# Privacy in Data Publication and Outsourcing Scenarios

#### Pierangela Samarati

Dipartimento di Informatica Università degli Studi di Milano pierangela.samarati@unimi.it

12th International School on Foundations of Security Analysis and Design (FOSAD 2012)

Bertinoro, Italy - September 7-8, 2012

# Motivation (1)

- Continuous growth of:
  - o government and company databases
  - user-generated content delivered through collaborative Internet services such as YouTube, Facebook
  - personally identifiable information collected whenever a user creates an account, submits an application, signs up for newsletters, participates in a survey, ...

© Pierangela Samarati 2/230

# Motivation (2)

- Data sharing and dissemination, for e.g.:
  - o study trends or to make useful statistical inference
  - o share knowledge
  - access on-line services
- External data storage and computation:
  - cost saving and service benefits
  - higher availability and more effective disaster protection
- Need to ensure data privacy and integrity are properly protected

© Pierangela Samarati 3/2

#### Outline

- Privacy in data publication
  - ⇒ data release/dissemination

- Privacy in data outsourcing/cloud computing
  - ⇒ third parties store and manage data

© Pierangela Samarati 4/230

# Privacy in Data Publication

V. Ciriani, S. De Capitani di Vimercati, S. Foresti, P. Samarati, "k-Anonymity," in Secure Data Management in

Decentralized Systems, T. Yu, and S. Jajodia (eds.), Springer, 2007

V. Ciriani, S. De Capitani di Vimercati, S. Foresti, P. Samarati, "Microdata Protection," in Secure Data Management in Decentralized Systems, T. Yu, and S. Jajodia (eds.), Springer, 2007

#### Statistical DBMS vs statistical data

#### Release of data for statistical purpose

- statistical DBMS [AW-89]
  - the DBMS responds only to statistical queries
  - o need run time checking to control information (indirectly) released
- statistical data [CDFS-07b]
  - o publish statistics
  - control on indirect release performed before publication

© Pierangela Samarati 6/230

#### Macrodata vs microdata

- In the past data were mainly released in tabular form (macrodata) and through statistical databases
- Today many situations require that the specific stored data themselves, called microdata, be released
  - o increased flexibility and availability of information for the users
- Microdata are subject to a greater risk of privacy breaches (linking attacks)

© Pierangela Samarati 7/23

#### Disclosure protection techniques for macrodata

#### The protection techniques include:

- sampling: data confidentiality is protected by conducting a sample survey rather than a census
- special rules: designed for specific tables, they impose restrictions on the level of detail that can be provided in a table
- threshold rule: rules that protect sensitive cells, for instance:
  - o cell suppression
  - random rounding
  - controlled rounding
  - o confidentiality edit

© Pierangela Samarati 8/23

#### Disclosure protection techniques for microdata

The classical protection techniques (often applied to protect microdata before computing statistics) can be classified as follows:

- masking techniques: transform the original set of data by not releasing or perturbing their values
  - non-perturbative: the original data are not modified, but some data are suppressed and/or some details are removed (e.g., sampling, local suppression, generalization)
  - perturbative: the original data are modified (e.g., rounding, swapping)
- synthetic data generation techniques: release plausible but synthetic values instead of the real ones
  - o fully synthetic: the released dataset contains synthetic data only
  - partially synthetic: the released dataset contains a mix of original and synthetic data

© Pierangela Samarati 9/2:

#### Restricted data and restricted access

- Some microdata include explicit identifiers (e.g., name, address, or Social Security number)
- Removing such identifiers is a first step in preparing for the release of microdata for which the confidentiality of individual information must be protected
- De-identification is not sufficient.
- De-identification does not imply anonymity
  - de-identified data can be linked with other sources to re-identify individuals

© Pierangela Samarati 10/230

# The anonymity problem – Example

| asian 64/09/13 F 94141 divorced obesity asian 64/04/15 F 94139 married chest pair asian 63/03/13 M 94139 married obesity asian 63/03/18 M 94139 married short brea black 64/09/27 F 94138 single short brea black 64/09/27 F 94139 single obesity white 64/09/27 F 94139 single chest pair | SSN | Name | Race  | Date of birth | Sex | ZIP   | Marital status | Disease      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|---------------|-----|-------|----------------|--------------|
| asian 64/04/15 F 94139 married chest pair asian 63/03/13 M 94139 married obesity asian 63/03/18 M 94139 married short brea black 64/09/27 F 94138 single short brea black 64/09/27 F 94139 single obesity white 64/09/27 F 94139 single chest pair                                         |     |      | asian | 64/04/12      | F   | 94142 | divorced       | hypertension |
| asian 63/03/13 M 94139 married obesity asian 63/03/18 M 94139 married short brea black 64/09/27 F 94138 single short brea black 64/09/27 F 94139 single obesity white 64/09/27 F 94139 single chest pair                                                                                   |     |      | asian | 64/09/13      | F   | 94141 | divorced       | obesity      |
| asian 63/03/18 M 94139 married short brea<br>black 64/09/27 F 94138 single short brea<br>black 64/09/27 F 94139 single obesity<br>white 64/09/27 F 94139 single chest pair                                                                                                                 |     |      | asian | 64/04/15      | F   | 94139 | married        | chest pain   |
| black 64/09/27 F 94138 single short brea<br>black 64/09/27 F 94139 single obesity<br>white 64/09/27 F 94139 single chest pair                                                                                                                                                              |     |      | asian | 63/03/13      | M   | 94139 | married        | obesity      |
| black 64/09/27 F 94139 single obesity white 64/09/27 F 94139 single chest pair                                                                                                                                                                                                             |     |      | asian | 63/03/18      | M   | 94139 | married        | short breath |
| white 64/09/27 F 94139 single chest pair                                                                                                                                                                                                                                                   |     |      | black | 64/09/27      | F   | 94138 | single         | short breath |
|                                                                                                                                                                                                                                                                                            |     |      | black | 64/09/27      | F   | 94139 | single         | obesity      |
| white 64/00/27 E 04141 widow short bros                                                                                                                                                                                                                                                    |     |      | white | 64/09/27      | F   | 94139 | single         | chest pain   |
| wille 04/03/21 F 94141 WICOW SHOLLDIES                                                                                                                                                                                                                                                     |     |      | white | 64/09/27      | F   | 94141 | widow          | short breath |

| Name      | Address          | City          | ZIP   | DOB      | Sex | Status   |
|-----------|------------------|---------------|-------|----------|-----|----------|
|           |                  |               |       |          |     |          |
| Sue J. Do | e 900 Market St. | San Francisco | 94142 | 64/04/12 | F   | divorced |
|           |                  |               |       |          |     |          |

© Pierangela Samarati 11/230

#### Classification of attributes in a microdata table

The attributes in the original microdata table can be classified as:

- identifiers. Attributes that uniquely identify a microdata respondent (e.g., SSN uniquely identifies the person with which is associated)
- quasi-identifiers. Attributes that, in combination, can be linked with external information to re-identify all or some of the respondents to whom information refers or reduce the uncertainty over their identities (e.g., DoB, ZIP, and Sex)
- confidential. Attributes of the microdata table that contain sensitive information (e.g., Disease)
- non confidential. Attributes that the respondents do not consider sensitive and whose release do not cause disclosure

© Pierangela Samarati 12/230

#### Re-identification

A study of the 2000 census data [G-06] reported that the US population was uniquely identifiable by:

- year of birth, 5-digit ZIP code: 0,2%
- year of birth, county: 0,0%
- year and month of birth, 5-digit ZIP code: 4,2%
- year and month of birth, county: 0,2%
- year, month, and day of birth, 5-digit ZIP code: 63,3%
- year, month, and day of birth, county: 14,8%

© Pierangela Samarati 13/230

#### Factors contributing to disclosure risk (1)

#### Possible sources of the disclosure risk of microdata

- Existence of high visibility records. Some records on the file may represent respondents with unique characteristics such as very unusual jobs (e.g., movie star) or very large incomes
- Possibility of matching the microdata with external information.
   There may be individuals in the population who possess a unique or peculiar combination of the characteristic variables on the microdata
  - if some of those individuals happen to be chosen in the sample of the population, there is a disclosure risk
  - note that the identity of the individuals that have been chosen should be kept secret

© Pierangela Samarati 14/230

#### Factors contributing to disclosure risk (2)

The possibility of linking or its precision increases with:

- the existence of a high number of common attributes between the microdata table and the external sources
- the accuracy or resolution of the data
- the number of outside sources, not all of which may be known to the agency releasing the microdata

© Pierangela Samarati 15/230

# Factors contributing to decrease the disclosure risk (1)

- A microdata table often contains a subset of the whole population
  - this implies that the information of a specific respondent, which a malicious user may want to know, may not be included in the microdata table
- The information specified in microdata tables released to the public is not always up-to-date (often at least one or two-year old)
  - the values of the attributes of the corresponding respondents may have been changed in the meanwhile
  - the age of the external sources of information used for linking may be different from the age of the information contained in the microdata table

© Pierangela Samarati 16/230

# Factors contributing to decrease the disclosure risk (2)

- A microdata table and the external sources of information naturally contain noise that decreases the ability to link the information
- A microdata table and the external sources of information can contain data expressed in different forms thus decreasing the ability to link information

© Pierangela Samarati 17/230

#### Measures of risk

#### The disclosure risk depends on:

- the probability that the respondent for whom an intruder is looking for is represented on both the microdata and some external source
- the probability that the matching variables are recorded in a linkable way on the microdata and on the external source
- the probability that the respondent for whom the intruder is looking for is unique (or peculiar) in the population of the external source

The percentage of records representing respondents who are unique in the population (population unique) plays a major role in the disclosure risk of microdata (with respect to the specific respondent)

Note that each population unique is a sample unique; the vice-versa is not true

© Pierangela Samarati 18/230

# *k*-anonymity [S-01] (1)

- k-anonymity, together with its enforcement via generalization and suppression, has been proposed as an approach to protect respondents' identities while releasing truthful information
- *k*-anonymity tries to capture the following requirement:
  - the released data should be indistinguishably related to no less than a certain number of respondents
- Quasi-identifier: set of attributes that can be exploited for linking (whose release must be controlled)

© Pierangela Samarati 19/230

#### *k*-anonymity (2)

- Basic idea: translate the k-anonymity requirement on the released data
  - each release of data must be such that every combination of values of quasi-identifiers can be indistinctly matched to at least k respondents
- In the released table the respondents must be indistinguishable (within a given set) with respect to a set of attributes
- k-anonymity requires that each quasi-identifier value appearing in the released table must have at least k occurrences
  - o sufficient condition for the satisfaction of k-anonymity requirement

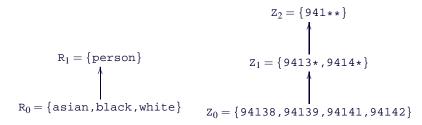
© Pierangela Samarati 20/230

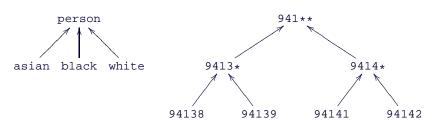
#### Generalization and suppression

- Generalization. The values of a given attribute are substituted by using more general values. Based on the definition of a generalization hierarchy
  - Example: consider attribute ZIP code and suppose that a step in the corresponding generalization hierarchy consists in suppressing the least significant digit in the ZIP code
     With one generalization step: 20222 and 20223 become 2022\*; 20238 and 20239 become 2023\*
- Suppression. Protect sensitive information by removing some values
  - the introduction of suppression can reduce the amount of generalization necessary to satisfy the k-anonymity constraint

© Pierangela Samarati 21/230

#### Generalization hierarchy – Example





© Pierangela Samarati 22/230

# Generalized table with suppression – Example

| Race    | ZIP  | Race   | ZIP   |
|---------|------|--------|-------|
| asian 9 | 4142 |        |       |
| asian 9 | 4141 | person | 94141 |
| asian 9 | 4139 | person | 94139 |
| asian 9 | 4139 | person | 94139 |
| asian 9 | 4139 | person | 94139 |
| black 9 | 4138 |        |       |
| black 9 | 4139 | person | 94139 |
| white 9 | 4139 | person | 94139 |
| white 9 | 4141 | person | 94141 |
| PT      |      | G      | T     |

© Pierangela Samarati 23/230

#### k-minimal table

- The solutions proposed for computing a k-anonymous table aim at finding a k-minimal table
- A k-minimal table does not generalize (or suppress) more than it is needed to reach the threshold k
- Different minimal generalizations may exist, preference criteria can be applied to determine which one to release
  - minimum absolute distance prefers the generalization(s) with the smallest total number of generalization steps
  - minimum relative distance prefers the generalization(s) with the smallest total number of relative generalization steps (a step is made relative by dividing it over the height of the domain hierarchy to which it refers)
  - maximum distribution prefers the generalization(s) with the greatest number of distinct tuples
  - minimum suppression prefers the generalization(s) that suppresses less tuples, that is, the one with the greatest cardinality

© Pierangela Samarati 24/230

# Examples of 2-minimal generalizations

#### Threshold of acceptable suppression=2

| Race:R <sub>0</sub> | ZIP:Z <sub>0</sub> | Race:R <sub>1</sub> | <b>ZIP:</b> Z <sub>0</sub> | Race:Ro | <b>ZIP:</b> Z <sub>1</sub> |
|---------------------|--------------------|---------------------|----------------------------|---------|----------------------------|
| asian               | 94142              |                     |                            | asian   | 9414*                      |
| asian               | 94141              | person              | 94141                      | asian   | 9414*                      |
| asian               | 94139              | person              | 94139                      | asian   | 9413*                      |
| asian               | 94139              | person              | 94139                      | asian   | 9413*                      |
| asian               | 94139              | person              | 94139                      | asian   | 9413*                      |
| black               | 94138              |                     |                            | black   | 9413*                      |
| black               | 94139              | person              | 94139                      | black   | 9413*                      |
| white               | 94139              | person              | 94139                      |         |                            |
| white               | 94141              | person              | 94141                      |         |                            |
| PT                  |                    | G1                  | 1                          | G       | Γ2                         |

© Pierangela Samarati 25/230

# Classification of *k*-anonymity techniques (1)

Generalization and suppression can be applied at different levels of granularity

- Generalization can be applied at the level of single column (i.e., a generalization step generalizes all the values in the column) or single cell (i.e., for a specific column, the table may contain values at different generalization levels)
- Suppression can be applied at the level of row (i.e., a suppression operation removes a whole tuple), column (i.e., a suppression operation obscures all the values of a column), or single cells (i.e., a k-anonymized table may wipe out only certain cells of a given tuple/attribute)

© Pierangela Samarati 26/230

# Classification of *k*-anonymity techniques (2)

#### Suppression

| Generalization | Tuple          | Attribute      | Cell         | None            |
|----------------|----------------|----------------|--------------|-----------------|
| Attribute      | AG_TS          | AG_AS          | AG_CS        | AG_             |
|                |                | $\equiv$ AG_   |              | $\equiv$ AG_AS  |
| Cell           | CG_TS          | CG_AS          | CG_CS        | CG_             |
|                | not applicable | not applicable | $\equiv$ CG_ | $\equiv$ CG_CS  |
| None           | _TS            | _AS            | _CS          | _               |
|                |                |                |              | not interesting |

© Pierangela Samarati 27/230

# 2-anonymized tables wrt different models (1)

| Race  | DOB      | Sex | ZIP   | Race  | DOB   | Sex | ZIP   |
|-------|----------|-----|-------|-------|-------|-----|-------|
| asian | 64/04/12 | F   | 94142 | asian | 64/04 | F   | 941** |
| asian | 64/09/13 | F   | 94141 |       |       |     |       |
| asian | 64/04/15 | F   | 94139 | asian | 64/04 | F   | 941** |
| asian | 63/03/13 | M   | 94139 | asian | 63/03 | M   | 941** |
| asian | 63/03/18 | M   | 94139 | asian | 63/03 | M   | 941** |
| black | 64/09/27 | F   | 94138 | black | 64/09 | F   | 941** |
| black | 64/09/27 | F   | 94139 | black | 64/09 | F   | 941** |
| white | 64/09/27 | F   | 94139 | white | 64/09 | F   | 941** |
| white | 64/09/27 | F   | 94141 | white | 64/09 | F   | 941** |
|       | PT       |     |       |       | AG    | TS  |       |

© Pierangela Samarati 28/230

#### 2-anonymized tables wrt different models (2)

| Race  | DOB   | Sex | ZIP   |
|-------|-------|-----|-------|
| asian | *     | F   | *     |
| asian | *     | F   | *     |
| asian | *     | F   | *     |
| asian | 63/03 | M   | 9413* |
| asian | 63/03 | M   | 9413* |
| black | 64/09 | F   | 9413* |
| black | 64/09 | F   | 9413* |
| white | 64/09 | F   | *     |
| white | 64/09 | F   | *     |
|       | AG    | CS  |       |

| Race             | DOB              | Sex | ZIP   |  |  |  |  |  |
|------------------|------------------|-----|-------|--|--|--|--|--|
| asian            | 64               | F   | 941** |  |  |  |  |  |
| asian            | 64               | F   | 941** |  |  |  |  |  |
| asian            | 64               | F   | 941** |  |  |  |  |  |
| asian            | 63               | M   | 941** |  |  |  |  |  |
| asian            | 63               | M   | 941** |  |  |  |  |  |
| black 64 F 941** |                  |     |       |  |  |  |  |  |
| black            | black 64 F 941** |     |       |  |  |  |  |  |
| white            | 64               | F   | 941** |  |  |  |  |  |
| white            | 64               | F   | 941** |  |  |  |  |  |
|                  | AG ≣AG AS        |     |       |  |  |  |  |  |

© Pierangela Samarati 29/230

# 2-anonymized tables wrt different models (3)

| Race  | DOB      | Sex  | ZIP   | Race | DOB | Sex | ZIP |
|-------|----------|------|-------|------|-----|-----|-----|
| asian | 64       | F    | 941** |      |     |     |     |
| asian | 64       | F    | 941** |      |     |     |     |
| asian | 64       | F    | 941** |      |     |     |     |
| asian | 63/03    | M    | 94139 |      |     |     |     |
| asian | 63/03    | M    | 94139 |      |     |     |     |
| black | 64/09/27 | F    | 9413* |      |     |     |     |
| black | 64/09/27 | F    | 9413* |      |     |     |     |
| white | 64/09/27 | F    | 941** |      |     |     |     |
| white | 64/09/27 | F    | 941** |      |     |     |     |
| -     | CG ≡C0   | G CS |       |      | TS  | 3   |     |

© Pierangela Samarati 30/230

# 2-anonymized tables wrt different models (4)

| Race  | DOB | Sex | ZIP |
|-------|-----|-----|-----|
| asian | *   | F   | *   |
| asian | *   | F   | *   |
| asian | *   | F   | *   |
| asian | *   | M   | *   |
| asian | *   | M   | *   |
| black | *   | F   | *   |
| black | *   | F   | *   |
| white | *   | F   | *   |
| white | *   | F   | *   |
|       | AS  | 3   |     |

| Race  | DOB      | Sex | ZIP   |
|-------|----------|-----|-------|
| asian | *        | F   | *     |
| asian | *        | F   | *     |
| asian | *        | F   | *     |
| asian | *        | M   | 94139 |
| asian | *        | M   | 94139 |
| *     | 64/09/27 | F   | *     |
| *     | 64/09/27 | F   | 94139 |
| *     | 64/09/27 | F   | 94139 |
| *     | 64/09/27 | F   | *     |
|       | CS       | 3   |       |

