis

A technique for observing (and understanding) the runtime actions of an application

- ► Well-established technique to characterize process behaviors⁵
- ► Significantly better than static analysis when it comes to resilience against common obfuscation schemes⁶

⁶Thanks to Matthias Neugschwandtner for the bytecode examples in the next s

⁵http://wenke.gtisc.gatech.edu/ids-readings/unix_process_self.pdf

ADVANTAGES: DETAIL OF INSIGHTS

ADVANTAGES: RESILIENT AGAINST OBFUSCATION/ENCRYPTION

ADVANTAGES: RESILIENT AGAINST REFLECTION

```
invoke-static {v0, v1, v2}, Lo /$CON; -> (III) Ljava/lang/String;
move-result-object v0
invoke-static {v0}, Ljava/lang/Class;
        ->forName(Ljava/lang/String;)Ljava/lang/Class;
move-result-object v0
const/16 v1, 0x98
const/16 v2. -0x12b
const/16 v3, -0x21
invoke-static {v1, v2, v3}, Lo/$CONa;->(III)Ljava/lang/String;
move-result-object v1
const/4 v2, 0x0
invoke-virtual {v0, v1, v2}, Ljava/lang/Class;->getMethod(Ljava/lang/String;
        [Ljava/lang/Class;)Ljava/lang/reflect/Method;
move-result-object v0
const/4 v1, 0x0
invoke-virtual {v0, v12, v1}, Ljava/lang/reflect/Method;
        ->invoke(Ljava/lang/Object;[Ljava/lang/Object;)Ljava/lang/Object;
```


Automatic Reconstruction of Apps Behaviors

RQ1—CopperDroid

DYNAMIC ANALYSIS FOR ANDROID

- ► DroidScope/DECAF⁷
 - ightarrow Dalvik VM method, asm insn, and system call tracing
 - ightarrow 2-level VMI to get to Dalvik VM semantics
- ► Droidbox⁸ and TaintDroid⁹
- ► Other approaches generally built on top of Droidbox/DroidScope/TaintDroid

⁷https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan and https://github.com/sycurelab/DECAF/tree/master/DroidScope/qemu

⁸https://github.com/pjlantz/droidbox

⁹http://www.appanalysis.org/

DYNAMIC ANALYSIS FOR ANDROID

- ► DroidScope/DECAF⁷
 - ightarrow Dalvik VM method, asm insn, and system call tracing
 - ightarrow 2-level VMI to get to Dalvik VM semantics
- ► Droidbox⁸ and TaintDroid⁹
- ► Other approaches generally built on top of Droidbox/DroidScope/TaintDroid

RQ

Is it necessary to look at Dalvik VM semantics or can we still reconstruct interesting behaviors from other observation points (perhaps a unique one)?

⁷https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan and https://github.com/sycurelab/DECAF/tree/master/DroidScope/qemu

⁸https://github.com/pjlantz/droidbox

⁹http://www.appanalysis.org/

SYSTEM CALL-CENTRIC ANALYSIS

- ► Established technique to characterize process behaviors¹⁰
- ► Identifying state-modifying actions crucial to analysis

SYSTEMS SECURITY RESEARCH LAB

SYSTEM CALL-CENTRIC ANALYSIS

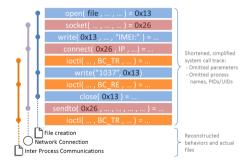
- ► Established technique to characterize process behaviors¹⁰
- ► Identifying state-modifying actions crucial to analysis

Can it be applied to Android?

- Android architecture is different to traditional devices
- ► State-modifying actions manifest at multiple abstractions
 - → Traditional OS interactions (e.g., filesystem/network interactions)
 - → Android-specific behaviors (e.g., SMS, phone calls)

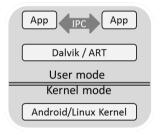
TRADITIONAL STATE-MODIFYING ACTIONS

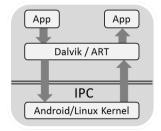
► Traditional OS interactions



ANDROID'S ACTIONS

- ► Traditional OS interactions
- ► Android functionality (Send SMS, Phone Call etc.)
 - \rightarrow Largely achieved through IPC/ICC (ioctl)
 - \rightarrow The Binder protocol is crucial to this





ANDROID'S ACTIONS

► Traditional OS interactions

Key Insight

System calls provide the right semantic abstraction given the reconstruction of Inter-Component Communications (ICC) behaviors

- ► ICC (aka Binder transactions) are carried out as ioctl system calls
 - ightarrow CopperDroid automatically unmarshalls such calls and reconstruct Android app behaviors ART Dalvik / ART
 - ightarrow No modification to the OS
 - ightarrow It works automatically across the Android fragmented ecosystem

^aKimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. **CopperDroid: Automatic Reconstruction of Android Malware Behaviors**. In 22nd Annual Network and Distributed System Security Symposium (NDSS), 2015

THE BINDER PROTOCOL

IPC/RPC

- ▶ Binder protocols enable fast inter-process communication
- ► Allows apps to invoke other app component functions
- ▶ Binder objects handled by Binder Driver in kernel
 - → Serialized/marshalled passing through kernel
 - → Results in input output control (ioctl) system calls

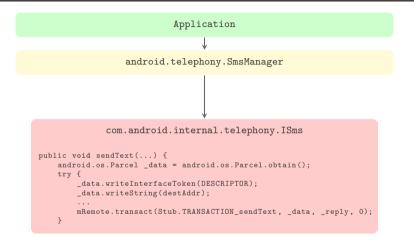
Android Interface Definition Language (AIDL)

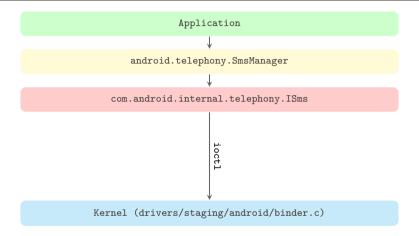
- ► AIDL defines which/how services can be invoked remotely
- Describes how to marshal method parameters

Application

```
PendingIntent sentIntent = PendingIntent.getBroadcast(SMS.this,
0, new Intent("SENT"), 0);
SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage("7855551234", null, "HiuThere", sentIntent, null);
```

Application android.telephony.SmsManager public void sendTextMessage(...) { ISms iccISms = ISms.Stub.asInterface(ServiceManager.getService("isms")); if (iccISms != null) iccISms.sendText(destinationAddress, scAddress, text, sentIntent, deliveryIntent);





