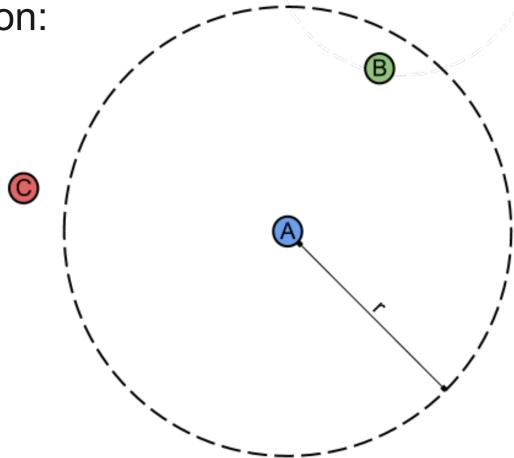
Privacy-preserving Location Proximity

Per Hallgren, Chalmers Univ. Gothenburg

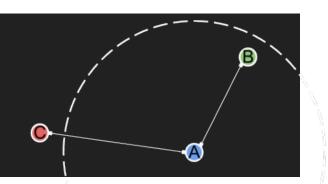
Martín Ochoa, Siemens AG (Recently TUM)

Andrei Sabelfeld, Chalmers University of Technology

TOC


B

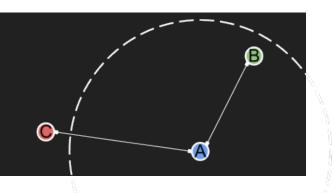
- 1. Background
- 2. Protocol
- 3. Theoretical Evaluation
- 4. Practical Evaluation


Proximity Testing

Answers the question:

"Am I close?"

Homomorphic Encryption


A homorphic encryption scheme allows you to perform decipherable operations on ciphertext.

 $RSA: E(x) = x^e \mod m$

RSA is *multiplicatively* homomorphic

 $E(x) \times E(y) = x^e \times y^e \mod m = (x \times y)^e \mod m = E(x \times y)$

Homomorphic Encryption

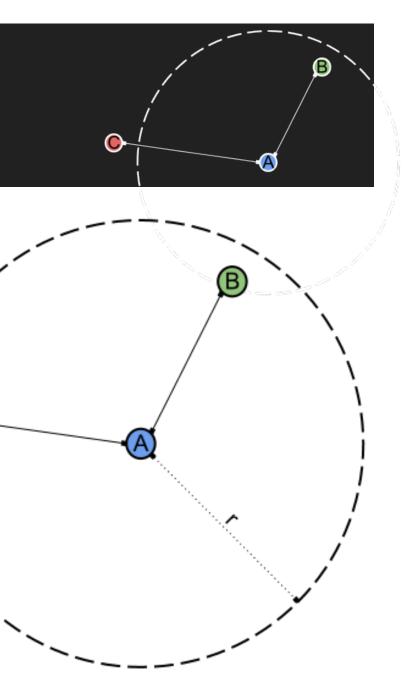
Paillier: $E(x) = g^x \mod m$

Paillier is additively homomorphic

$$E(x) \times E(y) = g^x \times g^y \mod m = g^{x+y} \mod m = E(x+y)$$

Paillier also has this exiting property

$$E(x)^y = (g^x)^y \mod m = g^{x \times y} \mod m = E(x \times y)$$


Mission Statement

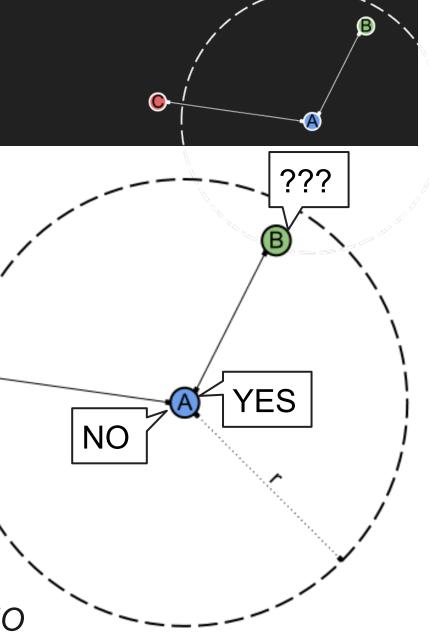
Answers the question: "Am I close?"