© Pierangela Samarati 31/230

# Algorithms for computing a k-anonymous table (1)

- The problem of finding minimal k-anonymous tables is computationally hard (even in the case AG\_TS)
- Many algorithms have been proposed:
  - exact (for AG\_TS): computational time exponential in the number of the attributes composing the quasi-identifier
  - heuristic: based on genetic algorithms, simulated annealing, top-down heuristic; no bounds on efficiency and goodness, which are assessed via experimental results
  - approximation: for general and specific values of k (e.g., 1.5-approximation for 2-anonymity, and 2-approximation for 3-anonymity); also for \_CS and CG\_

© Pierangela Samarati 32/230

# Algorithms for computing a *k*-anonymous table (2)

Generalization-based algorithms can be partitioned into two classes depending on how the generalization is performed

- Hierarchy-based generalization based on the definition of a generalization hierarchy (pre-defined) for each attribute in QI (e.g., [S-01])
  - o the most general value is at the root of the hierarchy
  - o the leaves correspond to the values in the ground domain
- Recoding-based generalization based on the recoding into intervals protection method (e.g., [BA-05])
  - the ground domain of each attribute in QI is partitioned into possibly disjoint intervals (computed at run time) that are associated with a label
  - each value in the ground domain is mapped to the intervals they belong to

© Pierangela Samarati 33/23

# Mondrian [LDR-06] – Example (1)

#### Private table

| Marital status | ZIP   |
|----------------|-------|
| divorced       | 94142 |
| divorced       | 94141 |
| married        | 94139 |
| married        | 94139 |
| married        | 94139 |
| single         | 94138 |
| single         | 94139 |
| single         | 94139 |
| widow          | 94141 |

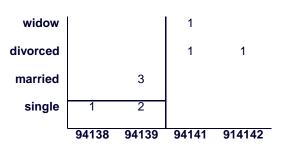
| widow    |       |       | 1     |        |
|----------|-------|-------|-------|--------|
| divorced |       |       | 1     | 1      |
| married  |       | 3     |       |        |
| single   | 1     | 2     |       |        |
|          | 94138 | 94139 | 94141 | 914142 |

© Pierangela Samarati 34/230

# Mondrian [LDR-06] – Example (2)

#### 3-anonymous table

| Marital status    | ZIP   |
|-------------------|-------|
| divorced or widow | 9414* |
| divorced or widow | 9414* |
| married           | 94139 |
| married           | 94139 |
| married           | 94139 |
| single            | 9413* |
| single            | 9413* |
| single            | 9413* |
| divorced or widow | 9414* |



© Pierangela Samarati 35/230

# Minimal k-anonymization for cell generalization [GMT-08]

- k-anonymity requirement: Each release of data must be such that every combination of values of quasi-identifiers can be indistinctly matched to at least k respondents
- When generalization is performed at attribute level (AG) this is equivalent to require each quasi-identifier n-uple to have at least k occurrences
- When generalization is performed at cell level (CG) the existence of at least k occurrences is a sufficient but not necessary condition; a less stricter requirement would suffice
  - 1. For each sequence of values pt in PT[q] there are at least k tuples in T[q] that contain a sequence of values generalizing pt
  - 2. For each sequence of values t in T[q] there are at least k tuples in PT[q] that contain a sequence of values for which t is a generalization

© Pierangela Samarati 36/23

# Minimal *k*-anonymization for CG – Example

| Race  | ZIP   | Race   | ZIP    | Race    | ZIP              |
|-------|-------|--------|--------|---------|------------------|
| white | 94138 | person | 9413*  | person  | 9413*            |
| black | 94139 | person | 9413*  | person  | 9413*            |
| asian | 94141 | asian  | 9414*  | asian   | 94141            |
| asian | 94141 | asian  | 9414*  | asian   | 9414*            |
| asian | 94142 | asian  | 9414*  | asian   | 9414*            |
| F     | PT    | 2-anor | nymity | 2-anony | mity (revisited) |

| Race   | ZIP   | Race   | ZIP   |
|--------|-------|--------|-------|
| person | 9413* | person | 9413* |
| person | 9413* | person | 9413* |
| asian  | 9414* | asian  | 94141 |
| asian  | 9414* | asian  | 94141 |
| asian  | 94142 | asian  | 9414* |

no 2-anonymity

© Pierangela Samarati 37/230

#### Attribute Disclosure

© Pierangela Samarati 38/230

#### 2-anonymous table according to the AG\_ model

*k*-anonymity protects only identities not the association between generalized quasi-identifiers and sensitive information; it is then vulnerable to some attacks [MGK-06,S-01]

| Race  | DOB | Sex | ZIP   | Disease      |
|-------|-----|-----|-------|--------------|
| asian | 64  | F   | 941** | hypertension |
| asian | 64  | F   | 941** | obesity      |
| asian | 64  | F   | 941** | chest pain   |
| asian | 63  | M   | 941** | obesity      |
| asian | 63  | M   | 941** | obesity      |
| black | 64  | F   | 941** | short breath |
| black | 64  | F   | 941** | short breath |
| white | 64  | F   | 941** | chest pain   |
| white | 64  | F   | 941** | short breath |

© Pierangela Samarati 39/230

#### Homogeneity of the sensitive attribute values

- All tuples with a quasi-identifier value in a k-anonymous table may have the same sensitive attribute value
  - an adversary knows that Carol is a black female and that her data are in the microdata table
  - o the adversary can infer that Carol suffers from short breath

| Race           | DOB      | Sex        | ZIP            | Disease      |
|----------------|----------|------------|----------------|--------------|
| black<br>black | 64<br>64 | <br>F<br>F | 941**<br>941** | short breath |
|                |          | • • • •    | • • •          | • • •        |

© Pierangela Samarati 40/230

#### Background knowledge

- Based on prior knowledge of some additional external information
  - an adversary knows that Hellen is a white female and she is in the microdata table
  - the adversary can infer that the disease of Hellen is either chest pain or short breath
  - the adversary knows that the Hellen runs 2 hours a day and therefore that Hellen cannot suffer from short breath
     the adversary infers that Hellen's disease is chest pain

| Race  | DOB | Sex   | ZIP       | Disease        |
|-------|-----|-------|-----------|----------------|
| white | 64  | <br>F | <br>941** | <br>chest pain |
| white | 64  | F     | 941**     | short breath   |

© Pierangela Samarati 41/230

#### *ℓ*-diversity (1)

- A q-block (i.e., set of tuples with the same value for QI) in T is  $\ell$ -diverse if it contains at least  $\ell$  different well-represented values for the sensitive attribute in T
  - o well-represented: different definitions based on entropy or recursion (e.g., a q-block is  $\ell$ -diverse if removing a sensitive value it remains ( $\ell$ -1)-diverse)
- $\ell$ -diversity: an adversary needs to eliminate at least  $\ell$ -1 possible values to infer that a respondent has a given value

© Pierangela Samarati 42/230

### *ℓ*-diversity (2)

- T is  $\ell$ -diverse if all its q-blocks are  $\ell$ -diverse
  - ⇒ the homogeneity attack is not possible anymore
  - ⇒ the background knowledge attack becomes more difficult
- \ell-diversity is monotonic with respect to the generalization hierarchies considered for k-anonymity purposes
- Any algorithm for k-anonymity can be extended to enforce the ℓ-diverse property

© Pierangela Samarati 43/230

#### Skewness attack

 $\ell$ -diversity leaves space to attacks based on the distribution of values inside q-blocks

- Skewness attack occurs when the distribution in a q-block is different from the distribution in the original population
- 20% of the population suffers from diabetes; 75% of tuples in a q-block have diabetes
  - $\Longrightarrow$  people in the q-block have higher probability of suffering from diabetes

| Race  | DOB | Sex | ZIP   | Disease      |
|-------|-----|-----|-------|--------------|
| black | 64  | F   | 941** | diabetes     |
| black | 64  | F   | 941** | short breath |
| black | 64  | F   | 941** | diabetes     |
| black | 64  | F   | 941** | diabetes     |

© Pierangela Samarati 44/230

#### Similarity attack

 Similarity attack happens when a q-block has different but semantically similar values for the sensitive attribute

| Race  | DOB | Sex | ZIP   | Disease       |
|-------|-----|-----|-------|---------------|
| black | 64  | F   | 941** | stomach ulcer |
| black | 64  | F   | 941** | stomach ulcer |
| black | 64  | F   | 941** | gastritis     |

© Pierangela Samarati 45/230

#### Group closeness [LLV-07]

- A q-block respects t-closeness if the distance between the distribution of the values of the sensitive attribute in the q-block and in the considered population is lower than t
- T respects t-closeness if all its q-blocks respect t-closeness
- *t*-closeness is monotonic with respect to the generalization hierarchies considered for *k*-anonymity purposes
- Any algorithm for k-anonymity can be extended to enforce the t-closeness property, which however might be difficult to achieve

© Pierangela Samarati 46/230

#### External knowledge [CLR-07,MKMGH-07] (1)

- The consideration of the adversary's background knowledge (or external knowledge) is necessary when reasoning about privacy in data publishing
- External knowledge can be exploited for inferring sensitive information about individuals with high confidence
- Positive inference
  - o a respondent has a given value (or a value within a restricted set)
- Negative inference
  - o a respondent does not have a given value
- Existing approaches have mostly focused on positive inference

© Pierangela Samarati 47/230

#### External knowledge (2)

- External knowledge may include:
  - o similar datasets released by different organizations
  - instance-level information
  - o ...
- Not possible to know a-priori what external knowledge the adversary possesses
- It is necessary to provide the data owner with a means to specify adversarial knowledge

© Pierangela Samarati 48/230

#### External knowledge modeling [CLR-07]

- An adversary has knowledge about an individual (target) represented in a released table and knows the individual's QI values
  - ⇒ goal: predict whether the target has a target sensitive value
- External knowledge modeled through a logical expression
- Three basic classes of expressions, representing knowledge about:
  - the target individual: information that the adversary may know about the target individual
  - o others: information about individuals other than the target
  - same-value families: knowledge that a group (or family) of individuals have the same sensitive value
- Other types of external knowledge may be identified......

© Pierangela Samarati 49/23

# External knowledge – Example (1)

| Name   | DOB      | Sex   | ZIP   | Disease      |                   | DOB | Sex   | ZIP   | Disease      |
|--------|----------|-------|-------|--------------|-------------------|-----|-------|-------|--------------|
| Alice  | 74/04/12 | F     | 94142 | aids         |                   | 74  | *     | 941** | aids         |
| Bob    | 74/04/13 | M     | 94141 | flu          |                   | 74  | *     | 941** | flu          |
| Carol  | 74/09/15 | F     | 94139 | flu          |                   | 74  | *     | 941** | flu          |
| David  | 74/03/13 | M     | 94139 | aids         | $\Longrightarrow$ | 74  | *     | 941** | aids         |
| Elen   | 64/03/18 | F     | 94139 | flu          | <i>→</i>          | 64  | *     | 941** | flu          |
| Frank  | 64/09/27 | M     | 94138 | short breath |                   | 64  | *     | 941** | short breath |
| George | 64/09/27 | M     | 94139 | flu          |                   | 64  | *     | 941** | flu          |
| Harry  | 64/09/27 | M     | 94139 | aids         |                   | 64  | *     | 941** | aids         |
|        | Ori      | ginal | table |              |                   |     | 1-anc | nymiz | ed table     |

Released table is 4-anonymized but ......

© Pierangela Samarati 50/230

#### External knowledge – Example (2)

| DOB | Sex | ZIP   | Disease      |
|-----|-----|-------|--------------|
| 74  | *   | 941** | aids         |
| 74  | *   | 941** | flu          |
| 74  | *   | 941** | flu          |
| 74  | *   | 941** | aids         |
| 64  | *   | 941** | flu          |
| 64  | *   | 941** | short breath |
| 64  | *   | 941** | flu          |
| 64  | *   | 941** | aids         |
|     |     |       |              |

4-anonymized table

An adversary knows that Harry, born in 64 and living in area 94139, is in the table

© Pierangela Samarati 51/230

#### External knowledge – Example (2)

| DOB | Sex   | ZIP   | Disease      |                   | DOB | Sex   | ZIP    | Disease      |
|-----|-------|-------|--------------|-------------------|-----|-------|--------|--------------|
| 74  | *     | 941** | aids         |                   |     |       |        |              |
| 74  | *     | 941** | flu          |                   |     |       |        |              |
| 74  | *     | 941** | flu          |                   |     |       |        |              |
| 74  | *     | 941** | aids         | `                 |     |       |        |              |
| 64  | *     | 941** | flu          | $\Longrightarrow$ | 64  | *     | 941**  | flu          |
| 64  | *     | 941** | short breath |                   | 64  | *     | 941**  | short breath |
| 64  | *     | 941** | flu          |                   | 64  | *     | 941**  | flu          |
| 64  | *     | 941** | aids         |                   | 64  | *     | 941**  | aids         |
|     | 4-and | nvmiz | ed table     |                   |     | 4-and | nvmize | ed table     |

An adversary knows that Harry, born in 64 and living in area 94139, is in the table

- ⇒ Harry belongs to the second group
- ⇒ Harry has aids with confidence 1/4

© Pierangela Samarati 51/230

## External knowledge – Example (3)

#### DOB Sex ZIP Disease

```
64 * 941** flu
64 * 941** short breath
64 * 941** flu
64 * 941** aids
```

4-anonymized table

From another dataset, the adversary knows that George (who is in the table, is born in 64, and leaves in area 941\*\*) has flu

© Pierangela Samarati 52/230

#### External knowledge – Example (3)

| DOB | Sex   | ZIP    | Disease      |                   | DOB | Sex   | ZIP    | Disease      |
|-----|-------|--------|--------------|-------------------|-----|-------|--------|--------------|
|     |       |        |              |                   |     |       |        |              |
|     |       |        |              |                   |     |       |        |              |
|     |       |        |              |                   |     |       |        |              |
| 64  | *     | 941**  | flu          | $\Longrightarrow$ |     |       |        |              |
| 64  | *     | 941**  | short breath |                   | 64  | *     | 941**  | short breath |
| 64  | *     | 941**  | flu          |                   | 64  | *     | 941**  | flu          |
| 64  | *     | 941**  | aids         |                   | 64  | *     | 941**  | aids         |
|     | l-and | onvmiz | ed table     |                   |     | 4-and | nvmize | ed table     |

From another dataset, the adversary knows that George (who is in the table, is born in 64, and leaves in area 941\*\*) has flu

⇒ Harry has aids with confidence 1/3

© Pierangela Samarati 52/23

#### External knowledge – Example (4)

#### DOB Sex ZIP Disease

```
64 * 941** short breath
64 * 941** flu
64 * 941** aids
```

4-anonymized table

From personal knowledge, the adversary knows that Harry does not have short breath

© Pierangela Samarati 53/230

#### External knowledge – Example (4)

| DOB | Sex | ZIP Disease        |                   | DOB | Sex  | ZIP    | Disease |
|-----|-----|--------------------|-------------------|-----|------|--------|---------|
|     |     |                    |                   |     |      |        |         |
|     |     |                    |                   |     |      |        |         |
|     |     |                    | $\Longrightarrow$ |     |      |        |         |
| 64  | *   | 941** short breath |                   |     |      |        |         |
| 64  | *   | 941** flu          |                   | 64  | *    | 941**  | flu     |
| 64  | *   | 941** aids         |                   | 64  | *    | 941**  | aids    |
|     | -an | onymized table     |                   | 4-  | anon | ymized | table   |

From personal knowledge, the adversary knows that Harry does not have short breath

⇒ Harry has aids with confidence 1/2

© Pierangela Samarati 53/230

#### Multiple independent releases

- Data may be subject to frequent changes and may need to be published on regular basis
- The multiple release of a microdata table may cause information leakage since a malicious recipient can correlate the released datasets

© Pierangela Samarati 54/230

#### Multiple independent releases – Example (1)

| $T_1$ |     |       |              |
|-------|-----|-------|--------------|
| DOB   | Sex | ZIP   | Disease      |
| 74    | *   | 941** | aids         |
| 74    | *   | 941** | flu          |
| 74    | *   | 941** | flu          |
| 74    | *   | 941** | aids         |
| 64    | *   | 941** | flu          |
| 64    | *   | 941** | short breath |
| 64    | *   | 941** | flu          |
| 64    | *   | 941** | aids         |

<sup>4-</sup>anonymized table at time  $t_1$ 

|         |     | $T_2$ |              |
|---------|-----|-------|--------------|
| DOB     | Sex | ZIP   | Disease      |
| [70-80] | F   | 9414* | hypertension |
| [70-80] | F   | 9414* | gastritis    |
| [70-80] | F   | 9414* | aids         |
| [70-80] | F   | 9414* | gastritis    |
| [60-70] | M   | 9413* | flu          |
| [60-70] | M   | 9413* | aids         |
| [60-70] | M   | 9413* | flu          |
| [60-70] | M   | 9413* | gastritis    |

4-anonymized table at time t2

An adversary knows that Alice, born in 1974 and living in area 94142, is in both releases

© Pierangela Samarati 55/230

## Multiple independent releases – Example (1)

| $T_1$ |     |       |         |  |
|-------|-----|-------|---------|--|
| DOB   | Sex | ZIP   | Disease |  |
| 74    | *   | 941** | aids    |  |
| 74    | *   | 941** | flu     |  |
| 74    | *   | 941** | flu     |  |
| 74    | *   | 941** | aids    |  |

|         |     | $T_2$ |              |
|---------|-----|-------|--------------|
| DOB     | Sex | ZIP   | Disease      |
| [70-80] | F   | 9414* | hypertension |
| [70-80] | F   | 9414* | gastritis    |
| [70-80] | F   | 9414* | aids         |
| [70-80] | F   | 9414* | gastritis    |

4-anonymized table at time t2

An adversary knows that Alice, born in 1974 and living in area 94142, is in both releases

- $\implies$  Alice belongs to the first group in  $T_1$
- $\implies$  Alice belongs to the first group in  $T_2$

© Pierangela Samarati 55/230

<sup>4-</sup>anonymized table at time  $t_1$ 

## Multiple independent releases – Example (1)

| $T_1$ |     |       |         |  |
|-------|-----|-------|---------|--|
| DOB   | Sex | ZIP   | Disease |  |
| 74    | *   | 941** | aids    |  |
| 74    | *   | 941** | flu     |  |
| 74    | *   | 941** | flu     |  |
| 74    | *   | 941** | aids    |  |

|         |     | $T_2$ |              |
|---------|-----|-------|--------------|
| DOB     | Sex | ZIP   | Disease      |
| [70-80] | F   | 9414* | hypertension |
| [70-80] | F   | 9414* | gastritis    |
| [70-80] | F   | 9414* | aids         |
| [70-80] | F   | 9414* | gastritis    |

4-anonymized table at time t2

An adversary knows that Alice, born in 1974 and living in area 94142, is in both releases

- $\implies$  Alice belongs to the first group in  $T_1$
- $\implies$  Alice belongs to the first group in  $T_2$

Alice suffers from aids (it is the only illness common to both groups)

© Pierangela Samarati 55/:

<sup>4-</sup>anonymized table at time  $t_1$ 

#### Multiple independent releases – Example (2)

| $T_1$ |     |       |              |  |
|-------|-----|-------|--------------|--|
| DOB   | Sex | ZIP   | Disease      |  |
| 74    | *   | 941** | aids         |  |
| 74    | *   | 941** | flu          |  |
| 74    | *   | 941** | flu          |  |
| 74    | *   | 941** | aids         |  |
| 64    | *   | 941** | flu          |  |
| 64    | *   | 941** | short breath |  |
| 64    | *   | 941** | flu          |  |
| 64    | *   | 941** | aids         |  |

<sup>4-</sup>anonymized table at time  $t_1$ 

|         |     | $T_2$ |              |
|---------|-----|-------|--------------|
| DOB     | Sex | ZIP   | Disease      |
| [70-80] | F   | 9414* | hypertension |
| [70-80] | F   | 9414* | gastritis    |
| [70-80] | F   | 9414* | aids         |
| [70-80] | F   | 9414* | gastritis    |
| [60-70] | M   | 9413* | flu          |
| [60-70] | M   | 9413* | aids         |
| [60-70] | M   | 9413* | flu          |
| [60-70] | M   | 9413* | gastritis    |

4-anonymized table at time t2

An adversary knows that Frank, born in 1964 and living in area 94132, is in  $T_1$  but not in  $T_2$ 

© Pierangela Samarati 56/230

#### Multiple independent releases – Example (2)

| $T_1$               | $T_2$               |
|---------------------|---------------------|
| DOB Sex ZIP Disease | DOB Sex ZIP Disease |
|                     | ,                   |

```
64 * 941** flu
                                 [60-70]
                                          M 9413* flu
 64 * 941** short breath
                                  [60-70]
                                          M 9413* aids
 64
      * 941** flu
                                  [60-70]
                                          M 9413* flu
 64
      * 941** aids
                                 [60-70]
                                              9413* gastritis
4-anonymized table at time t_1
                                  4-anonymized table at time to
```

An adversary knows that Frank, born in 1964 and living in area 94132, is in  $T_1$  but not in  $T_2$ 

© Pierangela Samarati 56/230

#### Multiple independent releases – Example (2)

| $T_1$               | $T_2$               |
|---------------------|---------------------|
| DOB Sex ZIP Disease | DOB Sex ZIP Disease |

```
      64
      * 941** flu
      [60-70] M 9413* flu

      64
      * 941** short breath
      [60-70] M 9413* aids

      64
      * 941** flu
      [60-70] M 9413* flu

      64
      * 941** aids
      [60-70] M 9413* gastritis

      4-anonymized table at time t1
      4-anonymized table at time t2
```

An adversary knows that Frank, born in 1964 and living in area 94132, is in  $T_1$  but not in  $T_2$ 

 $\implies$  Frank suffers from short breath (it is the only illness that appears in  $T_1$  and does not appear in  $T_2$ )

© Pierangela Samarati 56/230

#### *m*-invariance [XT-07]

A sequence  $T_1, ..., T_n$  of released microdata tables satisfies m-invariance iff

- each equivalence class includes at least *m* tuples
- no sensitive value appears more than once in each equivalence class
- for each tuple t, the equivalence classes to which t belongs in the sequence are characterized by the same set of sensitive values
- $\implies$  the correlation of the tuples in  $T_1, \dots, T_n$  does not permit a malicious recipient to associate less than m different sensitive values with each respondent

© Pierangela Samarati 57/230

#### Extended scenarios (1)

k-anonymity,  $\ell$ -diversity, and t-closeness are based on assumptions that make them not always applicable in specific scenarios

- Multiple tuples per respondent
  - ∘ (*X*,*Y*)-privacy [WF-06]
  - ∘ *k*<sup>*m*</sup>-anonymity [TMK-08]
- Release of multiple tables, characterized by (functional) dependencies
  - ∘ (*X*,*Y*)-privacy [WF-06]
  - MultiR *k*-anonymity [NCN-07]
- Multiple quasi-identifiers
  - o butterfly [PTLX-09]

© Pierangela Samarati 58/230

#### Extended scenarios (2)

- Non-predefined quasi-identifiers
  - k<sup>m</sup>-anonymity [TMK-08]
- Release of data streams
  - o anonymize temporal data [WXWF-10]
  - k-anonymous data streams [ZHPJTJ-09]
- Fine-grained privacy preferences
  - o  $(\alpha_i, \beta_i)$ -closeness [FZ-08]
  - personalized anonymity [XT-06]
  - $\circ$   $\delta$ -presence [NAC-07]

© Pierangela Samarati 59/230

#### *k*-anonymity in various applications

In addition to classical microdata release problem, the concept of k-anonymity and its extensions can be applied in different scenarios, e.g.:

- social networks (e.g.,[HMJTW-08])
- data mining (e.g.,[FWY-07, FWS-08])
- location data (e.g.,[GL-08])

• ...

© Pierangela Samarati 60/230

#### Re-identification with any information

- Any information can be used to re-identify anonymous data
  - ensuring proper privacy protection is a difficult task since the amount and variety of data collected about individuals is increased
- Two examples:
  - o AOL
  - Netflix

© Pierangela Samarati 61/230

#### AOL data release (1)

- In 2006, to embrace the vision of an open research community, AOL (America OnLine) publicly posted to a web site 20 million search queries for 650,000 users of AOL's search engine summarizing three months of activity
- AOL suppressed any obviously identifying information such as AOL username and IP address

 AOL replaced these identifiers with unique identification numbers (this made searches by the same user linkable)

© Pierangela Samarati 62/230

#### AOL data release (2)

#### User 44117749:

- o "numb fingers", "60 single men", "dog that urinates on everything"
- "hand tremors", "nicotine effects on the body", "dry mouth", and "bipolar"
- "Arnold" (several people with this last name)
- "landscapers in Lilburn, Ga", "homes sold in shadow lake subdivision Gwinnett county, Georgia"
- ⇒ Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga
- She was re-identified by two New York Times reporters
- She explained in an interview that she has three dogs and that she searched for medical conditions of some friends

© Pierangela Samarati 63/230

#### AOL data release (3)

#### What about user 17556639?

- how to kill your wife
- how to kill your wife
- wife killer
- how to kill a wife
- poop
- dead people
- pictures of dead people
- killed people
- dead pictures
- dead pictures
- dead pictures
- murder photo

- steak and cheese
- photo of death
- photo of death
- death
- dead people photos
- photo of dead people
- www.murderdpeople.com
- decapatated photos
- decapatated photos
- car crashes3
- car crashes3
- car crash photo

©Pierangela Samarati 64/230

#### Netflix prize data study (1)

- In 2006, Netlix (the world largest online movie rental service), launched the "Netflix Prize" (a challenge that lasted almost three years)
  - Prize of US \$ 1 million to be awarded to those who could provide a movie recommendation algorithm that improved Netflix's algorithm by 10%
- Netflix provided 100 million records revealing how nearly 500,000 of its users had rated movies from Oct.'98 to Dec.'05
- In each record Netflix disclosed the movie rated, the rating assigned (1 to 5), and the date of the rating

© Pierangela Samarati 65/230

# Netflix prize data study (2)

- Only a sample (one tenth) of the database was released
- Some ratings were perturbed (but not much to not alter statistics)
- Identifying information (e.g., usernames was removed), but a unique user identifier was assigned to preserve rating-to-rating continuity
- Release was not k-anonymous for any k > 1

© Pierangela Samarati 66/230

# Netflix prize data study (3)

- De-identified Netflix data can be re-identified by linking with external sources (e.g., user ratings from IMDb users)
  - Knowing the precise ratings a person has assigned to six obscure (outside the top 500) movies, an adversary is able to uniquely identify that person 84% of the time
  - $\circ$  Knowing approximately when ( $\pm$  2 weeks) a person has rated six movies (whether or not obscure), an adversary is able to reidentify that person in 99% of the cases
  - $\circ~$  Knowing two movies a user has rated, with precise ratings and rating dates ( $\pm~3$  days), an adversary is able to reidentify 68% of the users
- Movies may reveal your political orientation, religious views, or sexual orientations (Netflix was sued by a lesbian for breaching her privacy)

© Pierangela Samarati 67/230

### Differential privacy [D-06] (1)

- Differential privacy aims at preventing adversaries from being capable to detect the presence or absence of a given individual in a dataset. E.g.,:
  - the count of individuals with cancer from a medical database is produced with a release mechanism that when executed on datasets differing on one individual probably returns the same result
- It defines a property on the data release mechanism

© Pierangela Samarati 68/230

# Differential privacy [D-06] (2)

#### Informally:

 Differential privacy requires the probability distribution on the published results of an analysis to be "essentially the same" independent of whether an individual is represented or not in the dataset

#### Formally:

 A randomized function K gives ε-differential privacy if for all data sets D and D' differing on at most one row, and all S ⊆ Range(K), Pr[K(D) ∈ S] ≤ exp(ε) × Pr[K(D') ∈ S]

© Pierangela Samarati 69/230

### Differential privacy [D-06] (3)

- Applicable to two scenarios
  - o non-interactive scenario: public release of a dataset
  - o interactive scenario: evaluation of queries over a private dataset
- It is typically enforced by adding random noise
  - ⇒ data truthfulness is not preserved
- ε-differentially private mechanisms compose automatically

© Pierangela Samarati 70/230

### Differential privacy variations and applications

- Variations of differential privacy to reduce the amount of noise in data/query result:
  - $\circ$   $(\varepsilon, \delta)$ -differential privacy [DS-09]: the  $\varepsilon$  bound on query answer probabilities may be violated with small probability (controlled by  $\delta$ )
  - adversaries with polynomial time computational bounds (e.g., [MPRV-09])
  - use of wavelet transforms for improving data utility [XWG-11]
  - o ...
- Similarly to *k*-anonymity, differentially private mechanisms have been developed for different domains:
  - o social networks (e.g., [HLMJ-09, MW-09, RHMS-09])
  - o data mining (e.g., [CMFDX-11, DWHL-11, MCFY-11])
  - o location data (e.g., [HR-11])

©Pierangela Samarati 71/230

### Is differential privacy enough?

- Limiting the inference about the presence of a tuple if different from limiting the inference about the participation of the individual in the data generating process [KM-11, KM-12]
  - Bob's participation in a social network can cause links to form between Bob's friends (Bob's participation affects more than just the tuple marked "Bob")
- Differential privacy composes well with itself but not necessarily with other privacy definitions or data release mechanisms (which represent background knowledge that can cause privacy breaches)

© Pierangela Samarati 72/230

### Some open issues

- New privacy metrics
- New techniques to protect privacy
- External knowledge and adversarial attacks
- · Evaluation of privacy vs utility

© Pierangela Samarati 73/230

# Privacy in Data Outsourcing/Cloud Computing

P. Samarati, S. De Capitani di Vimercati, "Data Protection in Outsourcing Scenarios: Issues and Directions," in *Proc. of the 5th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2010)*, Beijing, China, April, 2010.

#### Motivation

- The management of large amount of sensitive information is quite expensive
- Novel paradigms (e.g., data outsourcing, cloud computing) are emerging for enabling Internet-based access to data and applications shared among different clients [HIML-02,DFS-12]
- Data are typically stored at external data centers managed by parties different from the data owner
  - + significant cost savings and service benefits
  - + promises higher availability and more effective disaster protection than in-house operations
  - sensitive data are not under the data owner's control
  - servers may be honest-but-curious

⇒ sensitive data have to be encrypted or kept separate from other PII

© Pierangela Samarati 75/230

#### Issues to be addressed

- Data protection
- Query execution
- Private access
- Data integrity and correctness
- Access control enforcement
- Data publication and utility
- Collaborative query execution

© Pierangela Samarati 76/230

#### Issues to be addressed

- Data protection: encryption and fragmentation
- Query execution: indexes
- Private access: [DFPPS-11]
- Data integrity and correctness
- Access control enforcement: encryption policy, over-encryption
- Data publication and utility: loose associations
- Collaborative query execution: [DFJPS-11]

© Pierangela Samarati 76/230

# **Data Protection**

P. Samarati, S. De Capitani di Vimercati, " Data Protection in Outsourcing Scenarios: Issues and Directions," in *Proc. of the 5th ACM Symposium on Information, Computer and Communications Security (ASIACCS 2010)*, Beijing, China, Aprile 13-16, 2010.

### Data protection: Solutions

- Solutions for protecting data can be based on
  - o encryption
  - encryption and fragmentation
  - o fragmentation

© Pierangela Samarati 78/230

# **Encryption-Based Solutions and Indexes**

© Pierangela Samarati 79/230

### Encryption and indexes (1)

The granularity level at which database encryption is performed can depend on the data that need to be accessed. Encryption can be applied at the granularity of:

- table: each table in the plaintext database is represented through a single encrypted value in the encrypted database
- attribute: each column (attribute) in the plaintext table is represented by a single encrypted value in the encrypted table
- tuple: each tuple in the plaintext table is represented by a single encrypted value in the encrypted table
- cell: each cell (element) in the plaintext table is represented by a single encrypted value in the encrypted table

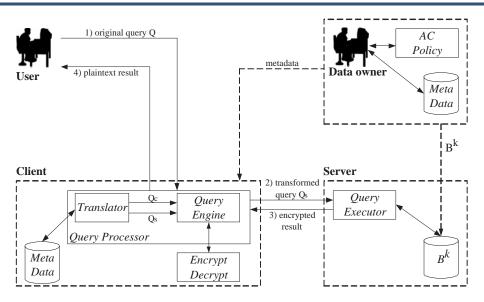
©Pierangela Samarati 80/230

### Encryption and indexes (2)

- For performance reasons, encryption is typically applied at the tuple level
- An index can be associated with each attribute on which conditions may need to be evaluated
- Indexes are used by the server to select data to be returned in response to a query
- A relation r over schema  $R(A_1, A_2, ..., A_n)$  is mapped onto a relation  $r^k$  over schema  $R^k(\underline{Counter}, \underline{Etuple}, I_1, I_2, ..., I_n)$ :
  - o Counter: primary key
  - Etuple: ciphertext for plaintext tuple t, Etuple= $E_k(t)$
  - $\circ$   $I_i$ : index associated with attribute  $A_i$

© Pierangela Samarati 81/230

### Entities involved in the outsourcing scenario



© Pierangela Samarati 82/230

### Indexing information

#### Different choices for indexing, e.g.:

- actual attribute value,  $t[I_i] = t[A_i]$  (inapplicable)
- individual encrypted value,  $t[I_i] = E_k(t[A_i])$ 
  - + simple and precise for equality queries
  - preserves plaintext value distinguishability
- partition-based index,  $t[I_i] = B$ , with B the value associated with a partition containing  $t[A_i]$
- secure hash function over the attribute values  $t[I_i] = h(t[A_i])$

#### partition-based and secure hash function:

- + support for equality queries
- + collisions remove plaintext distinguishability
- result may contain spurious tuple that need to be eliminated (postprocessing query)

©Pierangela Samarati 83/230

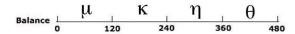
### Partition-based index [HILM-02]

- Consider an arbitrary plaintext attribute  $A_i$  in relational schema R, with domain  $D_i$
- D<sub>i</sub> is partitioned in a number of non-overlapping subsets of values, called partitions, containing contiguous values
- · Each partition is associated with an identifier
- The corresponding index value is the unique value associated with the partition to which the plaintext value t[A<sub>i</sub>] belongs
- The association partition-identifier can be order-preserving
  - + support for interval-based queries
  - expose to inference (the comparison among the ordered sequences of plaintext and indexes would lead to reconstruct the correspondence)

© Pierangela Samarati 84/230

### Partition-based index – Example

#### Random mapping



#### **Accounts**

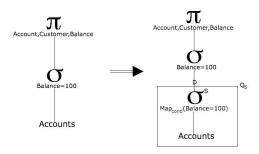
| Account | Customer | Balance |
|---------|----------|---------|
| Acc1    | Alice    | 100     |
| Acc2    | Alice    | 200     |
| Acc3    | Bob      | 300     |
| Acc4    | Chris    | 200     |
| Acc5    | Donna    | 400     |
| Acc6    | Elvis    | 200     |

#### Accounts<sup>k</sup>

| Counter | Etuple          | $I_A$    | $I_C$ | $I_B$ |
|---------|-----------------|----------|-------|-------|
| 1       | x4Z3tfX2ShOSM   | $\pi$    | α     | μ     |
| 2       | mNHg1oC010p8w   | $\varpi$ | α     | к     |
| 3       | WslaCvfyF1Dxw   | ξ        | β     | η     |
| 4       | JpO8eLTVgwV1E   | ρ        | γ     | к     |
| 5       | qctG6XnFNDTQc   | ς        | δ     | θ     |
| 6       | 4QbqCeq3hxZHkIU | ı        | ε     | к     |

© Pierangela Samarati 85/230

SELECT \*
FROM Accounts
WHERE Balance = 100



© Pierangela Samarati 86/230

### Hash-based index [CDDJPS-05]

- Based on the concept of one-way hash function
- For each attribute  $A_i$  in R with domain  $D_i$ , a secure one-way hash function  $h: D_i \to B_i$  is defined, where  $B_i$  is the domain of index  $I_i$  associated with  $A_i$
- Given a plaintext tuple t in r, the index value corresponding to t[A<sub>i</sub>] is h(t[A<sub>i</sub>])
- Important properties of any secure hash function h are:
  - $\lor \forall x, y \in D_i : x = y \implies h(x) = h(y)$  (determinism)
  - o given two values  $x, y \in D_i$  with  $x \neq y$ , we may have that h(x) = h(y) (collision)
  - o given two distinct but near values x,y ( $|x-y| < \varepsilon$ ) chosen randomly in  $D_i$ , the discrete probability distribution of the difference h(x) h(y) is uniform (strong mixing)

©Pierangela Samarati 87/230

### Hash-based index – Example

| Accounts |
|----------|
|          |

| Account | Customer | Balance |
|---------|----------|---------|
| Acc1    | Alice    | 100     |
| Acc2    | Alice    | 200     |
| Acc3    | Bob      | 300     |
| Acc4    | Chris    | 200     |
| Acc5    | Donna    | 400     |
| Acc6    | Elvis    | 200     |

|--|

| Counter | Etuple        | $I_A$    | $I_{\rm C}$ | Ι <sub>Β</sub> |
|---------|---------------|----------|-------------|----------------|
| 1       | x4Z3tfX2ShOSM | π        | α           | μ              |
| 2       | mNHg1oC010p8w | $\sigma$ | α           | к              |
| 3       | WslaCvfyF1Dxw | ξ        | δ           | θ              |
| 4       | JpO8eLTVgwV1E | ρ        | α           | κ              |
| 5       | qctG6XnFNDTQc | ς        | β           | к              |
| 6       | 4QbqC3hxZHklU | ı        | β           | к              |

- $h_c(Alice)=h_c(Chris)=\alpha$
- $h_c(Donna) = h_c(Elvis) = \beta$
- $h_c(Bob) = \delta$
- $h_b(200)=h_b(400)=\kappa$
- $h_b(100) = \mu$
- $h_b(300) = \theta$

© Pierangela Samarati 88/230

### Query execution

- Each query Q on the plaintext DB is translated into:
  - a query Q<sub>s</sub> to be executed at the server
  - $\circ$  a query  $Q_c$  to be executed at client on the result
- Query Q<sub>s</sub> is defined according to the index technique adopted
- Query Q<sub>c</sub> is executed on the decrypted result of Q<sub>s</sub> to filter out spurious tuples
- The translation should be performed in such a way that the server is responsible for the majority of the work