TRACING SYSTEM CALLS ON ANDROID ARM THROUGH QEMU

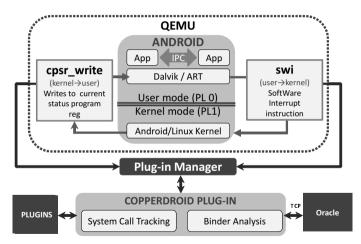
A system call induces a User -> Kernel transition

- ► On ARM invoked through the swi instruction (SoftWare Interrupt)
- ▶ r7: invoked system call number
- ▶ r0-r5: parameters
- ▶ lr: return address

CopperDroid's Approach

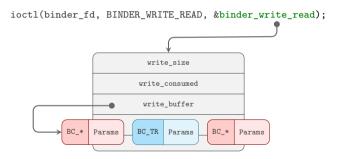
- ▶ instruments QEMU's emulation of the swi instruction
- ightharpoonup instruments QEMU to intercept every cpsr_write (Kernel ightarrow User)
- ► Perform traditional VMI to associate system calls to threads

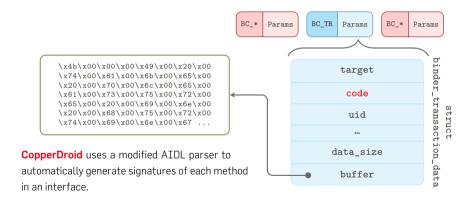
TRACING SYSTEM CALLS ON ANDROID ARM THROUGH QEMU

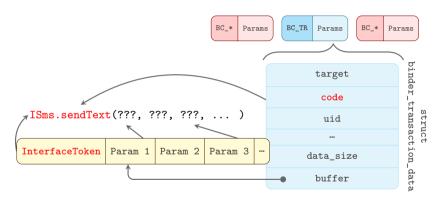


BINDER STRUCTURE WITHIN IOCTL

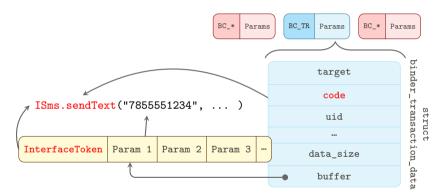
CopperDroid inspects the Binder protocol in detail by intercepting a subset of the ioctls issued by userspace Apps.







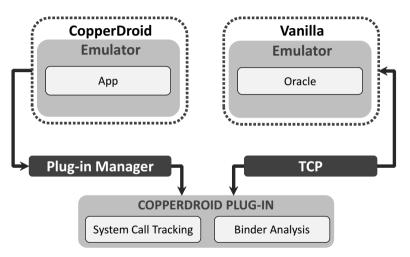
```
BC_*
                                        Params
                                                   BC TR
                                                          Params
                                                                    BC_*
                                                                          Params
public void sendText(...) {
                                                                              pinder
    android.os.Parcel data =
                                                         target
    android.os.Parcel.obtain();
    trv {
                                                           code
                                                                              transaction_dat
        _data.writeString(destAddr);
        _data.writeString(srcAddr);
                                                           nid
        _data.writeString(text);
                                                            ...
        mRemote.transact(
        Stub.TRANSACTION_sendText,
                                                       data_size
        data, reply, 0):
                                                         buffer
```



AUTOMATIC ANDROID OBJECTS UNMARSHALLING

- Primitive types (e.g., String text)
 - \rightarrow A few manually-written procedures
- Complex Android objects
 - ightarrow 300+ Android objects-manual unmarshalling: does not scale & no scientific
 - → Finds object CREATOR field
 - ightarrow Use reflection (type introspection, then intercession)
- ► IBinder object reference
 - \rightarrow A handle (pointer) sent instead of marshalled object
 - ightarrow Look earlier in trace to map each handle to an object

CopperDroid's Oracle unmarshalls all three automatically



TYPE	"string", "string", "PendingIntent", "PendingIntent"
DATA	\x0A \x00 \x00 \x00 \x37 \x00 \x38 \x00 \x35 \x00 \x36 \x00 \x00 \x00 \x00 \x00 \x00 \x00 \x0
OUTPUT	

- ► Type[0] = Primitive "string"
- ► Use ReadString() (and increment data offset by length of string)

- ► Type[1] and Type[2] are also Primitive "string"
- ► Use ReadString() (and increment data offset by length of strings)


```
"string", "string", "PendingIntent", "PendingIntent"
\x0A \x00 \x00 \x00 \x37 \x00 \x38 \x00 \x35 \x00 \x35 \x00 \x35
\x00 \x00 \x08 \x00 \x00 \x00 \x48 \x00 \x69 \x00 \x20 \x00 \x74
\x00 \x68 \x00 \x65 \x00 \x72 \x00 \x65 \x00 \x85*hs \x7f \x00
com.android.internal.telephony.ISms.sendText( String destAddr =
"7855551234", String srcAddr = null, String text = "Hi there",
Intent sentIntent { type = BINDER TYPE HANDLE, flags = 0x7F |
FLAT BINDER FLAG ACCEPT FDS handle = 0xa, cookie = 0x0 }....)
```

- ► Type[3] = IBinder "PendingIntent"
- ▶ Unmarshal using com. Android. Intent (AIDL) and increment buffer pointer
- ► Handle points to data to be unmarshalled in a previous Binder (ioctl) call

- ► Each handle is paired with a parcelable object
- ► CopperDroid sends each handle and parcelable object to the Oracle

Outputs observed from CopperDroid

FILESYSTEM TRANSACTIONS

```
1 "class": "FS ACCESS".
 2 "low": [
           "blob": "{'flags': 131072. 'mode': 1. 'filename': u'/etc/media codecs.xml'}".
           "id": 187369,
           "sysname": "open",
           "ts": "1455718126.798".
10
           "blob": "{'size': 4096L. 'filename': u'/etc/media codecs.xml'}".
11
           "id": 187371.
12
          "sysname": "read".
13
           "ts": "1455718126.798",
14
           "xref" · 187369
15
16
17
           "blob": "{'filename': u'/etc/media codecs.xml'}".
18
           "id": 187389.
19
          "svsname": "close".
20
          "ts": "1455718126.799",
21
           "xref": 187369
24 "procname": "/system/bin/mediaserver"
```