Without disclosing: ©

 Any information about Alice to Bob or Claire

 The position or distance of Bob and Claire to Alice

Mission Statement

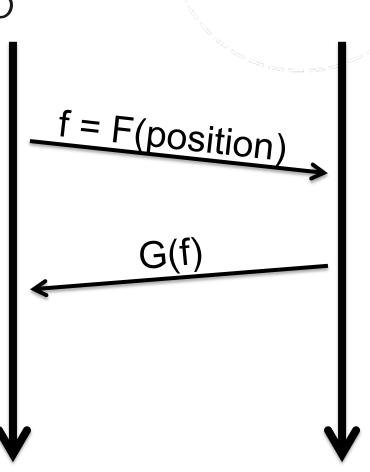

Answers the question: "Am I close?"

???

Without disclosing: 6

- Any information about Alice to Bob or Claire
- The position or distance of Bob and Claire to Alice

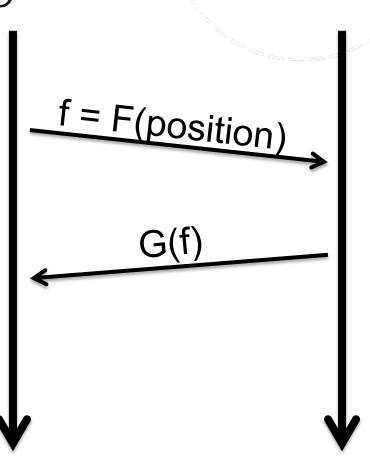
We **ONLY** say either *YES* or *NO*


Outline

Alice

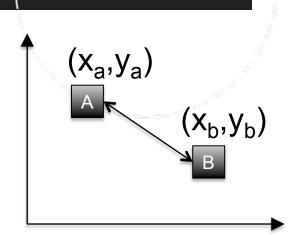
- Sends <u>encrypted</u> info to Bob
- Computes distance
- Sends boleanized distance

Done!


Outline

- 2 Sends <u>encrypted</u> info to Bob
 - Bob
- 1 Computes distance
- 3 Sends boleanized distance

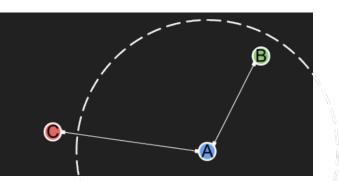
Done!



Distance Calculation

Distance from A to B:

$$d = \sqrt{(x_a - y_b)^2 + (y_a - y_b)^2}$$
$$D = (x_a - y_b)^2 + (y_a - y_b)^2$$

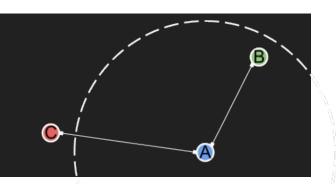


Expand & rewrite as:

$$D = x_a^2 + x_b^2 + y_a^2 + y_b^2 - 2x_a x_b - 2y_a y_b$$

$$D = x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)$$

Distance Calculation



$$D = x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)$$

Using Homomorphic Encryption:

$$E(D) = E\left(x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)\right)$$

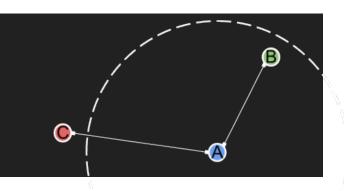
Distance Calculation

$$D = x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)$$

Using Homomorphic Encryption:

$$E(D) = E\left(x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)\right)$$

Recall!