© Pierangela Samarati 89/230

| Accounts |     |
|----------|-----|
| Customer | Bal |

| Accounte |          |         |  |  |
|----------|----------|---------|--|--|
| Account  | Customer | Balance |  |  |
| Acc1     | Alice    | 100     |  |  |
| Acc2     | Alice    | 200     |  |  |
| Acc3     | Bob      | 300     |  |  |
| Acc4     | Chris    | 200     |  |  |
| Acc5     | Donna    | 400     |  |  |
| Acc6     | Elvis    | 200     |  |  |

#### Accounts<sup>k</sup>

| Counter | Etuple        | $I_A$    | $I_{\mathrm{C}}$ | l <sub>B</sub> |
|---------|---------------|----------|------------------|----------------|
| 1       | x4Z3tfX2ShOSM | $\pi$    | α                | μ              |
| 2       | mNHg1oC010p8w | $\sigma$ | α                | κ              |
| 3       | WslaCvfyF1Dxw | ξ        | δ                | θ              |
| 4       | JpO8eLTVgwV1E | ρ        | α                | к              |
| 5       | qctG6XnFNDTQc | ς        | β                | к              |
| 6       | 4QbqC3hxZHklU | ı        | β                | κ              |

#### Original query on Accounts | Translation over Accounts<sup>k</sup>

Q := SELECT \* Accounts FROM WHERE Balance=200  $Q_s := SELECTEtuple$ FROM Accounts<sup>k</sup> WHERE  $I_B = \kappa$ 

 $Q_c := SELECT^*$ Decrypt(Q<sub>s</sub>, Key) WHERE Balance=200

© Pierangela Samarati 90/230

| Accounts |
|----------|
|----------|

| Account Customer Balance |       |     |  |  |  |
|--------------------------|-------|-----|--|--|--|
| Acc1                     | Alice | 100 |  |  |  |
| Acc2                     | Alice | 200 |  |  |  |
| Acc3                     | Bob   | 300 |  |  |  |
| Acc4                     | Chris | 200 |  |  |  |
| Acc5                     | Donna | 400 |  |  |  |
| Acc6                     | Elvis | 200 |  |  |  |

#### Accounts<sub>2</sub><sup>k</sup>

| Counter | Etuple        | $I_A$    | $I_{\mathbb{C}}$ | $I_{\mathbf{B}}$ |
|---------|---------------|----------|------------------|------------------|
| 1       | x4Z3tfX2ShOSM | $\pi$    | α                | μ                |
| 2       | mNHg1oC010p8w | $\sigma$ | α                | ĸ                |
| 3       | WslaCvfyF1Dxw | ξ        | δ                | θ                |
| 4       | JpO8eLTVgwV1E | ρ        | α                | к                |
| 5       | qctG6XnFNDTQc | ς        | β                | K                |
| 6       | 4QbqC3hxZHklU | ı        | β                | κ                |

#### Original query on Accounts Translation over Accounts,

Q := SELECT \*

FROM Accounts
WHERE Balance=200

Q<sub>s</sub> := SELECT Etuple

FROM Accounts<sup>k</sup><sub>2</sub>
WHERE  $I_B = \kappa$ 

 $Q_c := SELECT^*$ 

FROM Decrypt(Q<sub>s</sub>, Key) WHERE Balance=200

© Pierangela Samarati 90/230

|   | Accounts |   |
|---|----------|---|
| Τ | Customer | B |

| 7100041110 |          |         |  |
|------------|----------|---------|--|
| Account    | Customer | Balance |  |
| Acc1       | Alice    | 100     |  |
| Acc2       | Alice    | 200     |  |
| Acc3       | Bob      | 300     |  |
| Acc4       | Chris    | 200     |  |
| Acc5       | Donna    | 400     |  |
| Acc6       | Elvis    | 200     |  |

#### Accounts<sup>k</sup>

| Counter | Etuple        | $I_{\mathbf{A}}$      | $I_{\mathrm{C}}$ | $I_{B}$ |
|---------|---------------|-----------------------|------------------|---------|
| 1       | x4Z3tfX2ShOSM | π                     | α                | μ       |
| 2       | mNHg1oC010p8w | $\boldsymbol{\varpi}$ | α                | K       |
| 3       | WslaCvfyF1Dxw | ξ                     | δ                | θ       |
| 4       | JpO8eLTVgwV1E | ρ                     | α                | K       |
| 5       | qctG6XnFNDTQc | ς                     | β                | K       |
| 6       | 4QbqC3hxZHklU | 1                     | β                | K       |

#### Original query on Accounts | Translation over Accounts<sup>k</sup>

Q := SELECT \* Accounts FROM WHERE Balance=200  $Q_s := SELECTEtuple$ FROM Accounts<sup>k</sup> WHERE  $I_B = \kappa$ 

 $Q_c := SELECT^*$ FROM  $Decrypt(Q_s, Key)$ WHERE Balance=200

© Pierangela Samarati 90/230

| Α | CC | ou | nts |
|---|----|----|-----|
|   |    |    |     |

| Accounts |          |         |  |  |
|----------|----------|---------|--|--|
| Account  | Customer | Balance |  |  |
| Acc1     | Alice    | 100     |  |  |
| Acc2     | Alice    | 200     |  |  |
| Acc3     | Bob      | 300     |  |  |
| Acc4     | Chris    | 200     |  |  |
| Acc5     | Donna    | 400     |  |  |
| Acc6     | Elvis    | 200     |  |  |

#### Accounts<sub>2</sub><sup>k</sup>

| Counter | Etuple        | I <sub>A</sub> | $I_{\mathbb{C}}$ | l <sub>B</sub> |
|---------|---------------|----------------|------------------|----------------|
| 1       | x4Z3tfX2ShOSM | $\pi$          | α                | μ              |
| 2       | mNHg1oC010p8w | $\sigma$       | α                | ĸ              |
| 3       | WslaCvfyF1Dxw | ξ              | δ                | θ              |
| 4       | JpO8eLTVgwV1E | ρ              | α                | κ              |
| 5       | qctG6XnFNDTQc | ς              | β                | к              |
| 6       | 4QbqC3hxZHklU | l              | β                | κ              |

#### Original query on Accounts Translation over Accounts,

Q := SELECT \*
FROM Accounts
WHERE Balance=200

 $Q_s := SELECTE tuple$ FROM Accounts  $_2^k$ WHERE  $I_B = \kappa$ 

 $Q_c := SELECT^*$ FROM  $Decrypt(Q_s, Key)$ WHERE Balance=200

© Pierangela Samarati 90/230

| Accounts |      |
|----------|------|
| Customer | Bala |

| 110000  |          |         |  |  |
|---------|----------|---------|--|--|
| Account | Customer | Balance |  |  |
| Acc1    | Alice    | 100     |  |  |
| Acc2    | Alice    | 200     |  |  |
| Acc3    | Bob      | 300     |  |  |
| Acc4    | Chris    | 200     |  |  |
| Acc5    | Donna    | 400     |  |  |
| Acc6    | Elvis    | 200     |  |  |

#### Accounts<sup>k</sup>

| Counter | Etuple        |          | $I_{\mathbb{C}}$ | l <sub>B</sub> |
|---------|---------------|----------|------------------|----------------|
| 1       | x4Z3tfX2ShOSM | $\pi$    | α                | μ              |
| 2       | mNHg1oC010p8w | $\sigma$ | α                | κ              |
| 3       | WslaCvfyF1Dxw | ξ        | δ                | θ              |
| 4       | JpO8eLTVgwV1E | ρ        | α                | κ              |
| 5       | qctG6XnFNDTQc | ς        | β                | к              |
| 6       | 4QbqC3hxZHklU | ı        | β                | к              |

#### Original query on Accounts Translation over Accounts,

Q := SELECT \* Accounts FROM WHERE Balance=200  $Q_s := SELECTEtuple$ FROM Accounts<sup>k</sup> WHERE  $I_B = \kappa$ 

 $Q_c := SELECT^*$ 

FROM  $Decrypt(Q_s, Key)$ WHERE Balance=200

© Pierangela Samarati 90/230

# Inference Exposure

© Pierangela Samarati 91/230

#### Inference exposure

There are two conflicting requirements in indexing data:

- indexes should provide an effective query execution mechanism
- indexes should not open the door to inference and linking attacks

It is important to measure quantitatively the level of exposure due to the publication of indexes [CDDJPS-05]

© Pierangela Samarati 92/230

#### **Scenarios**

#### The exposure due to indexes depends on:

- the indexing method adopted, e.g.,
  - o direct encryption
  - o hashing
- the a-priori knowledge of the intruder, e.g.,
  - Freq+DB<sup>k</sup>:
    - the frequency distribution of plaintext values in the original database (Freq)
    - the encrypted database (DB<sup>k</sup>)
  - $\circ$  DB+DB $^k$ :
    - the plaintext database (DB)
    - the encrypted database (DB<sup>k</sup>)

© Pierangela Samarati 93/230

#### Possible inferences

#### Freq+DBk

- plaintext content: determine the existence of a certain tuple (or association of values) in the original database
- *indexing function*: determine the correspondence between plaintext values and indexes

#### $DB+DB^k$

 indexing function: determine the correspondence between plaintext values and indexes

© Pierangela Samarati 94/230

# Freq+DB $^k$ – Example

#### Knowledge

#### 

| Customer | Balance |
|----------|---------|
| Alice    | 100     |
| Alice    | 200     |
| Bob      | 300     |
| Chris    | 200     |
| Donna    | 400     |
| Elvis    | 200     |
|          |         |

#### Accounts<sup>k</sup>

| Counter | Etuple        |                       | $I_C$ | $\mathbf{I}_{B}$ |
|---------|---------------|-----------------------|-------|------------------|
| 1       | x4Z3tfX2ShOSM | π                     | α     | μ                |
| 2       | mNHg1oC010p8w | $\boldsymbol{\varpi}$ | α     | κ                |
|         | WslaCvfyF1Dxw | ζ                     | β     | η                |
| 4       | JpO8eLTVgwV1E | ρ                     | γ     | κ                |
| 5       | qctG6XnFNDTQc | ς                     | δ     | $\theta$         |
| 6       | 4QbqC3hxZHklU | ı                     | ε     | κ                |

#### Inference

- $I_{\Delta} = Account$
- I<sub>C</sub> = Customer
- I<sub>B</sub> = Balance
- $\kappa = 200$  (indexing inference)
- $\alpha$  =Alice (indexing inference)
- $\bullet$   $\langle Alice,\! 200 \rangle$  is in the table (association inference)
- Alice is also associated with a value different from 200 ("100,300,400", all equiprobable)

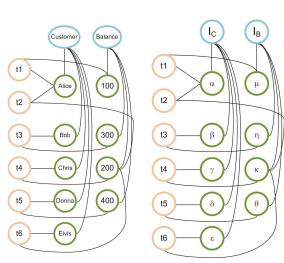
© Pierangela Samarati 95/230

# $DB+DB^k$ – Example (1)

| Customer | Balance |
|----------|---------|
| Alice    | 100     |
| Alice    | 200     |
| Bob      | 300     |
| Chris    | 200     |
| Donna    | 400     |
| Elvis    | 200     |

| I <sub>C</sub> | I <sub>B</sub> |
|----------------|----------------|
| α              | μ              |
| α              | K              |
| β              | η              |
| γ              | K              |
| δ              | θ              |
| ε              | К              |

## $DB+DB^k$ – Example (2)



#### Inference

- $I_C$  = Customer
- $I_B$  = Balance
- $\alpha$  = Alice
- $\mu = 100$
- $\kappa = 200$
- $\{\gamma, \varepsilon\}$  = {Chris,Elvis}
- $\{\langle \beta, \eta \rangle, \langle \delta, \theta \rangle\} = \{\langle \mathsf{Bob}, \mathsf{300} \rangle, \langle \mathsf{Donna}, \mathsf{400} \rangle\}$

© Pierangela Samarati 97/230

# Searchable encryption

© Pierangela Samarati 98/230

## Order preserving encryption

- Order Preserving Encryption (OPES) is an encryption technique that takes as input a target distribution of index values and applies an order preserving transformation [AKSX-04]
  - + comparison can be directly applied on the encrypted data
  - + query evaluation does not produce spurious tuples
  - vulnerable to inference attacks
- Order Preserving Encryption with Splitting and Scaling (OPESS) guarantees a flat distribution of the frequencies of index values [WL-06]
  - decreases exposure to inference attacks; remains vulnerable in dynamic scenarios

© Pierangela Samarati 99/230

## Fully homomorphic encryption [G-09]

Fully homomorphic encryption schema allows the execution of queries on encrypted data without decrypting them

- A query is sent to the server that transforms it as a function f
- The server homomorphically computes an encryption of f on the encrypted data
- The encrypted result of f is then sent to the requester that decrypts it and retrieves the relevant data

#### Still open problems:

- not practical for DBMSs
- vulnerable with respect to inference

© Pierangela Samarati 100/230

# **Data Integrity**

© Pierangela Samarati 101/230

### Integrity of outsourced data

#### Two aspects:

- Integrity in storage: data must be protected against improper modifications
  - ⇒ unauthorized updates to the data must be detected
- Integrity in query computation: query results must be correct and complete
  - ⇒ server's misbehavior in query evaluation must be detected

© Pierangela Samarati 102/230

## Integrity in storage

- Data integrity in storage typically relies on digital signatures
- Signatures are usually computed at tuple level
  - table and attribute level signatures can be verified only after downloading the whole table/column
  - o cell level signature causes a high verification overhead
- The verification cost grows linearly with the number of tuples in the query result
  - ⇒ the signature of a set of tuples can be combined in a unique signature [MNT-06]

© Pierangela Samarati 103/230

## Integrity in query computation

- Query result must be correct and complete
  - o the result must not be tampered with
  - o the result must include all data satisfying the query
- Two approaches:
  - authenticated data structures
  - o probabilistic

© Pierangela Samarati 104/230

## Authenticated data structures approaches

- Based on the definition of appropriate data structures on the original data
  - o signature chains (e.g., [NT-05])
  - o Merkle hash trees (e.g., [DGMS-00])
  - o skip lists (e.g., [PPP-10])
- Provide an absolute guarantee of query correctness and completeness but only for the attribute on which the data structure is built

© Pierangela Samarati 105/230

## Probabilistic approaches

- Based on the:
  - o insertion of fake tuples in query results (e.g., [XWYM-07])
  - replication of a subset of the tuples in query results (e.g., [WYPY-08])
  - pre-computation of tokens associated with chosen query results (e.g., [S-05])
- Provide a probabilistic guarantee of completeness of query results
- More efficient than authenticated data structures approaches

© Pierangela Samarati 106/230

## Controlling Access to Outsourced Data

© Pierangela Samarati 107/230

#### Access control

- Different users might need to enjoy different views on the outsourced data
- Enforcement of the access control policy requires the data owner to mediate access requests
- Existing approaches for data outsourcing can support the use of different keys for encrypting different data
  - ⇒ selective encryption as a means to enforce selective access
    [DFJPS-10]

© Pierangela Samarati 108/230

### Selective encryption

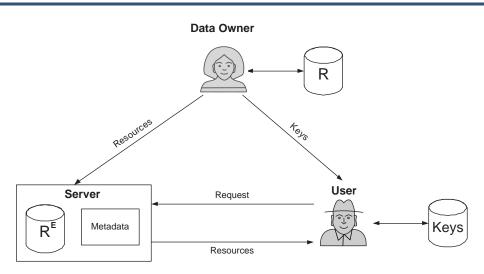
#### Basic idea/desiderata:

- data themselves need to directly enforce access control
- different keys should be used for encrypting data
- authorization to access a resource translated into knowledge of the key with which the resource is encrypted

 each user is communicated the keys necessary to decrypt the resources she is entailed to access

© Pierangela Samarati 109/230

## Selective encryption – Scenario



© Pierangela Samarati 110/230

## Authorization policy

- The data owner defines a discretionary access control (authorization) policy to regulate read access to the resources
- An authorization policy \( \mathscr{A} \), is a set of permissions of the form \( \text{user,resource} \).

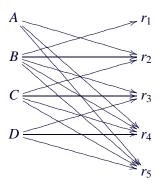
It can be represented as:

- an access matrix
- o a directed and bipartite graph having a vertex for each user u and for each resource r, and an edge from u to r for each permission  $\langle u, r \rangle$

© Pierangela Samarati 111/230

## Authorization policy – Example

|                  | $r_1$ | $r_2$ | $r_3$ | $r_4$ | <i>r</i> <sub>5</sub> |
|------------------|-------|-------|-------|-------|-----------------------|
| $\boldsymbol{A}$ | 0     | 1     | 0     | 1     | 1                     |
| $\boldsymbol{B}$ | 1     | 1     | 1     | 1     | 1                     |
| $\boldsymbol{C}$ | 0     | 1     | 1     | 1     | 1                     |
| D                | 0     | 0     | 1     | 1     | 1                     |



© Pierangela Samarati 112/230

### **Encryption policy**

- The authorization policy defined by the data owner is translated into an equivalent encryption policy
- Possible solutions:
  - encrypt each resource with a different key and give users the keys for the resources they can access
    - requires each user to manage as many keys as the number of resources she is authorized to access
  - use a key derivation method for allowing users to derive from their user keys all the keys that they are entitled to access
    - + allows limiting to one the key to be released to each user

© Pierangela Samarati 113/230

### Key derivation methods

- Based on a key derivation hierarchy (ℋ, ≼)
  - $\circ$   $\mathscr K$  is the set of keys in the system
  - $\circ \leq$  partial order relation defined on  $\mathscr{K}$
- The knowledge of the key of vertex v₁ and of a piece of information publicly available allows the computation of the key of a lower level vertex v₂ such that v₂ ≤ v₁
- (ℋ, ≼) can be graphically represented as a graph with a vertex for each x ∈ ℋ and a path from x to y iff y ≺ x
- Depending on the partial order relation defined on  $\mathcal{K}$ , the key derivation hierarchy can be:
  - o a chain [S-87]
  - o a tree [G-80,S-87,S-88]
  - o a DAG [AT-83,CMW-06,DFM-04,HL-90,HY-03,LWL-89,M-85,SC-02]

© Pierangela Samarati 114/230

## Token-based key derivation methods [AFB-05]

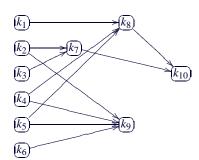
- Keys are arbitrarily assigned to vertices
- A public label l<sub>i</sub> is associated with each key k<sub>i</sub>
- A piece of public information  $t_{i,j}$ , called token, is associated with each edge in the hierarchy
- Given an edge  $(k_i,k_i)$ , token  $t_{i,j}$  is computed as  $k_i \oplus h(k_i,l_i)$  where
  - $\circ \oplus$  is the *n*-ary xor operator
  - h is a secure hash function
- Advantages of tokens:
  - they are public and allow users to derive multiple encryption keys,
     while having to worry about a single one
  - they can be stored on the remote server (just like the encrypted data), so any user can access them

© Pierangela Samarati 115/230

## Key and token graph

- Relationships between keys through tokens can be represented via a key and token graph
  - o a vertex for each pair  $\langle k,l \rangle$ , where  $k \in \mathcal{K}$  is a key and  $l \in \mathcal{L}$  the corresponding label
  - o an edge from a vertex  $\langle k_i, l_i \rangle$  to vertex  $\langle k_j, l_j \rangle$  if there exists a token  $t_{i,j} \in \mathscr{T}$  allowing the derivation of  $k_j$  from  $k_i$

#### Example



© Pierangela Samarati 116/230

## Key assignment and encryption schema

Translation of the authorization policy into an encryption policy:

- Starting assumptions (desiderata):
  - each user can be released only a single key
  - each resource is encrypted only once (with a single key)
- Function  $\phi: \mathscr{U} \cup \mathscr{R} \to \mathscr{L}$  describes:
  - the association between a user and (the label of) her key
  - the association between a resource and (the label of) the key used for encrypting it

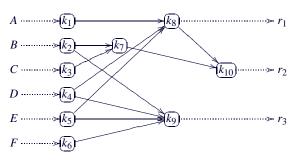
© Pierangela Samarati 117/230

## Formal definition of encryption policy

- An encryption policy over users W and resources R, denoted ε, is a 6-tuple (W,R,K,L,φ,F), where:
  - $\circ~\mathcal{K}$  is the set of keys defined in the system and  $\mathcal{L}$  is the set of corresponding labels
  - $\circ \phi$  is a key assignment and encryption schema
  - $\circ$   $\mathscr T$  is a set of tokens defined on  $\mathscr K$  and  $\mathscr L$
- The encryption policy can be represented via a graph by extending the key and token graph to include:
  - a vertex for each user and each resource
  - $\circ$  an edge from each user vertex u to the vertex  $\langle k, l \rangle$  such that  $\phi(u)=l$
  - $\circ~$  an edge from each vertex  $\langle k,l\rangle$  to each resource vertex r such that  $\phi(r)=l$

© Pierangela Samarati 118/230

## Encryption policy graph – Example



- user A can access  $\{r_1, r_2\}$
- user B can access  $\{r_2, r_3\}$
- user C can access  $\{r_2\}$
- user D can access  $\{r_1, r_2, r_3\}$
- user E can access  $\{r_1, r_2, r_3\}$
- user *F* can access {*r*<sub>3</sub>}

φ ......

token

© Pierangela Samarati 119/2

## Policy transformation

Goal: translate an authorization policy  $\mathscr{A}$  into an equivalent encryption policy  $\mathscr{E}$ .