NETWORK TRANSACTIONS

```
1 "class": "NETWORK ACCESS",
2 "10" . [
         "blob": "{'socket domain': 10. 'socket type': 1. 'socket protocol': 0}".
         "id": 62.
         "svsname": "socket".
         "ts": "1445024980.686",
     }.
9
         "blob": "{'host': '::ffff:134.219.148.11', 'port': 80, 'returnValue': 0}",
11
         "id": 63.
12
         "sysname": "connect",
13
         "ts": "1445024980.687".
14
15
16
         "blob": "=%22%27GET+%2Findex.html+HTTP%2F1.1%5C%5Cr%5C%5C%5CnUser-Agent%3A+Dalvik%2F1.6.0+%28Linux%3B+U%3
              CnConnection%3A+Keep-Alive%5C%5Cr%5C%5CnAccept-Encoding%3A+gzip%5C%5Cr%5C%5Cn%5C%5Cr%5C%5Cn%27%22
         "id": 164.
18
         "sysname": "sendto".
19
         "ts": "1445024980.720".
20
     }.
22 "procname": "com.cd2.nettest.nettest".
23 "subclass": "HTTP"
```

NETWORK TRANSACTIONS

```
"class": "NETWORK ACCESS".
2 "low":
         "blob": "{'socket domain': 10. 'socket type': 1. 'socket protocol': 0}".
         Composite behaviors (e.g., filesystem and network transactions)
           We perform a value-based data flow analysis by building a system
            call-related DDG and def-use chains 80, 'returnValue': 0}",
11
12
            \Longrightarrow Each observed system call is initially considered as an unconnected node
              → Forward slicing inserts edges for every inferred dependence between two
14
15
                 calls
              \rightarrow Nodes and edges are annotated with the system call argument constraints
              → Annotations needed for the creation of def-use chains
17
              \rightarrow Def-use chains relate the output value of specific system calls to the
18
19
                input of (non-necessarily adjacent) others
20
  'procname": "com.cd2.nettest.nettest".
  "subclass": "HTTP"
```


BINDER TRANSACTIONS

```
1 "class": "SMS SEND".
 2 "low": [
           "blob": {
              "method": "sendText".
               "params": [
                   "callingPkg = com.load.wap",
                   "destAddr = 3170".
                   "scAddr = null",
10
                   "text = 999287346 418 Java (256) vip 2012-02-25 17:47:56 newoperastore.ru v"
11
12
          },
13
           "method_name": "com.android.internal.telephony.ISms.sendText()",
14
          "svsname": "ioctl".
15
          "ts": "1444337887.816".
16
           "type": "BINDER"
17
181.
19 "procname": "com.load.wap"
```

Challenges in Dynamic Analysis (for Android)

and Living with it

(OPEN) CHALLENGES

- 1. Android apps are interactive and hard to stimulate
- 2. Evasive analyses (not further discussed here) 11

¹¹http://roberto.greyhats.it/pubs/woot09.pdf and https://seclab.cs.ucsb.edu/media/uploads/papers/oakland10_hybrid.pdf and https://users.ece.cmu.edu/□tvidas/papers/ASIACCS14.pdf and https://www.sba-research.org/wp-content/uploads/publications/mostAndroid.pd⁻

COVERAGE IS PARTIAL IN DYNAMIC ANALYSIS

```
invoke-virtual {v7}, Ljava/lang/String;->length()I
move-result v1
const/16 v3, 0x12
if-eq v1, v3, :cond_0
iget-object v1, p0, Lcom/example/xxshenqi/RegisterActivity
:cond_0
```

Improving coverage

Coverage can be improved by generating test cases through sound stimulation strategies that cover all paths in the app.

STIMULATION: A HARD PROBLEM

- ► Automating interactions with apps meaningfully is hard
- ► We often do not have the context for a successful invocation and successful invocations may depend on a complex sequence of events
 - ightarrow Imagine a FaceBook notification when someone logs into your account from a new device
 - \rightarrow How do we generate a test case to simulate this situation?

A CASE FOR IMPERFECT STIMULATION

- ► A pragmatic approach is to stimulate what we can
- ► The most commonly used tool to stimulate apps is MonkeyRunner

MonkeyRunner

It is a program that provides APIs to control the execution of an Android app running on an emulator for testing purpose

► The onus is on the tester to provide the right inputs through MonkeyRunner to stimulate the app

► Install an apk

- ► Install an apk
- $\,\blacktriangleright\,$ Invoke an activity with the installed apk

- ► Install an apk
- ► Invoke an activity with the installed apk
- ► Send keystrokes to type a text message

- ► Install an apk
- ► Invoke an activity with the installed apk
- ► Send keystrokes to type a text message
- ► Click on arbitrary locations on the screen

- ► Install an apk
- Invoke an activity with the installed apk
- ► Send keystrokes to type a text message
- ► Click on arbitrary locations on the screen
- ► Take screenshots (useful for feedback)

- ► Install an apk
- Invoke an activity with the installed apk
- ► Send keystrokes to type a text message
- ► Click on arbitrary locations on the screen
- ► Take screenshots (useful for feedback)
- ► Wake up device if it goes to sleep

 $\,\blacktriangleright\,$ It is still notoriously difficult to write a good stimulation script

- ▶ It is still notoriously difficult to write a good stimulation script
- ► Android apps are highly interactive and you need to get right both the context and location of the stimulation in the GUI

- ▶ It is still notoriously difficult to write a good stimulation script
- ► Android apps are highly interactive and you need to get right both the context and location of the stimulation in the GUI
- ► A change in the GUI means a new test script needs to be developed

- ▶ It is still notoriously difficult to write a good stimulation script
- ► Android apps are highly interactive and you need to get right both the context and location of the stimulation in the GUI
- ► A change in the GUI means a new test script needs to be developed

MONKEYRUNNER VS. STATE-OF-THE-ART

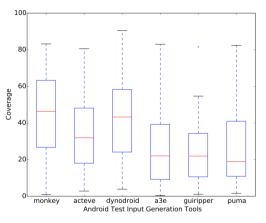


Figure: A comparison of Android test generation tools ¹²

MONKFYRUNNFR VS. STATF-OF-THF-ART

Quo Vadis?

- ► Harvesting Runtime Values in Android Applications That Feature Anti-Analysis Tecniquesa
- ► TriggerScope: Towards Detecting Logic Bombs in Android Apps^b
- ► TeICC: Targeted Execution of Inter-Component Communications in Android^c

A pure symbolic execution approach is too expensive

- ► State explosion, abstraction models
- ▶ Do we need to explore all the execution paths?