Paillier is additively homomorphic

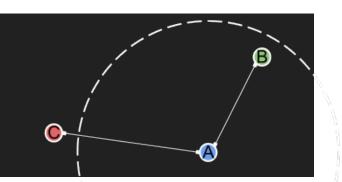
$$E(x) \times E(y) = g^x \times g^y \mod m = E(x+y)$$

And thus:

$$E(x)/E(y) = g^x/g^y \mod m = E(x-y)$$

Distance Calculation

$$D = x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)$$


Using Homomorphic Encryption:

$$E(D) = E\left(x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)\right)$$

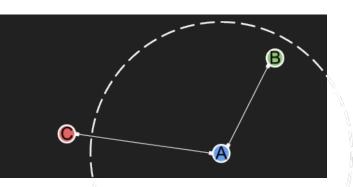
$$E(D) = \frac{E(x_a^2 + y_a^2 + x_b^2 + y_b^2)}{E(2x_a x_b + 2y_a y_b)}$$

$$E(D) = \frac{E(x_a^2 + y_a^2)E(x_b^2 + y_b^2)}{E(2x_ax_b)E(2y_ay_b)}$$

Distance Calculation

$$D = x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)$$

Using Homomorphic Encryption:

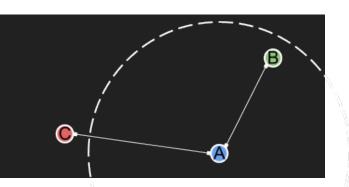

$$E(D) = \frac{E(x_a^2 + y_a^2)E(x_b^2 + y_b^2)}{E(2x_a x_b)E(2y_a y_b)}$$

Recall!

Raising a cipher text to a plaintext is multiplication

$$E(x)^y = (g^x)^y \mod m = g^{x \times y} \mod m$$

Distance Calculation

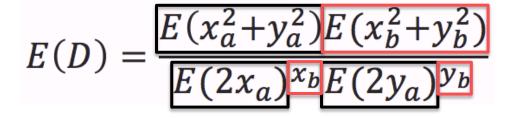

$$D = x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)$$

Using Homomorphic Encryption:

$$E(D) = \frac{E(x_a^2 + y_a^2)E(x_b^2 + y_b^2)}{E(2x_a x_b)E(2y_a y_b)}$$

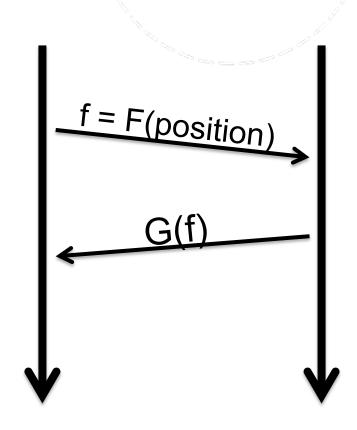
$$E(D) = \frac{E(x_a^2 + y_a^2)E(x_b^2 + y_b^2)}{E(2x_a)^{x_b}E(2y_a)^{y_b}}$$

Distance Calculation

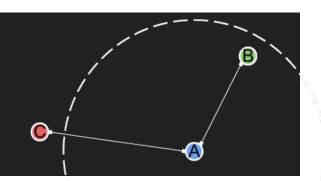

$$D = x_a^2 + y_a^2 + x_b^2 + y_b^2 - (2x_a x_b + 2y_a y_b)$$

Using Homomorphic Encryption:

$$E(D) = \frac{E(x_a^2 + y_a^2)E(x_b^2 + y_b^2)}{E(2x_a x_b)E(2y_a y_b)}$$

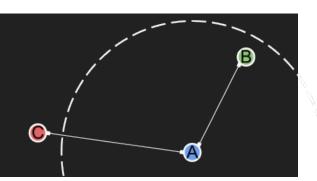

$$E(D) = \frac{E(x_a^2 + y_a^2)E(x_b^2 + y_b^2)}{E(2x_a)^{x_b}E(2y_a)^{y_b}}$$

Distance Calculation



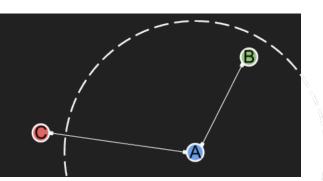
F(position)

$$E(x_a^2 + y_a^2) || E(2x_a) || E(2y_a)$$


Distance Obfuscation

How to obscure the distance?