 $\mathscr{A}$  and  $\mathscr{E}$  are equivalent if they allow exactly the same accesses:

• 
$$\forall u \in \mathcal{U}, r \in \mathcal{R} : u \xrightarrow{\mathcal{E}} r \Longrightarrow u \xrightarrow{\mathcal{A}} r$$

• 
$$\forall u \in \mathcal{U}, r \in \mathcal{R} : u \xrightarrow{\mathcal{A}} r \Longrightarrow u \xrightarrow{\mathcal{E}} r$$

## Translating $\mathscr{A}$ into $\mathscr{E}$ (1)

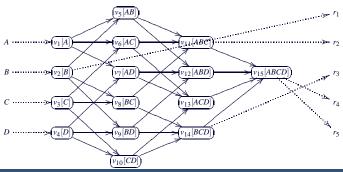
#### Naive solution

- o each user is associated with a different key
- each resource is encrypted with a different key
- o a token  $t_{u,r}$  is generated and published for each permission  $\langle u,r \rangle$
- producing and managing a token for each single permission can be unfeasible in practice
- Exploiting acls and user groups
  - group users with the same access privileges
  - encrypt each resource with the key associated with the set of users that can access it

© Pierangela Samarati 121/230

## Translating $\mathscr{A}$ into $\mathscr{E}$ (2)

- It is possible to create an encryption policy graph by exploiting the hierarchy among sets of users induced by the partial order relationship based on set containment (⊆)
- If the system has a large number of users, the encryption policy has a large number of tokens and keys  $(2^{|\mathcal{U}|}-1)$ 
  - ⇒ inefficient key derivation



## Minimum encryption policy

- Observation: user groups that do not correspond to any acl do not need to have a key
- Goal: compute a minimum encryption policy, equivalent to a given authorization policy, that minimize the number of tokens to be maintained by the server
- Solution: heuristic algorithm based on the observation that:
  - only vertices associated with user groups corresponding to actual acls need to be associated with a key
  - the encryption policy graph may include only the vertices that are needed to enforce a given authorization policy, connecting them to ensure a correct key derivability
  - other vertices can be included if they are useful for reducing the size of the catalog

© Pierangela Samarati 123/230

## Construction of the key and token graph

Start from an authorization policy A

- Create a vertex/key for each user and for each non-singleton acl (initialization)
- 2. For each vertex *v* corresponding to a non-singleton *acl*, find a cover without redundancies (covering)
  - for each user u in v.acl. find an ancestor v' of v with  $u \in v'$ .acl

3. Factorize common ancestors (factorization)

© Pierangela Samarati 124/230

## An example of key and token graph

|                  | $r_1$ | $r_2$ | <i>r</i> <sub>3</sub> | $r_4$ | <i>r</i> <sub>5</sub> |
|------------------|-------|-------|-----------------------|-------|-----------------------|
| $\boldsymbol{A}$ | 0     | 1     | 0                     | 1     | 1                     |
| A $B$            | 1     | 1     | 1                     | 1     | 1                     |
| C<br>D           | 0     | 1     | 1                     | 1     | 1                     |
| D                | 0     | 0     | 1                     | 1     | 1                     |

#### Initialization

 $(v_1[A])$   $(v_5[ABC])$ 

 $(v_5[ABC])$ 

 $v_2[B]$ 

 $v_3[C]$ 

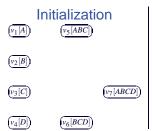
 $(v_7[ABCD])$ 

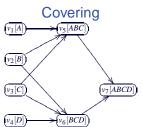
 $(v_4[D])$ 

 $v_6[BCD]$ 

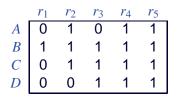
## An example of key and token graph

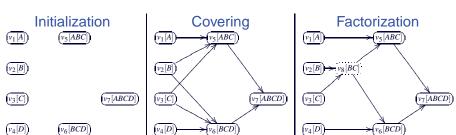
|                  | $r_1$ | $r_2$ | <i>r</i> <sub>3</sub> | $r_4$ | <i>r</i> <sub>5</sub> |
|------------------|-------|-------|-----------------------|-------|-----------------------|
| $\boldsymbol{A}$ | 0     | 1     | 0                     | 1     | 1                     |
| $\boldsymbol{B}$ | 1     | 1     | 1                     | 1     | 1                     |
| $\boldsymbol{C}$ | 0     | 1     | 1                     | 1     | 1                     |
| D                | 0     | 0     | 1                     | 1     | 1                     |





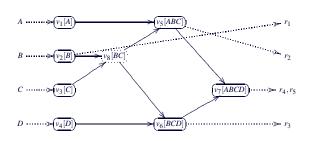
## An example of key and token graph





© Pierangela Samarati 125/230

## Key assignment and encryption schema $\phi$ and catalog



|                  | $\phi(u)$ | r          | $\phi(r)$ |
|------------------|-----------|------------|-----------|
| Α                |           | $r_1$      | $v_2.l$   |
| $\boldsymbol{B}$ | $v_2.l$   | $r_2$      | $v_5.l$   |
|                  | $v_3.l$   |            | $v_6.l$   |
| D                | $v_4.l$   | $r_4, r_5$ |           |

| source  | destination | token_value      |
|---------|-------------|------------------|
| $v_1.l$ | $v_5.l$     | t <sub>1,5</sub> |
| $v_2.l$ | $v_8.l$     | $t_{2,8}$        |
| $v_3.l$ | $v_8.l$     | $t_{3,8}$        |
| $v_4.l$ | $v_6.l$     | $t_{4,6}$        |
| $v_5.l$ | $v_7.l$     | $t_{5,7}$        |
| $v_6.l$ | $v_7.l$     | t <sub>6,7</sub> |
| $v_8.l$ | $v_5.l$     | t <sub>8,5</sub> |
| $v_8.l$ | $v_6.l$     | $t_{8,6}$        |

© Pierangela Samarati 126/230

## Policy changes

- When authorizations dynamically change the data owner needs to:
  - download the resource from the server
  - o create a new key for the resource
  - o decrypt the resource with the old key
  - o re-encrypt the resource with the new key
  - upload the resource to the server and communicate the public catalog updates

⇒ inefficient

Possible solution: over-encryption

© Pierangela Samarati 127/230

## Over-encryption [DFJPS-07]

- Resources are encrypted twice
  - by the owner, with a key shared with the users and unknown to the server (Base Encryption Layer - BEL level)
  - by the server, with a key shared with authorized users (Surface Encryption Layer - SEL level)
- To access a resource a user must know both the corresponding BEL and SEL keys
- Grant and revoke operations may require
  - the addition of new tokens at the BEL level
  - o the update of the SEL level according to the operations performed

© Pierangela Samarati 128/230

## Views on resource r (1)

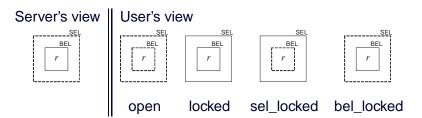
#### Four views:

- open: the user knows the key at the BEL level as well as the key at the SEL level
- locked: the user knows neither the key at the BEL level nor the key at the SEL level
- sel\_locked: the user knows only the key at the BEL level but does not know the key at the SEL level
- bel\_locked: the user knows only the key at the SEL level but does not know the one at the BEL level

The server always has the bel\_locked view

© Pierangela Samarati 129/230

## Views on resource r (2)



- Each layer is depicted as a fence
  - o discontinuous, if the key is known
  - continuous, if the key is not known (protection cannot be passed)

© Pierangela Samarati 130/230

# **Data Fragmentation**

© Pierangela Samarati 131/230

### Fragmentation and encryption

- Encryption makes query evaluation and application execution more expensive or not always possible
- Often what is sensitive is the association between values of different attributes, rather than the values themselves
  - o e.g., association between employee's names and salaries
  - ⇒protect associations by breaking them, rather than encrypting
- Recent solutions for enforcing privacy requirements couple:
  - o encryption
  - o data fragmentation

© Pierangela Samarati 132/230

### Confidentiality constraints

- Sets of attributes such that the (joint) visibility of values of the attributes in the sets should be protected
- Sensitive attributes: the values of some attributes are considered sensitive and should not be visible
  - ⇒ singleton constraints
- Sensitive associations: the associations among values of given attributes are sensitive and should not be visible
  - ⇒ non-singleton constraints

© Pierangela Samarati 133/230

### **Outline**

- Data fragmentation
  - Non-communicating pair of servers [ABGGKMSTX-05]
  - Multiple fragments [CDFJPS-07,CDFJPS-10]
  - Departing from encryption: Keep a few [CDFJPS-09b]
- Publishing obfuscated associations
  - Anonymizing bipartite graph [CSYZ-08]
  - Fragments and loose associations [DFJPS-10b]

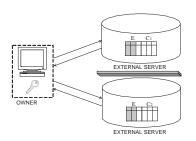
© Pierangela Samarati 134/230

# Non-Communicating Pair of Servers

© Pierangela Samarati 135/230

## Non-communicating pair of servers

- Confidentiality constraints are enforced by splitting information over two independent servers that cannot communicate (need to be completely unaware of each other)
  - Sensitive associations are protected by distributing the involved attributes among the two servers
  - Encryption is applied only when explicitly demanded by the confidentiality constraints or when storing the attribute in any of the server would expose at least a sensitive association



- $E \cup C_1 \cup C_2 = R$
- $C_1 \cup C_2 \subseteq R$

### Enforcing confidentiality constraints

- Confidentiality constraints ℰ defined over a relation R are enforced by decomposing R as ⟨R<sub>1</sub>,R<sub>2</sub>,E⟩ where:
  - $\circ$   $R_1$  and  $R_2$  include a unique tuple ID needed to ensure lossless decomposition
  - $\circ R_1 \cup R_2 = R$
  - ∘ *E* is the set of encrypted attributes and  $E \subseteq R_1$ ,  $E \subseteq R_2$
  - ∘ for each  $c \in \mathscr{C}$ ,  $c \not\subseteq (R_1 E)$  and  $c \not\subseteq (R_2 E)$

### Confidentiality constraints – Example (1)

### R = (Name, DoB, Gender, Zip, Position, Salary, Email, Telephone)

- {Telephone}, {Email}
  - attributes Telephone and Email are sensitive (cannot be stored in the clear)
- {Name,Salary}, {Name,Position}, {Name,DoB}
  - attributes Salary, Position, and DoB are private of an individual and cannot be stored in the clear in association with the name
- {DoB,Gender,Zip,Salary}, {DoB,Gender,Zip,Position}
  - o attributes DoB, Gender, Zip can work as quasi-identifier
- {Position,Salary}, {Salary,DoB}
  - association rules between Position and Salary and between Salary and DoB need to be protected from an adversary

© Pierangela Samarati 138/230

### Enforcing confidentiality constraints – Example (2)

```
R = (Name, DoB, Gender, Zipcode, Position, Salary, Email, Telephone)
\{Telephone\} \\ \{Email\} \\ \{Name, Salary\} \\ \{Name, Position\} \\ \{Name, DoB\} \\ \{DoB, Gender, Zipcode, Salary\} \\ \{DoB, Gender, Zipcode, Position\} \\ \{Position, Salary\} \\ \{Salary, DoB\} \\ \implies R = (Name, DoB, Gender, Zipcode, Position, Salary, Email, Telephone)
```

- T = (Name, Bob, Condon, Elpocac, Footbon, Salar y, Email, Tolophono)
- R<sub>1</sub>: (ID,Name,Gender,Zipcode,Salary<sup>e</sup>,Email<sup>e</sup>,Telephone<sup>e</sup>)
- R<sub>2</sub>: (ID,Position,DoB,Salary<sup>e</sup>,Email<sup>e</sup>,Telephone<sup>e</sup>)

Note that Salary is encrypted even if non sensitive per se since storing it in the clear in any of the two fragments would violate at least a constraint

© Pierangela Samarati 139/230

### Query execution

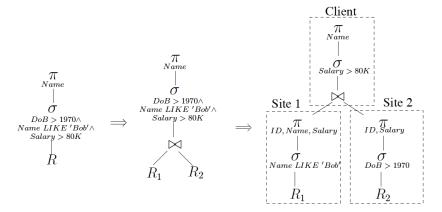
# At the logical level: replace R with $R_1 \bowtie R_2$ Query plans:

- Fetch  $R_1$  and  $R_2$  from the servers and execute the query locally
  - extremely expensive
- Involve servers  $S_1$  and  $S_2$  in the query evaluation
  - can do the usual optimizations, e.g. push down selections and projections
  - selections cannot be pushed down on encrypted attributes
  - o different options for executing queries:
    - send sub-queries to both  $S_1$  and  $S_2$  in parallel, and join the results at the client
    - send only one of the two sub-queries, say to  $S_1$ ; the tuple IDs of the result from  $S_1$  are then used to perform a semi-join with the result of the sub-query of  $S_2$  to filter  $R_2$

© Pierangela Samarati 140/230

### Query execution – Example

- R<sub>1</sub>: (ID, Name, Gender, Zipcode, Salary<sup>e</sup>, Email<sup>e</sup>, Telephone<sup>e</sup>)
- R<sub>2</sub>: (ID,Position,DoB,Salary<sup>e</sup>,Email<sup>e</sup>,Telephone<sup>e</sup>)



© Pierangela Samarati 141/230

### Identifying the optimal decomposition (1)

Brute force approach for optimizing wrt workload *W*:

- For each possible safe decomposition of R:
  - optimize each query in W for the decomposition
  - estimate the total cost for executing the queries in W using the optimized query plans
- Select the decomposition that has the lowest overall query cost

Too expensive! ⇒ Exploit affinity matrix

© Pierangela Samarati 142/230

# Identifying the optimal decomposition (2)

### Adapted affinity matrix M:

- M<sub>i,j</sub>: 'cost' of placing cleartext attributes i and j in different fragments
- *M<sub>i,i</sub>*: 'cost' of placing encrypted attribute *i* (across both fragments)

Goal: Minimize

$$\sum_{i,j:i\in(R_1-E),j\in(R_2-E)}M_{i,j}+\sum_{i\in E}M_{i,i}$$

# Identifying the optimal decomposition (3)

Optimization problem equivalent to hypergraph coloring problem Given relation R, define graph G(R):

- attributes are vertexes
- affinity value  $M_{i,j} \Longrightarrow$  weight of arc (i,j)
- affinity value  $M_{i,i} \Longrightarrow$  weight of vertex i
- confidentiality constraints  $\mathscr C$  represent a hypergraph  $H(R,\mathscr C)$  on the same vertexes

© Pierangela Samarati 144/230

### Identifying the optimal decomposition (4)

Find a 2-coloring of the vertexes such that:

- no hypergraph edge is monochromatic
- the weight of bichromatic edges is minimized
- a vertex can be deleted (i.e., encrypted) by paying the price equal to the vertex weight

Coloring a vertex is equivalent to place it in one of the two fragments. The 2-coloring problem is NP-hard.