12 Source: Automated Test Triput Generation for Android: Are We There Yet? by Shauyik Roy Choudhary et. al., 30th IEEE/ACM International

^aS. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden. NDSS 2016.

by, Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C. Kruegel, G. Vigna. IEEE Symposium on Security & Privacy, 2016

^cMagsood Ahmad, Valerio Costamagna, Bruno Crispo, and Francesco Bergadano. ACM Symposium on Applied Computing (SAC), 2017

OUTLINE

Representation and Analysis of Software

Dynamic Analysis for Android

Classification of Android Malware DroidScribe

Machine Learning and Malicious Software: Quo Vadis'

RQ2—DroidScribe

Classifying Android Malware with Runtime Behavior

TAKE AWAYS

- ► CopperDroid reproduces execution footprint of an App
- ▶ It re-constructs high-level semantics automatically
 - ightarrow More meaningful actions
 - ightarrow Less clutter from detailed OS-call trace

TAKE AWAYS

- CopperDroid reproduces execution footprint of an App
- ▶ It re-constructs high-level semantics automatically

CopperDroid: Automatic Reconstruction of Android Malware Behaviors

- http://s2lab.isg.rhul.ac.uk/papers/files/ndss2015.pdf
 (Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. NDSS 2015)
- Check it out @ http://copperdroid.isg.rhul.ac.uk
- Check MobSec out @ http://s2lab.isg.rhul.ac.uk/projects/mobsec/
- New roll out soon—stay tuned and drop me a line: lorenzo.cavallaro@rhul.ac.uk

TOWARDS CLASSIFICATION OF MALWARE

- CopperDroid reproduces execution footprint of an App
- ▶ It re-constructs high-level semantics automatically
 - ightarrow More meaningful actions
 - ightarrow Less clutter from detailed OS-call trace

Next steps...

- ► Can we use this information for classifying malware Apps?
- ► Is the level of reconstructed information/behaviour sufficient?
- What is the quality of classification that we can achieve?

RESEARCH OBJECTIVES

- ► Runtime behaviors as discriminator of maliciousness
 - → Independent of any syntactic artifact
 - ightarrow Visible in managed and native code alike
- ► Family Identification
 - ightarrow Crucial for analysis of threats and mitigation planning

Goal Dynamic analysis for classification under challenging conditions

Our contributions¹³

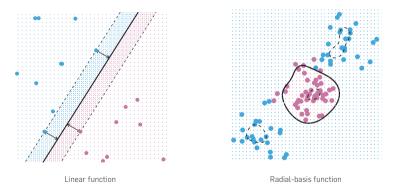
- ► RQ2.1: What is the best level abstraction?
- ► RQ2.2: Can we deal with sparse behaviors?

¹³ Dash et al., ``DroidScribe: Classifying Android Malware Based on Runtime Behaviors' is TEFFS Workshop MoST 2016

Workshop MoST 2016

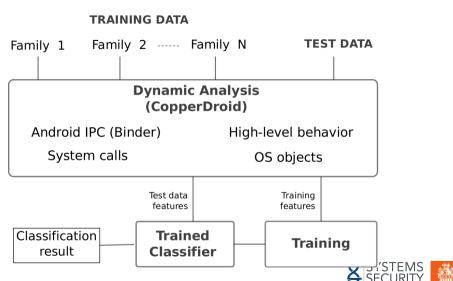
MACHINE LEARNING COMPONENT

- ► Use existing malware classified into families as training data
- ▶ Use Support Vector Machines as the classification algorithm



Source: An Introduction to Statistical Learning–G. James et al. $\label{eq:control}$

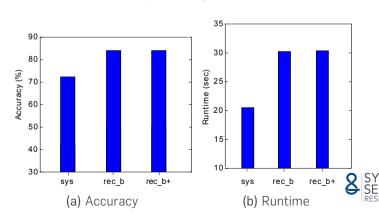
OVERVIEW OF THE CLASSIFICATION FRAMEWORK



SYSTEM-CALLS VS. ABSTRACT BEHAVIORS

RQ2.1 What is the best level of abstraction?

- ► Experiments on the Drebin dataset (5,246 malware samples).
- ▶ Reconstructing Binder calls adds 141 meaningful features.
- ▶ High level behaviors added 3 explanatory features.

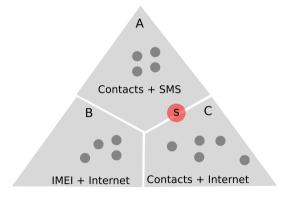


SET-BASED PREDICTIONS

- ► Dynamic analysis is limited by code coverage
- Classifier has only partial information about behaviors
- ► Identify when malware cannot be reliable classified into only one family
 - ightarrow Based on a measure of the statistical confidence
- ► Helpful human analyst by identifying the top matching families, supported by statistical evidence

CLASSIFICATION FROM OBSERVED FEATURES

- ▶ When more than one choice of similar likelihood exists, ...
- ... traditional classification algorithms are prone to error



Contacts accessed by S

CLASSIFICATION WITH STATISTICALLY CONFIDENCE

Conformal Predictor (CP)

- ▶ A statistical learning algorithm tailored at classification tasks
- Provides statistical evidence on the results.

Credibility

Supports how good a sample fits into a class

Confidence

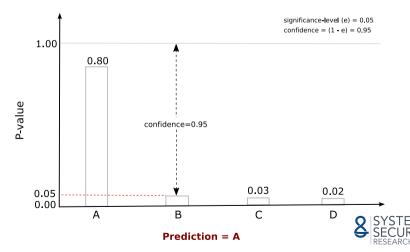
Indicates if there are other good choices

Robust Against Outliers

Aware of values from other members of the same class

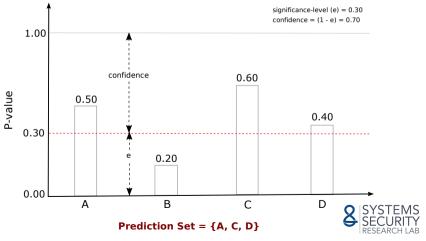
IN AN IDEAL WORLD

Given a new object s, conformal predictor picks the class with the highest p-value and return a singular prediction.



OBTAINING PREDICTION SETS

Given a new object s, we can set a significance-level e for p-values and obtain a prediction set Γ^e includes labels whose p-value is greater than e for the sample.



WHEN TO USE CONFORMAL PREDICTION?

- ► CP is an expensive algorithm
 - \rightarrow For each sample, we need to derive a p-value for each class
 - ightarrow Computation complexity of O(nc) where n is number of samples and c is the number of classes

WHEN TO USE CONFORMAL PREDICTION?