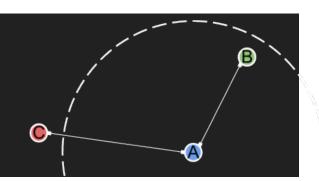
Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!


Distance Obfuscation

How to obscure the distance?

Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

Distance Obfuscation

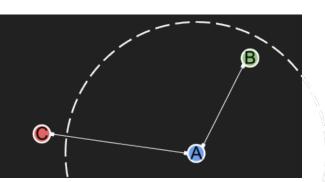


How to obscure the distance?

Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

$$\left(\frac{E_{K_A}(D)}{E_{K_A}(x)}\right)^{\rho}$$

Distance Obfuscation


How to obscure the distance?

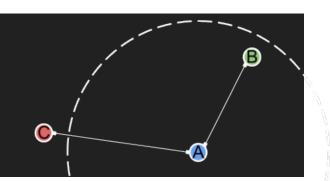
Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

Oblivious comparison:

• For every $x < r^2!$

Distance Obfuscation

How to obscure the distance?

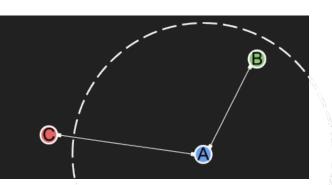

Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

Oblivious comparison:

• For every $x < r^2!$

$$\left(\frac{E_{K_A}(D)}{E_{K_A}(0)}\right)^{\rho_0} :: \left(\frac{E_{K_A}(D)}{E_{K_A}(1)}\right)^{\rho_2} :: \cdots :: \left(\frac{E_{K_A}(D)}{E_{K_A}(r^2)}\right)^{\rho_{r^2}}$$

Distance Obfuscation

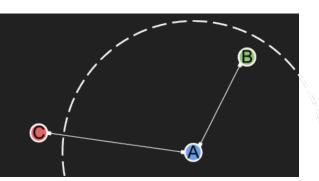

How to obscure the distance?

Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

- For every $x < r^2!$
- Is this enough?

$$\left(\frac{E_{K_A}(D)}{E_{K_A}(0)}\right)^{\rho_0} :: \left(\frac{E_{K_A}(D)}{E_{K_A}(1)}\right)^{\rho_2} :: \cdots :: \left(\frac{E_{K_A}(D)}{E_{K_A}(r^2)}\right)^{\rho_{r^2}}$$

Distance Obfuscation

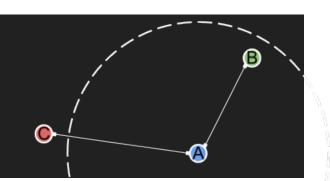

How to obscure the distance?

Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

- For every $x < r^2!$
- Is this enough? <u>NO!</u>

$$\left(\frac{E_{K_A}(D)}{E_{K_A}(0)}\right)^{\rho_0} :: \left(\frac{E_{K_A}(D)}{E_{K_A}(1)}\right)^{\rho_2} :: \cdots :: \left(\frac{E_{K_A}(D)}{E_{K_A}(r^2)}\right)^{\rho_{r^2}}$$

Distance Obfuscation

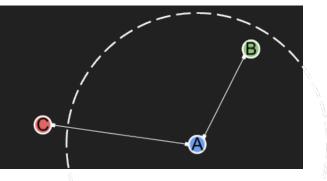


How to obscure the distance?

Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

- For every $x < r^2!$
- Is this enough?
- Also shuffle!

Distance Obfuscation


How to obscure the distance?

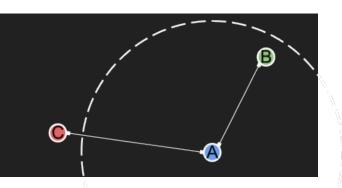
Now we know how Bob can compute the distance, but he doesn't want to tell Alice what the distance is!

$$\gamma = \left(\frac{E_A(D)}{E_A(0)}\right)^{\rho_0} :: \left(\frac{E_A(D)}{E_A(1)}\right)^{\rho_2} :: \cdots :: \left(\frac{E_A(D)}{E_A(r^2)}\right)^{\rho_{r^2}}$$

$$\alpha = \operatorname{scramble}(\gamma)$$

Final Result

1:
$$\mathbf{A} \to \mathbf{B} \ E_A(2x_a) :: E_A(2y_a) :: E_A(x_a^2 + y_a^2)$$


2:
$$\mathbf{B} \to \mathbf{A} \ \alpha = ArrayScramble(E_A(D))$$

3: A executes any
$$([D_A(c) == 0 \text{ for } c \text{ in } \alpha])$$

$$E(x_a^2 + y_a^2) \parallel E(2x_a) \parallel E(2y_a)$$

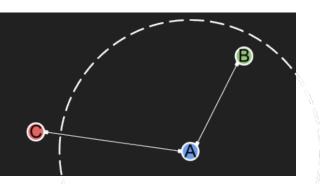
 $ArrayScramble\left(E_{K_{A}}\left(D\right) \right)$

Theoretical Evaluation

Runtime Analysis

Paillier

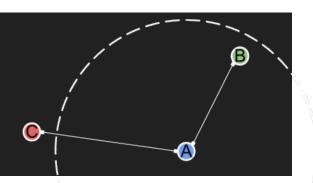
Encryption: O(log(n) * M(n))


Decryption: O(log(n) * M(n))

Alice1: O(3log(n) * M(n))

Bob: $O(r^2 * log(n) * M(n))$

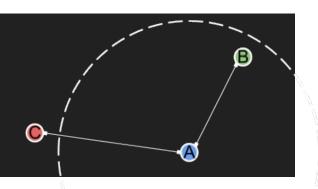
Alice2: $O(r^2 * log(n) * M(n))$


Theoretical Evaluation

Size Analysis

Paillier ciphertext: O(log(n))

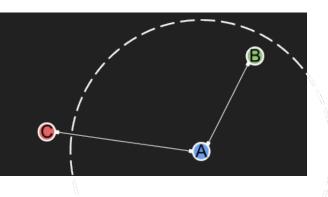
Size of response from Bob: O(r^2 * log(n))