Different heuristics, all exploiting:

- · approximate min-cuts
- · approximate weighted set cover

© Pierangela Samarati 145/230

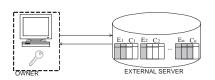
# Multiple Fragments

© Pierangela Samarati 146/230

### Multiple fragments (1)

Coupling fragmentation and encryption interesting and promising, but, limitation to two servers:

- too strong and difficult to enforce in real environments
- limits the number of associations that can be solved by fragmenting data, often forcing the use of encryption
- ⇒ allow for more than two non-linkable fragments



- $E_1 \cup C_1 = \ldots = E_n \cup C_n = R$
- $C_1 \cup \ldots \cup C_n \subseteq R$

© Pierangela Samarati 147/230

### Multiple fragments (2)

- A fragmentation of R is a set of fragments  $\mathscr{F} = \{F_1, \dots, F_m\}$ , where  $F_i \subseteq R$ , for  $i = 1, \dots, m$
- A fragmentation  $\mathscr{F}$  of R correctly enforces a set  $\mathscr{C}$  of confidentiality constraints iff the following conditions are satisfied:
  - ∘  $\forall F \in \mathscr{F}, \forall c \in \mathscr{C}: c \not\subseteq F$  (each individual fragment satisfies the constraints)
  - ∘  $\forall F_i, F_j \in \mathscr{F}, i \neq j : F_i \cap F_j = \emptyset$  (fragments do not have attributes in common)

© Pierangela Samarati 148/230

### Multiple fragments (3)

- Each fragment F is mapped into a physical fragment containing:
  - o all the attributes in F in the clear
  - all the other attributes of R encrypted (a salt is applied on each encryption)
- Fragment  $F_i = \{A_{i_1}, \dots, A_{i_n}\}$  of R mapped to physical fragment  $F_i^e(\text{salt}, \text{enc}, A_{i_1}, \dots, A_{i_n})$ :
  - each *t* ∈ *r* over *R* is mapped into a tuple  $t^e$  ∈  $f_i^e$  where  $f_i^e$  is a relation over  $F_i^e$  and:
    - $-t^e[enc] = E_k(t[R-F_i] \otimes t^e[salt])$
    - $t^{e}[A_{i_{j}}] = t[A_{i_{j}}], \text{ for } j = 1, \dots, n$

© Pierangela Samarati 149/230

## Multiple fragments – Example (1)

#### **MEDICAL DATA**

| =           |       |          |       |              |           |  |  |
|-------------|-------|----------|-------|--------------|-----------|--|--|
|             | Name  |          |       |              | Physician |  |  |
| 123-45-6789 | Nancy | 65/12/07 | 94142 | hypertension | M. White  |  |  |
| 987-65-4321 | Ned   | 73/01/05 | 94141 | gastritis    | D. Warren |  |  |
| 963-85-2741 |       | 86/03/31 | 94139 | flu          | M. White  |  |  |
| 147-85-2369 | Nick  | 90/07/19 | 94139 | asthma       | D. Warren |  |  |

 $c_0 = \{SSN\}$ 

 $c_1$  = {Name, DoB}

 $c_2$ = {Name, Zip}

 $c_3$ = {Name, Illness}

 $c_4$ = {Name, Physician}

 $c_5$ = {DoB, Zip, Illness}

 $c_6$ = {DoB, Zip, Physician}

### Multiple fragments – Example (1)

#### MEDICALDATA

| WESTONES !!!! |      |          |       |              |           |  |  |  |  |
|---------------|------|----------|-------|--------------|-----------|--|--|--|--|
|               | Name |          |       |              | Physician |  |  |  |  |
| 123-45-6789   |      |          |       | hypertension | M. White  |  |  |  |  |
| 987-65-4321   | Ned  | 73/01/05 | 94141 | gastritis    | D. Warren |  |  |  |  |
| 963-85-2741   | Nell | 86/03/31 | 94139 | flu          | M. White  |  |  |  |  |
| 147-85-2369   | Nick | 90/07/19 | 94139 | asthma       | D. Warren |  |  |  |  |

| <i>C</i> ∩= | {SS | N} |
|-------------|-----|----|
| 00-         | l   | ٠, |

 $c_1 = \{Name, DoB\}$ 

 $c_2$ = {Name, Zip}  $c_3$ = {Name, Illness}

 $c_4$ = {Name, Physician}

 $c_5 = \{DoB, Zip, Illness\}$ 

 $c_6$ = {DoB, Zip, Physician}

 $F_1$ 

| - 1                   |     |       |  |  |  |  |  |
|-----------------------|-----|-------|--|--|--|--|--|
| <u>salt</u>           | enc | Name  |  |  |  |  |  |
| $s_1$                 | α   | Nancy |  |  |  |  |  |
| $s_2$                 | β   | Ned   |  |  |  |  |  |
| <b>S</b> <sub>3</sub> | γ   | Nell  |  |  |  |  |  |
| S <sub>4</sub>        | δ   | Nick  |  |  |  |  |  |

 $F_2$ 

| <u>salt</u>           | enc      | DoB      | Zip   |
|-----------------------|----------|----------|-------|
| <b>S</b> <sub>5</sub> | ε        | 65/12/07 | 94142 |
| $s_6$                 | ζ        | 73/01/05 | 94141 |
| <b>S</b> 7            | η        | 86/03/31 | 94139 |
| $S_8$                 | $\theta$ | 90/07/19 | 94139 |

 $F_3$ 

| salt            | enc | Illness      | Physician |
|-----------------|-----|--------------|-----------|
| <b>S</b> 9      | ı   | hypertension | M. White  |
| $s_{10}$        | κ   | gastritis    | D. Warren |
| $s_{11}$        | λ   | flu          | M. White  |
| S <sub>12</sub> | μ   | asthma       | D. Warren |

### Executing queries on fragments

- Every physical fragment of R contains all the attributes of R
  - ⇒ no more than one fragment needs to be accessed to respond to a query
- If the query involves an encrypted attribute, an additional query may need to be executed by the client

#### Original query on R Translation over fragment $F_3^e$ Q3 := SELECT salt, enc Q := SELECT SSN. Name FROM MedicalData FROM WHERE (Illness='gastritis' OR WHERE (Illness='gastritis' OR Illness='asthma') AND Illness='asthma') AND Physician='D. Warren' Physician='D. Warren' AND Q' := SELECT SSN. Name Zip='94141' Decrypt(Q<sup>3</sup>, Key) WHERE Zip='94141'

© Pierangela Samarati 151/230

### Optimization criteria

- Goal: find a fragmentation that makes query execution efficient
- The fragmentation process can then take into consideration different optimization criteria:
  - o number of fragments [CDFJPS-07]
  - o affinity among attributes [CDFJPS-10]
  - query workload [CDFJPS-09a]
- All criteria obey maximal visibility
  - only attributes that appear in singleton constraints (sensitive attributes) are encrypted
  - all attributes that are not sensitive appear in the clear in one fragment

© Pierangela Samarati 152/23

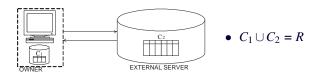
Departing from Encryption: Keep a Few

© Pierangela Samarati 153/230

### Keep a few

### Basic idea:

- encryption makes query execution more expensive and not always possible
- encryption brings overhead of key management
- ⇒ Depart from encryption by involving the owner as a trusted party to maintain a limited amount of data



© Pierangela Samarati 154/230

### Fragmentation

### Given:

- $R(A_1, \ldots, A_n)$ : relation schema
- $\mathscr{C} = \{c_1, \dots, c_m\}$ : confidentiality constraints over R

Determine a fragmentation  $\mathscr{F} = \langle F_o, F_s \rangle$  for R, where  $F_o$  is stored at the owner and  $F_s$  is stored at a storage server, and

- $F_o \cup F_s = R$  (completeness)
- $\forall c \in \mathscr{C}, c \not\subseteq F_s$  (confidentiality)
- $F_o \cap F_s = \emptyset$  (non-redundancy) /\* can be relaxed \*/

At the physical level  $F_o$  and  $F_s$  have a common attribute (additional tid or non-sensitive key attribute) to quarantee lossless join

© Pierangela Samarati 155/230

# Fragmentation – Example

#### PATIENT

| SSN         | Name  | DoB      | Race  | Job    | Illness      | Treatment         | HDate    |
|-------------|-------|----------|-------|--------|--------------|-------------------|----------|
| 123-45-6789 | Nancy | 65/12/07 | white | waiter | hypertension | ace               | 09/01/02 |
| 987-65-4321 | Ned   | 73/01/05 | black | nurse  | gastritis    | antibiotics       | 09/01/06 |
| 963-85-2741 | Nell  | 86/03/31 | red   | banker | flu          | aspirin           | 09/01/08 |
| 147-85-2369 | Nick  | 90/07/19 | asian | waiter | asthma       | anti-inflammatory | 09/01/10 |

 $c_0 = \{SSN\}$ 

 $c_1 = \{Name, IIIness\}$ 

 $c_2 = \{Name, Treatment\}$ 

 $c_3 = \{DoB, Race, Illness\}$ 

 $c_4 = \{DoB, Race, Treatment\}$ 

 $c_5 = \{\text{Job}, \text{Illness}\}$ 

## Fragmentation – Example

#### **PATIENT**

| <u>SSN</u>  | Name  | DoB      | Race  | Job    | Illness      | Treatment         | HDate    |
|-------------|-------|----------|-------|--------|--------------|-------------------|----------|
| 123-45-6789 | Nancy | 65/12/07 | white | waiter | hypertension | ace               | 09/01/02 |
| 987-65-4321 | Ned   | 73/01/05 | black | nurse  | gastritis    | antibiotics       | 09/01/06 |
| 963-85-2741 | Nell  | 86/03/31 | red   | banker | flu          | aspirin           | 09/01/08 |
| 147-85-2369 | Nick  | 90/07/19 | asian | waiter | asthma       | anti-inflammatory | 09/01/10 |

 $c_0 = \{SSN\}$   $c_1 = \{Name, || llness\}$   $c_2 = \{Name, || treatment\}$   $c_3 = \{DoB, Race, || tlness\}$   $c_4 = \{DoB, Race, || treatment\}$   $c_5 = \{Job, || tlness\}$ 

F.

| $\Gamma_0$ |             |              |                   |  |  |  |  |  |
|------------|-------------|--------------|-------------------|--|--|--|--|--|
| <u>tid</u> | SSN         | Illness      | Treatment         |  |  |  |  |  |
|            |             | hypertension | ace               |  |  |  |  |  |
| 2          | 987-65-4321 | gastritis    | antibiotics       |  |  |  |  |  |
| 3          | 963-85-2741 | flu          | aspirin           |  |  |  |  |  |
| 4          | 147-85-2369 | asthma       | anti-inflammatory |  |  |  |  |  |

F.

|     |      |          | . 8   |        |          |
|-----|------|----------|-------|--------|----------|
| tid | Name | DoB      | Race  | Job    | HDate    |
| 1   |      | 65/12/07 |       |        |          |
| 2   | Ned  | 73/01/05 | black | nurse  | 09/01/06 |
| 3   | Nell | 86/03/31 | red   | banker | 09/01/08 |
| 4   | Nick | 90/07/19 | asian | waiter | 09/01/10 |

© Pierangela Samarati 156/230

## Query evaluation

- Queries are formulated on R, therefore need to be translated into equivalent queries on F<sub>o</sub> and/or F<sub>s</sub>
- Queries of the form: SELECT A FROM R WHERE C where C is a conjunction of basic conditions
  - ∘ C₀: conditions that involve only attributes stored at the client
  - C<sub>s</sub>: conditions that involve only attributes stored at the sever

 C<sub>so</sub>: conditions that involve attributes stored at the client and attributes stored at the server

© Pierangela Samarati 157/230

### Query evaluation – Example

• *F<sub>o</sub>*={SSN,Illness,Treatment}, *F<sub>s</sub>*={Name,DoB,Race,Job,HDate}

```
    q = SELECT SSN, DoB
        FROM Patient
        WHERE (Treatment="antibiotic")
        AND (Job="nurse")
        AND (Name=Illness)
```

• The conditions in the WHERE clause are split as follows

```
    C<sub>o</sub> = {Treatment = "antibiotic"}
    C<sub>s</sub> = {Job = "nurse"}
    C<sub>so</sub> = {Name = Illness}
```

© Pierangela Samarati 158/230

### Query evaluation strategies

### Server-Client strategy

- server: evaluate C<sub>s</sub> and return result to client
- client: receive result from server and join it with F<sub>o</sub>
- client: evaluate C<sub>o</sub> and C<sub>so</sub> on the joined relation

### **Client-Server strategy**

- client: evaluate C<sub>o</sub> and send tid of tuples in result to server
- server: join input with  $F_s$ , evaluate  $C_s$ , and return result to client
- client: join result from server with F<sub>o</sub> and evaluate C<sub>so</sub>

© Pierangela Samarati 159/230

### Server-client strategy – Example

```
q = SELECT SSN, DoB
                                              C_o = \{ \text{Treatment} = \text{``antibiotic''} \}
    FROM Patient
                                              C_s = \{ Job = "nurse" \} 
    WHERE (Treatment = "antibiotic")
            AND (Job = "nurse")
                                              C_{so}={Name = Illness}
            AND (Name = Illness)
q_s = SELECT tid, Name, DoB
     FROM F
     WHERE Job = "nurse"
q_{so} = SELECT SSN, DoB
     FROM F_o JOIN r_s
            ON F_o.tid=r_s.tid
     WHERE (Treatment = "antibiotic") AND (Name = Illness)
```

© Pierangela Samarati 160/230

### Client-server strategy – Example

```
q = SELECT SSN, DoB
    FROM Patient
    WHERE (Treatment = "antibiotic")
           AND (Job = "nurse")
           AND (Name = Illness)
q_o = SELECT tid
    FROM Fa
    WHERE Treatment = "antibiotic"
q_s = SELECT tid, Name, DoB
    FROM F_s JOIN r_o ON F_s.tid=r_o.tid
    WHERE Job = "nurse"
q_{so} = SELECT SSN, DoB
     FROM F_a JOIN r_s ON F_a.tid=r_s.tid
     WHERE Name = Illness
```

```
C_o = \{ \text{Treatment} = \text{``antibiotic''} \}
C_s = \{ \text{Job} = \text{``nurse''} \}
C_{so} = \{ \text{Name} = \text{Illness} \}
```

### Server-client vs client-server strategies

- If the storage server knows or can infer the query:
  - Client-Server leaks information: the server infers that some tuples are associated with values that satisfy C<sub>o</sub>
- If the storage server does not know and cannot infer the query:
  - Server-Client and Client-Server strategies can be adopted without privacy violations
  - possible strategy based on performances: evaluate most selective conditions first

© Pierangela Samarati 162/230

### Minimal fragmentation

- The goal is to minimize the owner's workload due to the management of F<sub>o</sub>
- Weight function w takes a pair (F<sub>o</sub>,F<sub>s</sub>) as input and returns the owner's workload (i.e., storage and/or computational load)
- A fragmentation  $\mathscr{F} = \langle F_o, F_s \rangle$  is minimal iff:
  - 1. F is correct (i.e., it satisfies the completeness, confidentiality, and non-redundancy properties)
  - 2.  $\nexists \mathscr{F}'$  such that  $w(\mathscr{F}') < w(\mathscr{F})$  and  $\mathscr{F}'$  is correct

© Pierangela Samarati 163/230

### Fragmentation metrics

Different metrics could be applied splitting the attributes between  $F_o$  and  $F_s$ , such as minimizing:

- storage
  - number of attributes in *F*<sub>0</sub> (*Min-Attr*)
  - size of attributes in F₀ (Min-Size)
- computation/traffic
  - number of queries in which the owner needs to be involved (Min-Query)
  - number of conditions within queries in which the owner needs to be involved (*Min-Cond*)

The metrics to be applied may depend on the information available

© Pierangela Samarati 164/230

### Data and workload information – Example

#### PATIENT(SSN,Name,DoB,Race,Job,Illness,Treatment,HDate)

| Α         | size(A) |
|-----------|---------|
| SSN       | 9       |
| Name      | 20      |
| DoB       | 8       |
| Race      | 5       |
| Job       | 18      |
| Illness   | 15      |
| Treatment | 40      |
| HDate     | 8       |

| q     | freq(q) | Attr(q)               | Cond(q)                  |
|-------|---------|-----------------------|--------------------------|
| $q_1$ | 5       | DoB, Illness          | ⟨Dob⟩, ⟨Illness⟩         |
| $q_2$ | 4       | Race, Illness         | ⟨Race⟩, ⟨Illness⟩        |
| $q_3$ | 10      | Job, Illness          | ⟨Job⟩, ⟨Illness⟩         |
| $q_4$ | 1       | Illness, Treatment    | (Illness), (Treatment)   |
| $q_5$ | 7       | Illness               | (Illness)                |
| $q_6$ | 7       | DoB, HDate, Treatment | ⟨DoB,HDate⟩, ⟨Treatment⟩ |
| $q_7$ | 1       | SSN, Name             | ⟨SSN⟩, ⟨Name⟩            |

© Pierangela Samarati 165/230

## Weight metrics and minimization problems (1)

- Min-Attr. Only the relation schema (set of attributes) and the confidentiality constraints are known
  - $\implies$  minimize the number of the attributes in  $F_a$ 
    - $\circ w_a(\mathscr{F}) = card(F_o)$
- Min-Size. The relation schema (set of attributes), the confidentiality constraints, and the size of each attribute are known
  - $\Longrightarrow$  minimize the physical size of  $F_o$ 
    - $\circ w_s(\mathscr{F}) = \sum_{A \in F_o} size(A)$

© Pierangela Samarati 166/230

#### Weight metrics and minimization problems (2)

 Min-Query. The relation schema (set of attributes), the confidentiality constraints, and a representative profile of the expected query workload are known

#### Query workload profile:

$$\mathcal{Q}=\{(q_1, freq(q_1), Attr(q_1)), \dots, (q_l, freq(q_l)Attr(q_l))\}$$

- $\circ q_1, \ldots, q_l$  queries to be executed
- o  $freq(q_i)$  expected execution frequency of  $q_i$
- o  $Attr(q_i)$  attributes appearing in the WHERE clause of  $q_i$
- minimize the number of query executions that require processing at the owner
  - $\circ \ \ w_q(\mathscr{F}) = \sum_{q \in \mathscr{Q}} freq(q) \ s.t. \ Attr(q) \cap F_o \neq \emptyset$

© Pierangela Samarati 167/230

## Weight metrics and minimization problems (3)

 Min-Cond. The relation schema (set of attributes), the confidentiality constraints, and a complete profile (conditions in each query of the form a<sub>i</sub> op v or a<sub>i</sub> op a<sub>j</sub>) of the expected query workload are known

#### Query workload profile:

```
\mathscr{Q}=\{(q_1, freq(q_1), Cond(q_1)), \dots, (q_l, freq(q_l)Cond(q_l))\}
```

- $\circ q_1, \dots, q_l$  queries to be executed
- o  $freq(q_i)$  expected execution frequency of  $q_i$
- o  $Cond(q_i)$  set of conditions in the WHERE clause of query  $q_i$ ; each condition is represented as a single attribute or a pair of attributes
- → minimize the number of conditions that require processing at the owner
  - $\circ w_c(\mathscr{F}) = \sum_{cnd \in Cond(\mathscr{Q})} freq(cnd) \text{ s.t. } cnd \cap F_o \neq \emptyset, \text{ where } Cond(\mathscr{Q})$  denotes the set of all conditions of queries in  $\mathscr{Q}$ , and freq(cnd) is the overall frequency of cnd

© Pierangela Samarati 168/230

## Modeling of the minimization problems

- All the problems of minimizing storage or computation/traffic aim at identifying a hitting set
  - F<sub>o</sub> must contain at least an attribute for each constraint
- Different metrics correspond to different criteria according to which the hitting set should be minimized
- We represent all criteria with a uniform model based on:
  - target set: elements (i.e., attributes, queries, or conditions) with respect to which the minimization problem is defined
  - weight function: function that associates a weight with each target element
  - weight of a set of attributes: sum of the weights of the targets intersecting with the set

> compute the hitting set of attributes with minimum weight

© Pierangela Samarati 169/230

## Example (1)

#### PATIENT(SSN,Name,DoB,Race,Job,Illness,Treatment,HDate)

#### **Confidentiality constraints**

 $c_0 = \{SSN\}$ 

 $c_1 = \{Name, IIIness\}$ 

c<sub>2</sub>={Name,Treatment}

 $c_3 = \{DoB, Race, Illness\}$ 

 $c_4 = \{DoB, Race, Treatment\}$ 

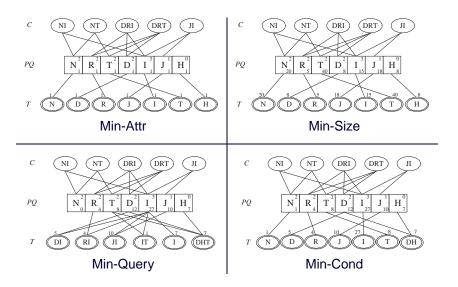
 $c_5 = \{Job, IIIness\}$ 

| Α         | size(A) |
|-----------|---------|
| SSN       | 9       |
| Name      | 20      |
| DoB       | 8       |
| Race      | 5       |
| Job       | 18      |
| Illness   | 15      |
| Treatment | 40      |
| HDate     | 8       |

| q     | freq(q) | Attr(q)               | Cond(q)                  |
|-------|---------|-----------------------|--------------------------|
| $q_1$ | 5       | DoB, Illness          | ⟨Dob⟩, ⟨Illness⟩         |
| $q_2$ | 4       | Race, Illness         | ⟨Race⟩, ⟨Illness⟩        |
| $q_3$ | 10      | Job, Illness          | ⟨Job⟩, ⟨Illness⟩         |
| $q_4$ | 1       | Illness, Treatment    | ⟨Illness⟩, ⟨Treatment⟩   |
| $q_5$ | 7       | Illness               | (Illness)                |
| $q_6$ | 7       | DoB, HDate, Treatment | (DoB,HDate), (Treatment) |
| $q_7$ | 1       | SSN, Name             | ⟨SSN⟩, ⟨Name⟩            |