- ► CP is an expensive algorithm
 - \rightarrow For each sample, we need to derive a p-value for each class
 - ightarrow Computation complexity of O(nc) where n is number of samples and c is the number of classes

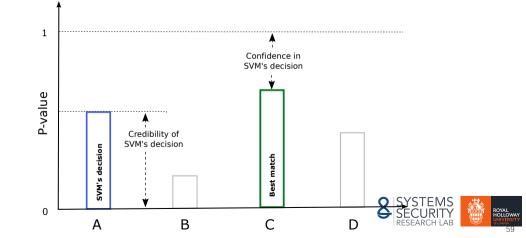
Conformal Evaluation¹

- Provide statistical evaluation of the quality of a ML algorithm
 - ightarrow Quality threshold to understand when should be trusting SVM
 - → Statistical evidences of the choices of SVM
 - → Selectively invoke CP to alleviate runtime performance

¹Roberto Jordaney Kumar Sharad, Santanu K. Dash, Zhi Wang, Davide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. "Transcend: Detecting Concept Drift in Malware Classification Models." In USENT Security Symposium, Vancouver, CA, 2017

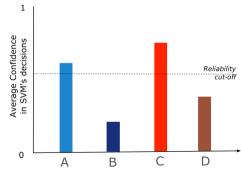
STEP 1. COMPUTING CONFIDENCE IN TRAINING DECISIONS

- ▶ During training, compute p-values for each sample for each class
- ▶ Compute the confidence in the decision for each sample

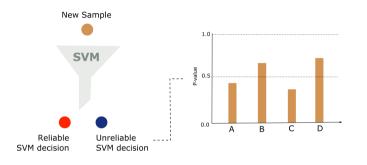


STEP 2. USING CLASS-LEVEL CONFIDENCE SCORES

- ► For each class, calculate the mean confidence for all decisions mapping to the class
- ► Use the median of the class-level confidence across all classes as a reliability threshold



STEP 3. INVOKING THE CONFORMAL PREDICTOR



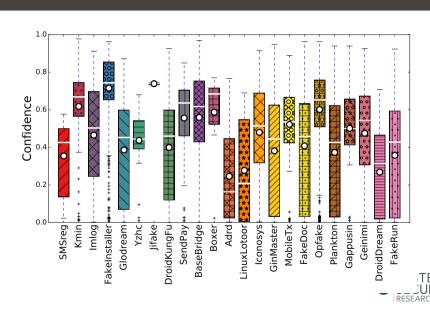
Threshold	Prediction Set
1.0	Φ
0.5	
0.0	

CONFORMAL PREDICTION

Threshold

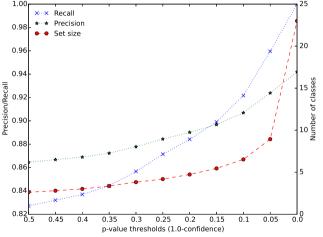
The threshold for picking prediction sets is fully tunable

CONFIDENCE OF CORRECT SVM DECISIONS



ACCURACY VS. PREDICTION SET SIZE

RQ2.2 Can we deal with sparse behaviors?



► Accuracy improves with the prediction set size

RQ3—Concept Drift

Statistical Evaluation of ML Classifiers

OUTLINE

Representation and Analysis of Software

Dynamic Analysis for Androic

Classification of Android Malware

Machine Learning and Malicious Software: Quo Vadis?

- Conformal Evaluator
 - Experimental Results
 - Take Aways

MACHINE LEARNING AND MALICIOUS SOFTWARE: QUO VADIS?

► Malware: pressing threat to the security of the Internet

MACHINE LEARNING AND MALICIOUS SOFTWARE: QUO VADIS?

- ► Malware: pressing threat to the security of the Internet
- ► Machine learning (often with program analysis): promising technique(s) to combat malware at scale

MACHINE LEARNING AND MALICIOUS SOFTWARE: QUO VADIS?

- ► Malware: pressing threat to the security of the Internet
- ► Machine learning (often with program analysis): promising technique(s) to combat malware at scale
 - ightarrow Windows malware binary and multi-class classification
 - ightarrow e.g., Holmes (IEEE S&P10), DIMVA08, CODASPY16
 - ightarrow Malicious network traffic clustering and classification
 - ightarrow e.g., BotMiner (USENIXSec08), FIRMA (RAID13)
 - ightarrow Android malware binary and multi-class classification
 - ightarrow e.g., Drebin (NDSS14), Marvin (COMPSAC15), DroidScribe (MoST16)

MACHTNE LEARNING AND MALITCIOUS SOFTWARE: QUO VADIS?

- ▶ Malware: pressing threat to the security of the Internet
- ▶ Machine learning (often with program analysis); promising technique(s) to combat malware at scale
 - → Windows malware binary and multi-class classification
 - → e.g., Holmes (IEEE S&P10), DIMVA08, CODASPY16
 - → Malicious network traffic clustering and classification
 - → e.g., BotMiner (USENIXSec08), FIRMA (RAID13)
 - → Android malware binary and multi-class classification
 - → e.g., Drebin (NDSS14), Marvin (COMPSAC15), DroidScribe (MoST16)

In general, high TPR and low FPR in k-fold cross validation settings (ROC curve)

▶ It looks like we have solved the problem...

MACHINE LEARNING CLASSIFICATION

Usually, a 2-phase process:

- 1. Training: build a model M, given labeled objects
- 2. Testing: given M, predict the labels of unknown objects

Objects are described as vectors of features

MACHINE LEARNING CLASSIFICATION

Usually, a 2-phase process:

- 1. Training: build a model M, given labeled objects
- 2. Testing: given M, predict the labels of unknown objects

Objects are described as vectors of features

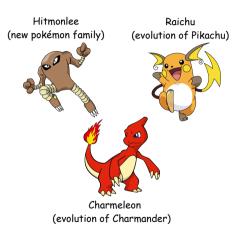
MACHINE LEARNING CLASSIFICATION

Usually, a 2-phase process:

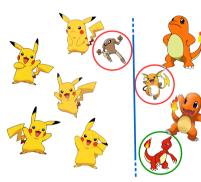
- 1. Training: build a model M, given labeled objects
- 2. Testing: given M, predict the labels of unknown objects

Objects are described as vectors of features

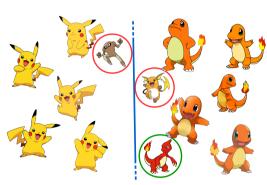
- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified



- Concept drift is the change in the statistical properties of an object in unforeseen ways
- ► Drifted objects will likely be wrongly classified

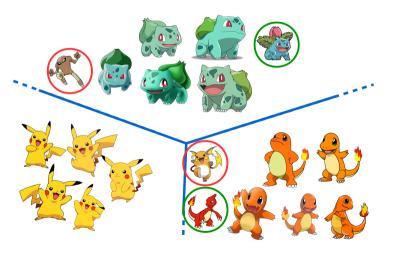


- Concept drift is the change in the statistical properties of an object in unforeseen ways
- Drifted objects will likely be wrongly classified



Of course, the problem exists in multiclass classification settings...