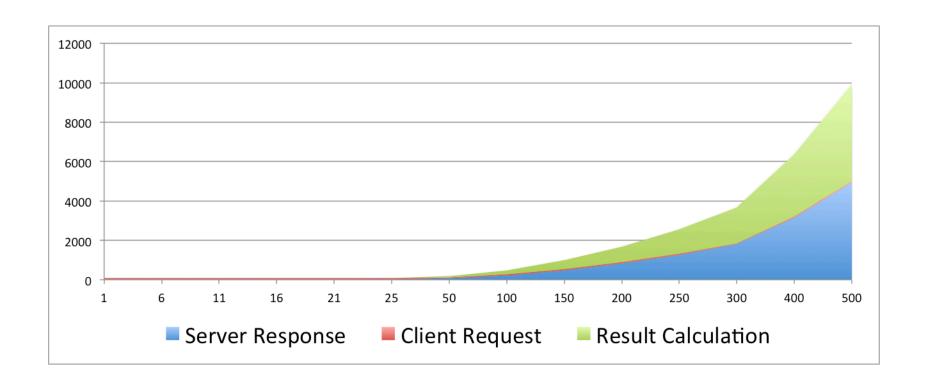
Proof of concept

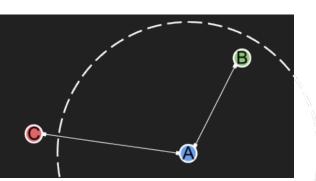
Small server-client application

Server relays messages to appropriate clients

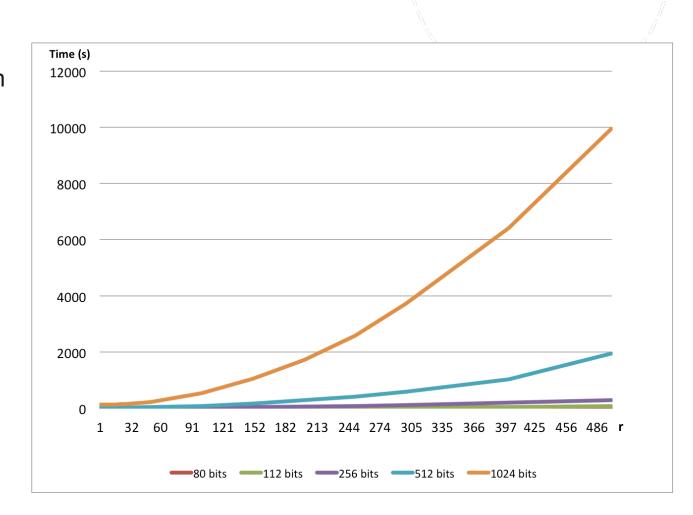

All clients are interested in each other

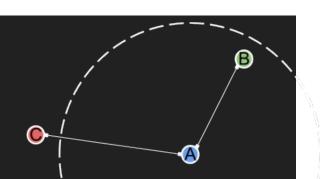
Benchmarks


80 bit key

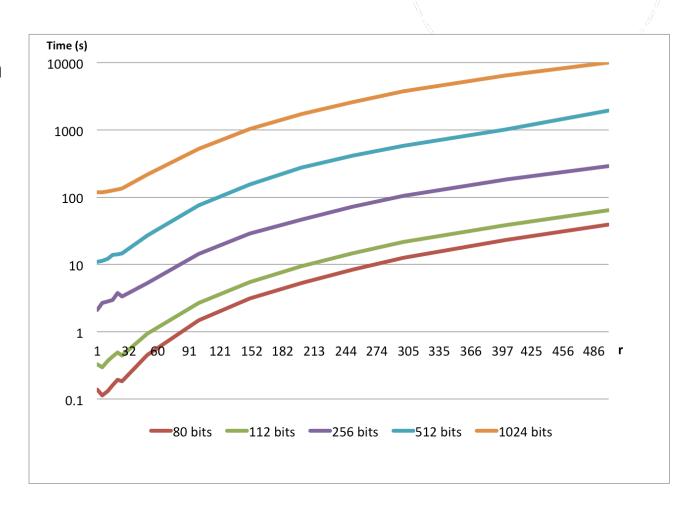


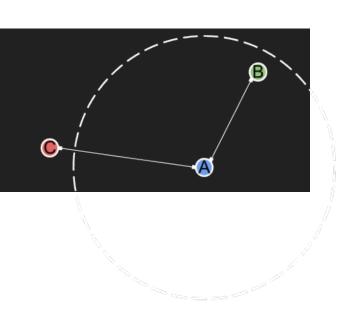
Benchmarks


1024 bit key

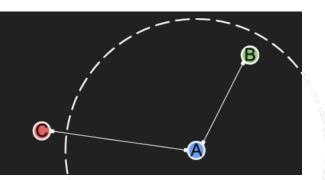


Benchmarks


Keysize comparison


Benchmarks

Keysize comparison Log scale



Thank You!

Questions?

Thank You!