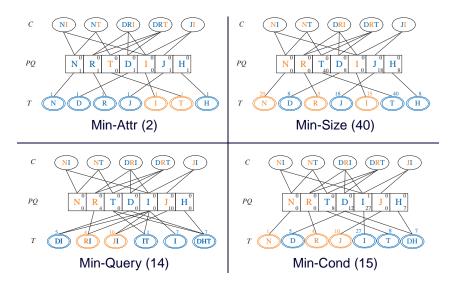
© Pierangela Samarati 170/230

# Example (2)



© Pierangela Samarati 171/230

# Example (3)



© Pierangela Samarati 172/230

# Publishing obfuscated associations

© Pierangela Samarati 173/230

#### Motivation

- Sensitive associations among data may need to be protected, while allowing execution of certain queries
  - e.g., the set of products available in a pharmacy and the set of customers may be of public knowledge; allow retrieving the average number of products purchased by customers while protecting the association between a particular customer and a particular product

#### Possible solutions:

- [CSYZ-08] exploits a graphical representation of sensitive associations and masks the mapping from entities to nodes of the graph while preserving the graph structure
- [DFJPS-10b] exploits fragmentation for enforcing confidentiality constraints and visibility requirements and publishes a sanitized form of associations

© Pierangela Samarati 174/230

# **Anonymizing Bipartite Graph**

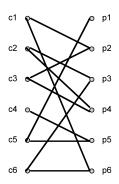
© Pierangela Samarati 175/230

# Private associations – Example [CSYZ-08]

| Customer | State |
|----------|-------|
| c1       | NJ    |
| c2       | NC    |
| c3       | CA    |
| с4       | NJ    |
| c5       | NC    |
| с6       | CA    |

| Product | Avail |
|---------|-------|
| p1      | Rx    |
| p2      | OTC   |
| p3      | OTC   |
| p4      | OTC   |
| p5      | Rx    |
| p6      | OTC   |

| ustomer              | Product              |
|----------------------|----------------------|
| c1                   | p2                   |
| c1                   | p6                   |
| c2                   | р3                   |
| c2                   | p4                   |
| с3                   | p2                   |
| с3                   | p4                   |
| c4                   | p5                   |
| c5                   | p1                   |
| c5                   | p5                   |
| c6                   |                      |
| c6                   | p6                   |
| c4<br>c5<br>c5<br>c6 | p5<br>p1<br>p5<br>p3 |



#### Problem statement

Publish anonymized and useful version of bipartite graph in such a way that:

- a broad class of queries can be answered accurately
  - Type 0 Graph structure only. E.g., what is the average number of products purchased by customers?
  - Type 1 Attribute predicate on one side only. E.g., what is the average number of products purchased by NJ customers?
  - Type 2 Attribute predicate on both side. E.g., what is the average number of OTC products purchased by NJ customers?

privacy of the specific associations is preserved

© Pierangela Samarati 177/230

## (k,l) grouping

Basic idea: preserve the graph structure but permute mapping from entities to nodes

(k,l) grouping of bipartite graph G = (V, W, E)

- Partition V (W, resp.) into non-intersecting subsets of size ≥ k (I, resp.)
- Publish edges E' that are isomorphic to E, where mapping from E to E' is anonymized based on partitions of V and W

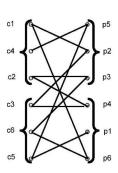
© Pierangela Samarati 178/230

# (3,3) grouping – Example (1)

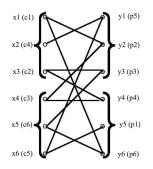
| Customer | State |
|----------|-------|
| c1       | NJ    |
| c2       | NC    |
| c3       | CA    |
| с4       | NJ    |
| c5       | NC    |
| c6       | CA    |

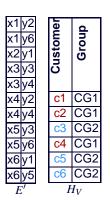
| Product | Avail |
|---------|-------|
| p1      | Rx    |
| p2      | OTC   |
| р3      | OTC   |
| p4      | OTC   |
| p5      | Rx    |
| p6      | OTC   |

| Customer | Product |
|----------|---------|
| c1       | p2      |
| c1       | p6      |
| c2       | р3      |
| c2       | p4      |
| c3       | p2      |
| c3       | p4      |
| c4       | р5      |
| c5       | p1      |
| c5       | р5      |
| c6       | р3      |
| c6       | p6      |



### (3,3) grouping – Example (2)





| Product | Group | X-node |
|---------|-------|--------|
| p1      | PG2   | x1     |
| p2      | PG1   | x2     |
| рЗ      | PG1   | х3     |
| p4      | PG2   | x4     |
| p5      | PG1   | х5     |
| p6      | PG2   | х6     |
| H       | $I_W$ |        |

| Y-node | Group |
|--------|-------|
| y1     | PG1   |
| y2     | PG1   |
| уЗ     | PG1   |
| у4     | PG2   |
| у5     | PG2   |
| у6     | PG2   |
| $R_W$  |       |

Group

CG1

CG1

CG1

CG2

CG2

CG<sub>2</sub>

 $R_V$ 

© Pierangela Samarati 180/230

### Safe groupings

- There are different ways of creating a (k,l) grouping but not all the resulting groupings offer the same level of privacy (e.g., local clique)
  - $\implies$  safe (k,l) groupings: nodes in the same group of V are not connected to a same node in W
- The computation of a safe grouping can be hard even for small values of k and l
  - The computation of a safe, strict (3,3)-grouping is NP-hard (reduction from partitioning a graph into triangles)
- Greedy algorithm that iteratively adds a node to a group with fewer than k nodes, if it is safe (it creates a new group if such insertion is not possible)

· The algorithm works when bipartite graph is sparse enough

© Pierangela Samarati 181/230

# Fragments and Loose Associations

© Pierangela Samarati 182/230

#### Data publication [DFJPS-10b]

- Fragmentation can also be used to protect sensitive associations in data publishing
  - publish/release to external parties only views (fragments) that do not expose sensitive associations
- To increase the utility of published information fragments could be coupled with some associations in sanitized form
  - ⇒ loose associations: associations among groups of values (in contrast to specific values)

© Pierangela Samarati 183/230

#### Confidentiality constraints

#### As already discussed....

- Sets of attributes such that the (joint) visibility of values of the attributes in the sets should be protected
- They permit to express different requirements
  - sensitive attributes: the values of some attributes are considered sensitive and should not be visible
  - sensitive associations: the associations among values of given attributes are sensitive and should not be visible

© Pierangela Samarati 184/230

#### Confidentiality constraints – Example

|             |         |         | ,     | Illness   |         |
|-------------|---------|---------|-------|-----------|---------|
| 123-45-6789 | Page    | 56/12/9 | Rome  | diabetes  | David   |
| 987-65-4321 | Patrick | 53/3/19 | Paris | gastritis | Daisy   |
| 963-85-2741 | Patty   | 58/5/18 | Oslo  | flu       | Damian  |
| 147-85-2369 | Paul    | 53/12/9 | Oslo  | asthma    | Daniel  |
| 782-90-5280 | Pearl   | 56/12/9 | Rome  | gastritis | Dorothy |
| 816-52-7272 | Philip  | 57/6/25 | Paris | obesity   | Drew    |
| 872-62-5178 | Phoebe  | 53/12/1 | NY    | measles   | Dennis  |
| 712-81-7618 | Piers   | 60/7/25 | Rome  | diabetes  | Daisy   |

- SSN is sensitive
  - {SSN}
- Illness and Doctor are private of an individual and cannot be stored in association with the name of the patient
  - {Patient, Illness}, {Patient, Doctor}
- {Birth,City} can work as quasi-identifier
  - {Birth, City, Illness}, {Birth, City, Doctor}

© Pierangela Samarati 185/230

#### Visibility requirements

- Monotonic Boolean formulas over attributes, representing views over data (negations are captured by confidentiality constraints)
- They permit to express different requirements
  - visible attributes: some attributes should be visible
  - visible associations: the association among values of given attributes should be visible
  - alternative views: at least one of the specified views should be visible

© Pierangela Samarati 186/230

#### Visibility requirements – Example

| SSN         | Patient | Birth   | City  | Illness   | Doctor  |
|-------------|---------|---------|-------|-----------|---------|
| 123-45-6789 | Page    | 56/12/9 | Rome  | diabetes  | David   |
| 987-65-4321 | Patrick | 53/3/19 | Paris | gastritis | Daisy   |
| 963-85-2741 | Patty   | 58/5/18 | Oslo  | flu       | Damian  |
| 147-85-2369 | Paul    | 53/12/9 | Oslo  | asthma    | Daniel  |
| 782-90-5280 | Pearl   | 56/12/9 | Rome  | gastritis | Dorothy |
| 816-52-7272 | Philip  | 57/6/25 | Paris | obesity   | Drew    |
| 872-62-5178 | Phoebe  | 53/12/1 | NY    | measles   | Dennis  |
| 712-81-7618 | Piers   | 60/7/25 | Rome  | diabetes  | Daisy   |

- Either names of Patients or their Cities should be released
  - Patient ∨ City
- Either Birth dates and Cities of patients in association should be released or the SSN of patients should be released
  - (Birth ∧ City)∨ SSN
- Illnesses and Doctors, as well as their association, should be released
  - Illness ∧ Doctor

#### Fragmentation

Fragmentation can be applied to satisfy both confidentiality constraints and visibility requirements

- Publish/release to external parties only fragments that
  - do not include sensitive attributes and sensitive associations.
  - include the requested attributes and/or associations (all the requirements should be satisfied, not necessarily by a single fragment)

© Pierangela Samarati 188/230

## Fragmentation – Example

| SSN         | Patient | Birth   | City  | Illness   | Doctor  |
|-------------|---------|---------|-------|-----------|---------|
| 123-45-6789 | Page    | 56/12/9 | Rome  | diabetes  | David   |
| 987-65-4321 | Patrick | 53/3/19 | Paris | gastritis | Daisy   |
| 963-85-2741 | Patty   | 58/5/18 | Oslo  | flu       | Damian  |
| 147-85-2369 | Paul    | 53/12/9 | Oslo  | asthma    | Daniel  |
| 782-90-5280 | Pearl   | 56/12/9 | Rome  | gastritis | Dorothy |
| 816-52-7272 | Philip  | 57/6/25 | Paris | obesity   | Drew    |
| 872-62-5178 | Phoebe  | 53/12/1 | NY    | measles   | Dennis  |
| 712-81-7618 | Piers   | 60/7/25 | Rome  | diabetes  | Daisy   |

$$\begin{split} &c_0 = \{ \text{SSN} \} \\ &c_1 = \{ \text{Patient,Illness} \} \\ &c_2 = \{ \text{Patient,Doctor} \} \\ &c_3 = \{ \text{Birth,City,Illness} \} \\ &c_4 = \{ \text{Birth,City,Doctor} \} \\ &v_1 = \text{Patient} \lor \text{City} \\ &v_2 = ( \text{Birth} \land \text{City}) \lor \text{SSN} \\ &v_3 = \text{Illness} \land \text{Doctor} \end{split}$$

## Fragmentation – Example

| SSN         |         |         | ,     | Illness   |         |
|-------------|---------|---------|-------|-----------|---------|
| 123-45-6789 | Page    | 56/12/9 | Rome  | diabetes  | David   |
| 987-65-4321 | Patrick | 53/3/19 | Paris | gastritis | Daisy   |
| 963-85-2741 | Patty   | 58/5/18 | Oslo  | flu       | Damian  |
| 147-85-2369 | Paul    | 53/12/9 | Oslo  | asthma    | Daniel  |
| 782-90-5280 | Pearl   | 56/12/9 | Rome  | gastritis | Dorothy |
| 816-52-7272 | Philip  | 57/6/25 | Paris | obesity   | Drew    |
| 872-62-5178 | Phoebe  | 53/12/1 | NY    | measles   | Dennis  |
| 712-81-7618 | Piers   | 60/7/25 | Rome  | diabetes  | Daisy   |

| $c_0$ ={SSN}                         |
|--------------------------------------|
| $c_1$ ={Patient,IIIness}             |
| $c_2$ ={Patient,Doctor}              |
| c <sub>3</sub> ={Birth,City,Illness} |
| $c_4 = \{Birth, City, Doctor\}$      |
| v₁=Patient ∨ City                    |

| v₁=Patient ∨ City                   |
|-------------------------------------|
| $v_2 = (Birth \land City) \lor SSN$ |
| $v_3$ =Illness $\land$ Doctor       |
|                                     |

| $F_l$   |       |  |  |  |
|---------|-------|--|--|--|
| Birth   | City  |  |  |  |
| 56/12/9 | Rome  |  |  |  |
| 53/3/19 | Paris |  |  |  |
| 58/5/18 | Oslo  |  |  |  |
| 53/12/9 | Oslo  |  |  |  |
| 56/12/9 | Rome  |  |  |  |
| 57/6/25 | Paris |  |  |  |
| 53/12/1 | NY    |  |  |  |
| 60/7/25 | Rome  |  |  |  |

| $F_r$     |         |  |  |
|-----------|---------|--|--|
| Illness   | Doctor  |  |  |
| diabetes  | David   |  |  |
| gastritis | Daisy   |  |  |
| flu       | Damian  |  |  |
| asthma    | Daniel  |  |  |
| gastritis | Dorothy |  |  |
| obesity   | Drew    |  |  |
| measles   | Dennis  |  |  |
| diabetes  | Daisy   |  |  |

© Pierangela Samarati 189/230

#### Correct and minimal fragmentation

- A fragmentation is correct if
  - o each confidentiality constraint is satisfied by all fragments
  - o each visibility requirement is satisfied by at least a fragment
  - fragments do not have attributes in common (to prevent joins on fragments to retrieve associations)
- · A correct fragmentation is minimal if
  - the number of fragments is minimum (i.e., any other correct fragmentation has an equal or greater number of fragments)
- The Min-CF problem of computing a correct and minimal fragmentation is NP-hard

© Pierangela Samarati 190/230

## Computing a correct and minimal fragmentation

#### A SAT solver can efficiently solve the Min-CF problem

- An instance of the Min-CF problem is translated into an instance of the SAT problem
- The inputs to the Min-CF problem are interpreted as boolean formulas
  - visibility requirements are already represented as boolean formulas
  - each confidentiality constraint is represented via a boolean formula as a conjunction of the attributes appearing in the constraint

 Iterate the evaluation of a SAT solver, starting with one fragment and increasing fragments by one at each iteration, until a solution is found (solution is guaranteed to be minimal)

© Pierangela Samarati 191/230

## Publishing loose associations (1)

- Fragmentation breaks associations among attributes
- To increase utility of published information, fragments can be coupled with some associations in sanitized form
- A given privacy degree of the association must be guaranteed

⇒ loose associations: associations among groups of values (in contrast to specific values)

© Pierangela Samarati 192/230

## Publishing loose associations (2)

Given two fragments  $F_l$  and  $F_r$ , a loose association between  $F_l$  and  $F_r$ 

- partitions tuples in the fragments in groups
- provides information on the associations at the group level
- does not permit to exactly reconstruct the original associations among the tuples in the fragments

· provides enriched utility of the published data

© Pierangela Samarati 193/230

## Grouping

- Given fragment  $F_i$  and its instance  $f_i$ , a k-grouping over  $f_i$  partitions the tuples in  $f_i$  in groups of size greater than or equal to k
  - $\implies$  each tuple t in  $f_i$  is associated with a group identifier  $G_i(t)$
- A k-grouping is minimal if it maximizes the number of groups (intuitively, it minimizes the size of the groups)
- $(k_l,k_r)$ -grouping denotes the groupings over two instances  $f_l$  and  $f_r$  of  $F_l$  and  $F_r$
- A  $(k_l,k_r)$ -grouping is minimal if both the  $k_l$ -grouping and the  $k_r$ -grouping are minimal

© Pierangela Samarati 194/230

# Minimal (2,2)-grouping – Example

|         |       | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
|         |       | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
| 53/12/9 | Oslo  | asthma    | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

| $c_0$ ={SSN}                         |
|--------------------------------------|
| $c_1$ ={Patient,Illness}             |
| $c_2$ ={Patient, Doctor}             |
| c <sub>3</sub> ={Birth,City,Illness} |
| $c_4$ ={Birth,City,Doctor}           |
|                                      |

| $F_l$   |       |  |  |  |
|---------|-------|--|--|--|
| Birth   | City  |  |  |  |
| 56/12/9 | Rome  |  |  |  |
| 53/3/19 |       |  |  |  |
| 58/5/18 | Oslo  |  |  |  |
| 53/12/9 | Oslo  |  |  |  |
| 56/12/9 | Rome  |  |  |  |
| 57/6/25 | Paris |  |  |  |
| 53/12/1 | NY    |  |  |  |
| 60/7/25 | Rome  |  |  |  |

| $F_r$     |         |  |  |
|-----------|---------|--|--|
| Illness   | Doctor  |  |  |
| diabetes  | David   |  |  |
| gastritis | Daisy   |  |  |
| flu       | Damian  |  |  |
| asthma    | Daniel  |  |  |
| gastritis | Dorothy |  |  |
| obesity   | Drew    |  |  |
| measles   | Dennis  |  |  |
| diabetes  | Daisy   |  |  |

# Minimal (2,2)-grouping – Example

| Birth   | City  | Illness   | Doctor  |  |
|---------|-------|-----------|---------|--|
| 56/12/9 | Rome  | diabetes  | David   |  |
| 53/3/19 | Paris | gastritis | Daisy   |  |
| 58/5/18 |       |           | Damian  |  |
| 53/12/9 | Oslo  | asthma    | Daniel  |  |
| 56/12/9 | Rome  | gastritis | Dorothy |  |
| 57/6/25 | Paris | obesity   | Drew    |  |
| 53/12/1 | NY    | measles   | Dennis  |  |
| 60/7/25 | Rome  | diabetes  | Daisy   |  |

| $c_0$ ={SSN}               |   |
|----------------------------|---|
| $c_1$ ={Patient,Illness}   |   |
| $c_2$ ={Patient, Doctor}   |   |
| $c_3$ ={Birth,City,Illness | 1 |
| $c_4$ ={Birth,City,Doctor  |   |
|                            |   |

| $F_l$   |       |  |  |  |
|---------|-------|--|--|--|
|         | City  |  |  |  |
| 53/3/19 | Paris |  |  |  |
| 53/12/9 |       |  |  |  |
| 56/12/9 | Rome  |  |  |  |
| 57/6/25 |       |  |  |  |
| 58/5/18 | Oslo  |  |  |  |
| 56/12/9 |       |  |  |  |
| 53/12/1 | NY    |  |  |  |
| 60/7/25 | Rome  |  |  |  |

| $F_r$     |         |  |  |  |
|-----------|---------|--|--|--|
| Illness   | Doctor  |  |  |  |
| gastritis | Daisy   |  |  |  |
| diabetes  | David   |  |  |  |
| asthma    | Daniel  |  |  |  |
| flu       | Damian  |  |  |  |
| obesity   | Drew    |  |  |  |
| measles   | Dennis  |  |  |  |
| gastritis | Dorothy |  |  |  |
| diabetes  | Daisy   |  |  |  |