► Multiclass classification is a generalization of the binary case



CONCEPT DRIFT

- ▶ In non-stationary contexts classifiers will suffer from concept drift due to:
 - ightarrow malware evolution $\cline{\crine{\cline{\cline{\cline{\cline{\cline{\cline{\cline{\cline{\cli$
 - ightarrow new malware families ightarrow
- Need a way to assess the predictions of classifiers
 - ightarrow Ideally classifier-agnostic assessments
- Need to identify objects that fit a model and those drifting away

CONCEPT DRIFT

- ▶ In non-stationary contexts classifiers will suffer from concept drift due to:
 - ightarrow malware evolution $\cline{\crine{\cline{\cline{\cline{\cline{\cline{\cline{\cline{\cline{\cli$
 - ightarrow new malware families lacksquare
- Need a way to assess the predictions of classifiers
 - → Ideally classifier-agnostic assessments

Oun Contributions, objects that fit a model and those drifting away

- · Conformal Evaluator: statistical evaluation of ML classifiers
- Per-class quality threshold to identify reliable and unreliable predictions

CONFORMAL EVALUATOR

- ► Assesses decisions made by a classifier
 - → Mark each decision as reliable or unreliable
- ▶ Builds and makes use of p-value as assessment criteria
- ► Computes per-class thresholds to divide reliable decisions from unreliable ones

CONFORMAL EVALUATOR: P-VALUE?

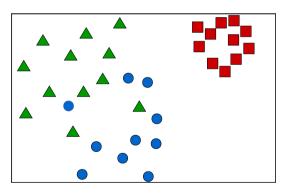
- ▶ Used to measure "how well" a sample fits into a single class
- Conformal Evaluator computes a p-value for each class, for each test element

$$\begin{array}{rcl} & & \text{Definition} \\ \alpha_t & = & \text{Non-conformity score for test element t} \\ \forall i \in \mathscr{K}, \alpha_i & = & \text{Non-conformity score for train element i} \\ \text{p-value} & = & \frac{|\{i: \alpha_i \geq \alpha_t\}|}{|\mathscr{K}|} \\ \mathscr{K} & = & \text{Total number of element} \end{array}$$

P-value

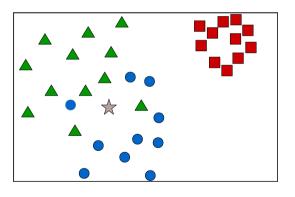
Ratio between the number of training elements that are more dissimilar than the element under test

ML classifier: distance from centroid



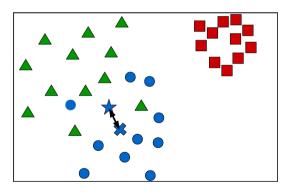
1. Setting: 3-class classification

ML classifier: distance from centroid



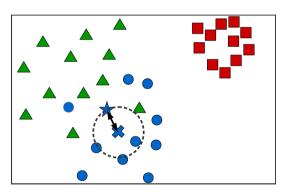
- 1. Setting: 3-class classification
- 2. Test object

ML classifier: distance from centroid



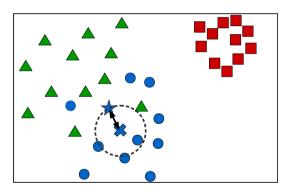
- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class

ML classifier: distance from centroid



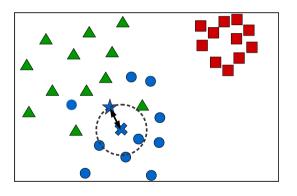
- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more dissimilar than the one under test?

ML classifier: distance from centroid



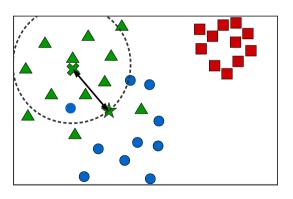
- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more dissimilar than the one under test?
 - 3.3 9

ML classifier: distance from centroid



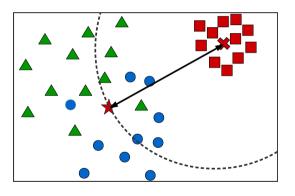
- 1. Setting: 3-class classification
- 2. Test object
 - 3.1 Compute distance to blue class
 - 3.2 How many objects are more dissimilar than the one under test?
 - 3.3 9
 - 3.4 P-value $\star = \frac{9}{10}$

Machine learning classifier: distance from centroid



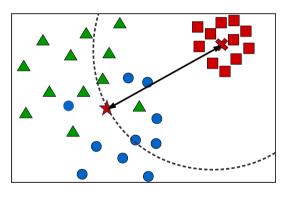
- 1. Setting: 3-class classification
- 2. Test object
 - 4.1 Calculate distance to green class
 - 4.2 How many objects are more dissimilar than the one under test?
 - 4.3 4
 - 4.4 P-value $\star = \frac{4}{12}$

Machine learning classifier: distance from centroid



- 1. Setting: 3-class classification
- 2. Test object
 - 5.1 Calculate distance to red class
 - 5.2 How many objects are more dissimilar than the one under test?
 - 5.3 0
 - 5.4 P-value $\star = \frac{0}{11}$

Machine learning classifier: distance from centroid

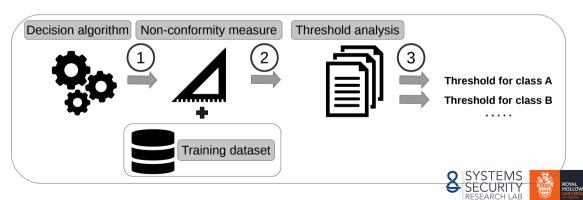


- 1. Setting: 3-class classification
- 2. Test object
 - 5.1 Calculate distance to red class
 - 5.2 How many objects are more dissimilar than the one under test?
 - 5.3 0
 - 5.4 P-value $_{\bigstar} = \frac{0}{11}$

Let's see how p-values are used within Conformal Evaluator.

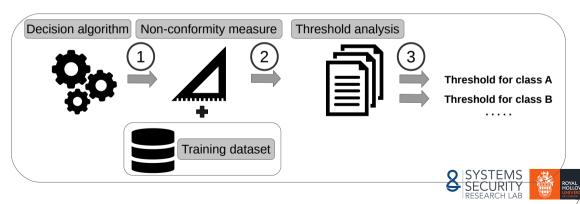
CONFORMAL EVALUATOR: HOW DOES IT WORK?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
 - → NCM provides non-conformity scores for p-value computations
 - ightarrow Example: distance from hyperplane, Random Forest probability (adapted to satisfy the non-conformity requirement)



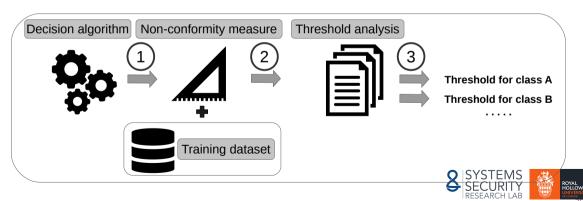
CONFORMAL EVALUATOR: HOW DOES IT WORK?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
- 2. Builds p-values for all training samples in a cross-validation fashion



CONFORMAL EVALUATOR: HOW DOES IT WORK?

- 1. Extracts the non-conformity measure (NCM) from the decision making algorithm
- 2. Builds p-values for all training samples in a cross-validation fashion
- 3. Computes per-class threshold to divide reliable predictions from unreliable ones



CONFORMAL EVALUATOR: IDENTIFYING PER-CLASS THRESHOLDS

Customizable constraints:

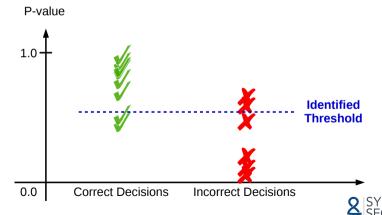
- ► Desired performance (of the predictions marked as reliable)
 - ightarrow E.g.: high-level performance will raise the threshold
- Number of unreliable prediction tolerated
 - ightarrow E.g.: low number of unreliable prediction will lower the threshold

Assumptions

- ▶ Performance of non-drifted elements are similar to the one declared by the algorithm
- ▶ Predictions with high confidence will have higher p-values

CONFORMAL EVALUATOR: IDENTIFYING PER-CLASS THRESHOLDS

- ► We use the p-values and prediction labels from training samples
- ► From the thresholds that satisfy the constraints we chose the one that maximize one or the other



EXPERIMENTAL RESULTS: CASE STUDIES

- ► Binary case study: Android malware detection algorithm
 - \rightarrow Reimplemented Drebin¹⁴ algorithm with similar results (0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)
 - ightarrow Static features of Android apps, linear SVM (used as NCM)
 - → Concept drift scenario: malware evolution
- Multiclass case study: Microsoft malware classification algorithm
 - ightarrow Solution to Microsoft Kaggle competition ¹⁵, ranked among the top ones
 - ightarrow Static features from Windows PE binaries, Random Forest (used as NCM)
 - ightarrow Concept drift scenario: family discovery

¹⁴ Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, February 375 70 MS

EXPERIMENTAL RESULTS: CASE STUDIES

- ► Binary case study: Android malware detection algorithm
 - \rightarrow Reimplemented Drebin¹⁴ algorithm with similar results (0.95-0.92 precision-recall on malicious apps and 0.99-0.99 precision-recall on benign apps)
 - ightarrow Static features of Android apps, linear SVM (used as NCM)
 - → Concept drift scenario: malware evolution

¹⁵ KAGGLE INC. Microsoft Malware Classification Challenge (BIG 2015). https://www.kaggle.com/c/malware-classification

¹⁴ Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad Rieck. Drebin: Effective and Explainable Detection of Android Malware in Your Pocket. In 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, California, USA, February, 23x26; 70±4, 1 C

- ▶ Drebin dataset: samples collected from 2010 to 2012
- ► Marvin dataset¹⁶: malware apps collected from 2010 to 2014 (no duplicates)
 - ightarrow We expect some object to drift from objects in the Drebin dataset

Drebin	Dataset	Marvi	n Dataset
Туре	Samples	Туре	Samples
Benign Malware	123,435 5,560	Benign Malward	

¹⁶ Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MARVIN: Efficient and Comprehensive Mobile Applications Conference (COMPSAC), Taichung, Taiwas Section 16 Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MARVIN: Efficient and Comprehensive Mobile Applications Conference (COMPSAC), Taichung, Taiwas Section 16 Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MARVIN: Efficient and Comprehensive Mobile Applications Conference (COMPSAC), Taichung, Taiwas Section 16 Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. MARVIN: Efficient and Comprehensive Mobile Applications Conference (COMPSAC), Taichung, Taiwas Section 16 Martina Lindorfer, Martina Lindorfer

Experiment: Drift Confirmation

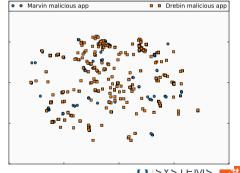
- ► Training dataset: Drebin dataset
- ▶ Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label					
Original label	Benign	Malicious	Recall		
Benign Malicious	4,498 2,890	2 1,610	1 0.36		
Precision	0.61	1			

Experiment: Drift Confirmation

- ► Training dataset: Drebin dataset
- ▶ Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label					
Original label	Benign	Malicious	Recall		
Benign	4,498	2	1		
Malicious	2,890	1,610	0.36		
Precision	0.61	1			

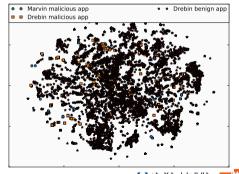


Experiment: Drift Confirmation

► Training dataset: Drebin dataset

▶ Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset

Prediction label					
Original label	Benign	Malicious	Recall		
Benign Malicious	4,498 2,890	2 1,610	1 0.36		
Precision	0.61	1			



Experiment: Threshold Identification

- ► Training dataset: Drebin dataset
- Testing dataset: 4,500 benign and 4,500 malicious random samples from Marvin dataset
- Make use of Conformal Evaluator's prediction assessment algorithm
 - → Constraints: F1-score of 0.99 and 0.76 of elements marked as reliable

Prediction label					
Original label	Benign	Malicious	Recall		
Benign Malicious	4,257 504	2 1,610	1 0.76		
Precision	0.89	1			

Experiment: Retraining

- ► Training dataset: Drebin dataset + samples marked as unreliable from previous experiment
- ► Testing dataset: 4,500 benign and 4,500 malicious random samples of Marvin dataset (no sample overlap from previous experiment)

Assigned label					
Sample	Benign	Malicious	Recall		
Benign	4,413	87	0.98		
Malicious	255	4,245	0.94		
Precision	0.96	0.98			

Experiment: Threshold Comparison

- ► Compare probability- and p-value-based thresholds
 - → Central tendency and dispersion points of true positive distribution
- ► Training dataset: Drebin dataset
- ► Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR (reliable predictions)		TPR (unreliable predictions)		FPR (reliable predictions)		FPR (unreliable predictions)	
	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005

Experiment: Threshold Comparison

- ► Compare probability- and p-value-based thresholds
 - → Central tendency and dispersion points of true positive distribution
- ► Training dataset: Drebin dataset
- ► Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR (reliable predictions)		TPR (unreliable predictions)		FPR (reliable predictions)		FPR (unreliable predictions)	
	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005

Experiment: Threshold Comparison

- ► Compare probability- and p-value-based thresholds
 - → Central tendency and dispersion points of true positive distribution
- ► Training dataset: Drebin dataset
- ► Testing dataset: 4,500 benign and 4,500 malicious apps from Marvin dataset (random sampling)

	TPR (reliable predictions)		TPR (unreliable predictions)		FPR (reliable predictions)		FPR (unreliable predictions)	
	p-value	probability	p-value	probability	p-value	probability	p-value	probability
1st quartile	0.9045	0.6654	0.0000	0.3176	0.0007	0.0	0.0000	0.0013
Median	0.8737	0.8061	0.3080	0.3300	0.0000	0.0	0.0008	0.0008
Mean	0.8737	0.4352	0.3080	0.3433	0.0000	0.0	0.0008	0.0018
3rd quartile	0.8723	0.6327	0.3411	0.3548	0.0000	0.0	0.0005	0.0005

► Dataset: Microsoft Malware Classification Challenge (2015)

Microsoft Malware Classification C	Challenge Dataset
------------------------------------	-------------------

Malware	Samples	Malware	Samples
Ramnit	1541	Obfuscator.ACY	1 228
Lollipop	2 478	Gatak	1013
Kelihos_ver3	2942	Kelihos_ver1	398
Vundo	4 75	Tracur	751

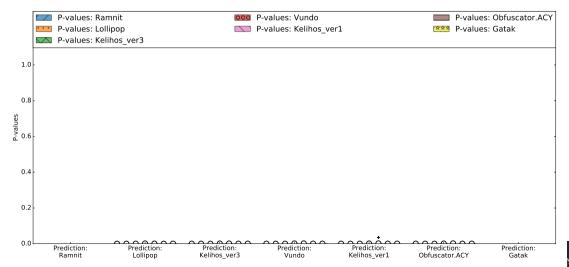
Experiment: Family Discovery

- ▶ Training families: Ramnit, Lollipop, Kelihos_ver3, Vundo, Obfuscator.ACY, Gatak, Kelihos_ver1
- ► Testing family: Tracur

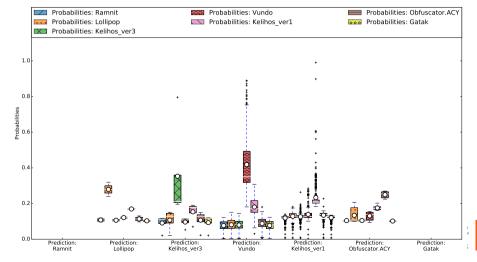
Classification results:

Lollipop	Kelihos_ver3	Vundo	Kelihos_ver1	Obfuscator.ACY
5	6	358	140	242

P-value distribution for samples of Tracur family; as expected, the values are all close to zero.



Probability distribution for samples of Tracur family; bounded to sum to one, the values are different than zero.



TAKE AWAYS

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

TAKE AWAYS

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier Statistical Support: Builds p-values from NCM to statistically-support predictions Quality Thresholds: Builds thresholds from p-values to identify unreliable predictions

TAKE AWAYS

Conformal Evaluator (CE)

Statistical evaluation to assess predictions of ML classifiers and identify concept drift

Algorithm Agnostic: Uses non-conformity measure (NCM) from the ML classifier Statistical Support: Builds p-values from NCM to statistically-support predictions Quality Thresholds: Builds thresholds from p-values to identify unreliable predictions

- ▶ We evaluate the proposed solution on different ML classifiers and case studies
 - $\,\rightarrow\,$ Android malware apps in binary classification settings
 - ightarrow Windows PE binaries in multi-class classification settings
- ► Information on CE's python code and dataset availability at:

https://s2lab.isg.rhul.ac.uk/projects/ce

CONCLUSIONS

- ► CopperDroid: automatic reconstruction of apps behaviors¹⁷
 - ightarrow System calls to abstract OS- and Android-specific behaviors
 - ightarrow Resilient to changes to the runtime and Android versions

 ¹⁷ http://s2lab.isg.rhul.ac.uk/papers/files/ndss2015.pdf
 18 http://s2lab.isg.rhul.ac.uk/papers/files/most2016.pdf
 19 http://s2lab.isg.rhul.ac.uk/papers/files/aisec2016.pdf
 http://s2lab.isg.rhul.ac.uk/papers/files/usenixsec2017.pdf

CONCLUSIONS

- ► CopperDroid: automatic reconstruction of apps behaviors 17
 - ightarrow System calls to abstract OS- and Android-specific behaviors
 - ightarrow Resilient to changes to the runtime and Android versions
- ► Classification with such semantics: "It... Could... Work!" 18
 - → Selective set-based classification (CE/CP)
 - $\,\rightarrow\,$ (WIP: binary classification and different feature engineering)

¹⁷http://s2lab.isg.rhul.ac.uk/papers/files/ndss2015.pdf

¹⁸http://s2lab.isg.rhul.ac.uk/papers/files/most2016.pdf

¹⁹ http://s2lab.isg.rhul.ac.uk/papers/files/aisec2016.pdf and http://s2lab.isg.rhul.ac.uk/papers/files/usenixsec2017.pdf

CONCLUSIONS

- ► CopperDroid: automatic reconstruction of apps behaviors 17
 - ightarrow System calls to abstract OS- and Android-specific behaviors
 - ightarrow Resilient to changes to the runtime and Android versions
- ► Classification with such semantics: "It... Could... Work!" 18
 - → Selective set-based classification (CE/CP)
 - $\,\rightarrow\,$ (WIP: binary classification and different feature engineering)
- ► Statistical evaluation of ML seems promising 19
 - ightarrow Identify concept drift and and when to trust a prediction
 - \rightarrow TPR from **37.5%** to **92.7%** in realistic settings
 - ightarrow Identifies previously-unknown classes or malicious samples

¹⁷http://s2lab.isg.rhul.ac.uk/papers/files/ndss2015.pdf

¹⁸http://s2lab.isg.rhul.ac.uk/papers/files/most2016.pdf

¹⁹ http://s2lab.isg.rhul.ac.uk/papers/files/aisec2016.pdf and http://s2lab.isg.rhul.ac.uk/papers/files/usenixsec2017.pdf