#### Group association

- A  $(k_l,k_r)$ -grouping induces a group association A among the groups in  $f_l$  and  $f_r$
- A group association A over f<sub>l</sub> and f<sub>r</sub> is a set of pairs of group identifiers such that:
  - A has the same cardinality as the original relation
  - there is a bijective mapping between the original relation and A that associates each tuple in the original relation with a pair  $(G_l(l), G_r(r))$  in A, with  $l \in I_l$  and  $r \in I_r$

© Pierangela Samarati 196/230

#### Group association – Example

| 3/3/19  | Paris                                                                     | gastritis                                                                                                    | Daisy   |  |
|---------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|--|
|         |                                                                           |                                                                                                              | Damian  |  |
| 3/12/9  | Oslo                                                                      | asthma                                                                                                       | Daniel  |  |
| 6/12/9  | Rome                                                                      | gastritis                                                                                                    | Dorothy |  |
| 7/6/25  | Paris                                                                     | obesity                                                                                                      | Drew    |  |
| 3/12/1  | NY                                                                        | measles                                                                                                      | Dennis  |  |
| 60/7/25 | Rome                                                                      | diabetes                                                                                                     | Daisy   |  |
|         | 66/12/9<br>53/3/19<br>58/5/18<br>53/12/9<br>56/12/9<br>57/6/25<br>53/12/1 | 66/12/9 Rome<br>63/3/19 Paris<br>68/5/18 Oslo<br>63/12/9 Oslo<br>66/12/9 Rome<br>67/6/25 Paris<br>63/12/1 NY |         |  |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 

Birth City 53/3/19 Paris 53/12/9 Oslo 56/12/9 Rome 57/6/25 Paris 58/5/18 Oslo 56/12/9 Rome 53/12/1 NY 60/7/25 Rome Illness Doctor
gastritis Daisy
diabetes David
asthma Daniel
flu Damian
obesity Drew
measles Dennis
gastritis Dorothy
diabetes Daisy

© Pierangela Samarati 197/230

#### Group association – Example

|         | -     | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
| 53/12/9 | Oslo  | asthma    | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 

Birth City 53/3/19 Paris 53/12/9 Oslo 56/12/9 Rome 57/6/25 Paris 58/5/18 Oslo 56/12/9 Rome 53/12/1 NY 60/7/25 Rome Illness Doctor
gastritis Daisy
diabetes David
asthma Daniel
flu Damian
obesity Drew
measles Dennis
gastritis Dorothy
diabetes Daisy

|                   |         |       | Illness   |         |
|-------------------|---------|-------|-----------|---------|
| $\Longrightarrow$ | 56/12/9 | Rome  | diabetes  | David   |
|                   | 53/3/19 | Paris | gastritis | Daisy   |
|                   | 58/5/18 | Oslo  | flu       | Damian  |
|                   | 53/12/9 | Oslo  | asthma    | Daniel  |
|                   | 56/12/9 | Rome  | gastritis | Dorothy |
|                   | 57/6/25 | Paris | obesity   | Drew    |
|                   | 53/12/1 | NY    | measles   | Dennis  |
|                   | 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 

|         | City  |
|---------|-------|
| 53/3/19 | Paris |
| 53/12/9 |       |
| 56/12/9 | Rome  |
| 57/6/25 |       |
| 58/5/18 | Oslo  |
| 56/12/9 | Rome  |
| 00,, .  | NY    |
| 60/7/25 | Rome  |

 $F_{i}$ 



|                   |         | -     | Illness   |         |
|-------------------|---------|-------|-----------|---------|
| $\Longrightarrow$ | 56/12/9 | Rome  | diabetes  | David   |
| $\Longrightarrow$ | 53/3/19 | Paris | gastritis | Daisy   |
|                   | 58/5/18 | Oslo  | flu       | Damian  |
|                   |         |       | asthma    |         |
|                   | 56/12/9 | Rome  | gastritis | Dorothy |
|                   |         |       | obesity   |         |
|                   | 53/12/1 | NY    | measles   | Dennis  |
|                   | 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 

| $F_{i}$ | !     | $F_r$ |           | r       |
|---------|-------|-------|-----------|---------|
| Birth   | City  |       | Illness   | Doctor  |
| 53/3/19 | Paris |       | gastritis | Daisy   |
| 53/12/9 | Oslo  |       | diabetes  | David   |
| 56/12/9 | Rome  |       | asthma    | Daniel  |
| 57/6/25 | Paris |       | flu       | Damian  |
| 58/5/18 | Oslo  |       | obesity   | Drew    |
| 56/12/9 | Rome  |       | measles   | Dennis  |
| 53/12/1 |       |       | gastritis | Dorothy |
| 60/7/25 | Rome  |       | diabetes  | Daisy   |

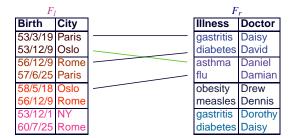
|                   |         | -     | Illness   |         |
|-------------------|---------|-------|-----------|---------|
| $\Longrightarrow$ | 56/12/9 | Rome  | diabetes  | David   |
| $\Longrightarrow$ | 53/3/19 | Paris | gastritis | Daisy   |
|                   | 58/5/18 |       |           | Damian  |
|                   | 53/12/9 | Oslo  | asthma    | Daniel  |
|                   | 56/12/9 | Rome  | gastritis | Dorothy |
|                   | 57/6/25 | Paris | obesity   | Drew    |
|                   | 53/12/1 | NY    | measles   | Dennis  |
|                   | 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 

| F       | !     | $F_r$ |           | r       |
|---------|-------|-------|-----------|---------|
| Birth   | City  |       | Illness   | Doctor  |
| 53/3/19 | Paris |       | gastritis | Daisy   |
| 53/12/9 | Oslo  |       | diabetes  | David   |
| 56/12/9 | Rome  |       | asthma    | Daniel  |
| 57/6/25 | Paris |       | flu       | Damian  |
| 58/5/18 | Oslo  |       | obesity   | Drew    |
| 56/12/9 | Rome  |       | measles   | Dennis  |
| 53/12/1 |       |       | gastritis | Dorothy |
| 60/7/25 | Rome  |       | diabetes  | Daisy   |

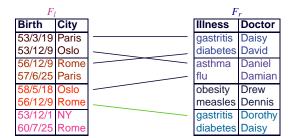
|                   |         | ,     | Illness   |         |
|-------------------|---------|-------|-----------|---------|
| $\Longrightarrow$ | 56/12/9 | Rome  | diabetes  | David   |
| $\Longrightarrow$ | 53/3/19 | Paris | gastritis | Daisy   |
|                   | 58/5/18 |       |           | Damian  |
| $\Longrightarrow$ | 53/12/9 | Oslo  | asthma    | Daniel  |
|                   | 56/12/9 | Rome  | gastritis | Dorothy |
|                   | 57/6/25 | Paris | obesity   | Drew    |
|                   | 53/12/1 | NY    | measles   | Dennis  |
|                   | 60/7/25 | Rome  | diabetes  | Daisy   |

 $c_0$ ={SSN}  $c_1$ ={Patient,Illness}  $c_2$ ={Patient,Doctor}  $c_3$ ={Birth,City,Illness}  $c_4$ ={Birth,City,Doctor}



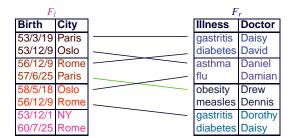
|                   |         | -     | Illness   |         |
|-------------------|---------|-------|-----------|---------|
|                   |         |       | diabetes  |         |
|                   |         |       | gastritis | Daisy   |
| $\Longrightarrow$ | 58/5/18 | Oslo  | flu       | Damian  |
| $\Longrightarrow$ | 53/12/9 | Oslo  | asthma    | Daniel  |
| $\Longrightarrow$ | 56/12/9 | Rome  | gastritis | Dorothy |
|                   | 57/6/25 | Paris | obesity   | Drew    |
|                   | 53/12/1 | NY    | measles   | Dennis  |
|                   | 60/7/25 | Rome  | diabetes  | Daisy   |

 $c_0$ ={SSN}  $c_1$ ={Patient,Illness}  $c_2$ ={Patient,Doctor}  $c_3$ ={Birth,City,Illness}  $c_4$ ={Birth,City,Doctor}



|                   |         |       | Illness   |         |
|-------------------|---------|-------|-----------|---------|
|                   |         |       | diabetes  |         |
| $\Longrightarrow$ | 53/3/19 | Paris | gastritis | Daisy   |
| $\Longrightarrow$ | 58/5/18 | Oslo  | flu       | Damian  |
| $\Longrightarrow$ | 53/12/9 | Oslo  | asthma    | Daniel  |
| $\Longrightarrow$ | 56/12/9 | Rome  | gastritis | Dorothy |
| $\Longrightarrow$ | 57/6/25 | Paris | obesity   | Drew    |
|                   | 53/12/1 | NY    | measles   | Dennis  |
|                   | 60/7/25 | Rome  | diabetes  | Daisy   |

 $c_0$ ={SSN}  $c_1$ ={Patient,Illness}  $c_2$ ={Patient,Doctor}  $c_3$ ={Birth,City,Illness}  $c_4$ ={Birth,City,Doctor}



|                   |         | ,     | Illness   |         |
|-------------------|---------|-------|-----------|---------|
| $\Longrightarrow$ | 56/12/9 | Rome  | diabetes  | David   |
|                   |         |       | gastritis | Daisy   |
| $\Longrightarrow$ | 58/5/18 | Oslo  | flu       | Damian  |
|                   |         |       | asthma    |         |
| $\Longrightarrow$ | 56/12/9 | Rome  | gastritis | Dorothy |
| $\Longrightarrow$ | 57/6/25 | Paris | obesity   | Drew    |
| $\Longrightarrow$ | 53/12/1 | NY    | measles   | Dennis  |
|                   | 60/7/25 | Rome  | diabetes  | Daisy   |

c<sub>0</sub>={SSN}
c<sub>1</sub>={Patient,Illness}
c<sub>2</sub>={Patient,Doctor}
c<sub>3</sub>={Birth,City,Illness}
c<sub>4</sub>={Birth,City,Doctor}

| $F_{l}$ | !     |   | F         | r      |
|---------|-------|---|-----------|--------|
| Birth   | City  |   | Illness   | Doctor |
| 53/3/19 |       | - | gastritis |        |
| 53/12/9 | Oslo  |   | diabetes  | David  |
| 56/12/9 |       |   | asthma    | Daniel |
| 57/6/25 | Paris |   | flu       | Damian |
| 58/5/18 |       |   | obesity   | Drew   |
| 56/12/9 |       |   | measles   | Dennis |
| 53/12/1 |       |   | gastritis |        |
| 60/7/25 | Rome  |   | diabetes  | Daisy  |

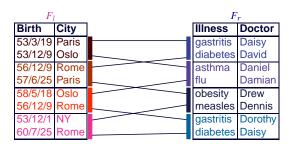
|                   |         |       | Illness   |         |
|-------------------|---------|-------|-----------|---------|
| $\Longrightarrow$ | 56/12/9 | Rome  | diabetes  | David   |
|                   |         |       | gastritis | Daisy   |
| $\Longrightarrow$ | 58/5/18 | Oslo  | flu       | Damian  |
|                   |         |       | asthma    |         |
| $\Longrightarrow$ | 56/12/9 | Rome  | gastritis | Dorothy |
| $\Longrightarrow$ | 57/6/25 | Paris | obesity   | Drew    |
| $\Longrightarrow$ | 53/12/1 | NY    | measles   | Dennis  |
| $\Longrightarrow$ | 60/7/25 | Rome  | diabetes  | Daisy   |

 $c_0$ ={SSN}  $c_1$ ={Patient,Illness}  $c_2$ ={Patient,Doctor}  $c_3$ ={Birth,City,Illness}  $c_4$ ={Birth,City,Doctor}

| $F_l$   |       | F             | r      |
|---------|-------|---------------|--------|
| Birth   | City  | Illness       | Doctor |
| 53/3/19 | Paris | <br>gastritis | Daisy  |
| 53/12/9 | Oslo  | diabetes      | David  |
| 56/12/9 |       | asthma        | Daniel |
| 57/6/25 | Paris | flu           | Damian |
| 58/5/18 |       | obesity       | Drew   |
| 56/12/9 |       | measles       | Dennis |
| 53/12/1 |       | gastritis     |        |
| 60/7/25 | Rome  | diabetes      | Daisy  |

|         |       | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
| 53/12/9 | Oslo  | asthma    | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

 $c_0$ ={SSN}  $c_1$ ={Patient,Illness}  $c_2$ ={Patient,Doctor}  $c_3$ ={Birth,City,Illness}  $c_4$ ={Birth,City,Doctor}



| Birth   | City  | Illness   | Doctor  |
|---------|-------|-----------|---------|
|         |       | diabetes  |         |
|         |       | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
|         |       | asthma    |         |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 

| $F_{l}$ |       |     |  |
|---------|-------|-----|--|
| Birth   | City  | G   |  |
| 53/3/19 | Paris | bc1 |  |
| 53/12/9 | Oslo  | bc1 |  |
| 56/12/9 | Rome  | bc2 |  |
| 57/6/25 | Paris | bc2 |  |
| 58/5/18 |       | bc3 |  |
| 56/12/9 |       | bc3 |  |
| 53/12/1 | NY    | bc4 |  |
| 60/7/25 | Rome  | bc4 |  |

| $G_l$ | $\mathbf{G}_r$ |
|-------|----------------|
| bc1   | id1            |
| bc1   | id2            |
| bc2   | id1            |
| bc2   | id3            |
| bc3   | id2            |
| bc3   | id4            |
| bc4   | id3            |
| bc4   | id4            |

|     | $F_r$     |         |  |  |  |
|-----|-----------|---------|--|--|--|
|     |           | Doctor  |  |  |  |
| id1 | gastritis | Daisy   |  |  |  |
| id1 | diabetes  | David   |  |  |  |
| id2 | asthma    | Daniel  |  |  |  |
| id2 | flu       | Damian  |  |  |  |
| id3 | obesity   | Drew    |  |  |  |
| id3 | measles   | Dennis  |  |  |  |
| id4 | gastritis | Dorothy |  |  |  |
| id4 | diabetes  | Daisy   |  |  |  |

### Group association protection

- Duplicates in fragments are maintained (all fragments have the same cardinality as the original relation)
  - o fragments may contain tuples that are equal
- Even tuples that are different may have the same values for attributes involved in a confidentiality constraint
- The looseness protection offered by grouping can be compromised
  - ⇒ need to control occurrences of the same values

#### **Alikeness**

• Two tuples  $l_i$ ,  $l_j$  in  $f_l$  ( $r_i$ ,  $r_j$  in  $f_r$ ) are alike w.r.t. a constraint c, denoted  $l_i \simeq_c l_i$  ( $r_i \simeq_c r_i$ ), if

```
\circ c \subseteq (F_l \cup F_r) (c is covered by F_l and F_r)
```

$$\circ \ l_i[c \cap F_l] = l_j[c \cap F_l] \ (r_i[c \cap F_r] = r_j[c \cap F_r])$$

- Two tuples  $l_i$ ,  $l_j$  in  $f_l$  ( $r_i$ ,  $r_j$  in  $f_r$ ) are alike  $l_i \simeq l_j$  ( $r_i \simeq r_j$ ) if they are alike w.r.t. at least a constraint  $c \subseteq (F_l \cup F_r)$
- $\simeq_c$  is transitive for any constraint c
- ullet  $\simeq$  is not transitive if there are at least two constraints covered by  $F_l$  and  $F_r$

|         | -     | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
|         |       |           | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |
|         |       |           |         |

$$\begin{split} &c_0 = \{\text{SSN}\} \\ &c_1 = \{\text{Patient,Illness}\} \\ &c_2 = \{\text{Patient,Doctor}\} \\ &c_3 = \{\text{Birth,City,Illness}\} \\ &c_4 = \{\text{Birth,City,Doctor}\} \end{split}$$

Birth City 56/12/9 Rome 53/3/19 Paris 58/5/18 Oslo 53/12/9 Oslo 56/12/9 Rome 57/6/25 Paris 53/12/1 NY 60/7/25 Rome

|         | -     | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
| 53/12/9 | Oslo  | asthma    | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |
|         |       |           |         |

$$\begin{split} c_0 = & \{SSN\} \\ c_1 = & \{Patient, Illness\} \\ c_2 = & \{Patient, Doctor\} \\ c_3 = & \{Birth, City, Illness\} \\ c_4 = & \{Birth, City, Doctor\} \end{split}$$

Birth City
56/12/9 Rome
53/3/19 Paris
58/5/18 Oslo
53/12/9 Oslo
56/12/9 Rome
57/6/25 Paris
53/12/1 NY
60/7/25 Rome

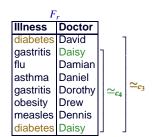
Illness Doctor diabetes David gastritis Daisy flu Damian asthma Daniel gastritis Dorothy  $\simeq_{c_{4}}$ obesity Drew measles Dennis diabetes Daisy

© Pierangela Samarati 200/230

|         |       | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
|         |       | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
| 53/12/9 | Oslo  | asthma    | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |
|         | •     |           | •       |

$$\begin{split} &c_0 = \{\text{SSN}\} \\ &c_1 = \{\text{Patient,Illness}\} \\ &c_2 = \{\text{Patient,Doctor}\} \\ &c_3 = \{\text{Birth,City,Illness}\} \\ &c_4 = \{\text{Birth,City,Doctor}\} \end{split}$$

Birth City 56/12/9 Rome 53/3/19 Paris 58/5/18 Oslo 53/12/9 Oslo 56/12/9 Rome 57/6/25 Paris 53/12/1 NY 60/7/25 Rome



|         | -     | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
| 53/12/9 | Oslo  | asthma    | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |
|         |       |           |         |

$$\begin{split} &c_0 = \{\text{SSN}\} \\ &c_1 = \{\text{Patient,Illness}\} \\ &c_2 = \{\text{Patient,Doctor}\} \\ &c_3 = \{\text{Birth,City,Illness}\} \\ &c_4 = \{\text{Birth,City,Doctor}\} \end{split}$$

| $F_l$   |       |  |  |
|---------|-------|--|--|
| Birth   | City  |  |  |
| 56/12/9 | Rome  |  |  |
| 53/3/19 | Paris |  |  |
| 58/5/18 | Oslo  |  |  |
| 53/12/9 | Oslo  |  |  |
| 56/12/9 | Rome  |  |  |
| 57/6/25 | Paris |  |  |
| 53/12/1 | NY    |  |  |
| 60/7/25 | Rome  |  |  |

© Pierangela Samarati 200/230

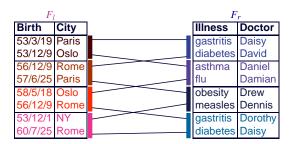
#### *k*-loose association

- A group association is k-loose if every tuple in the group association A indistinguishably corresponds to at least k distinct associations among tuples in the fragments
- A k-loose association is also k'-loose for any  $k' \le k$
- A  $(k_l,k_r)$ -grouping induces a minimal group association A if
  - A is k-loose
  - ∘  $\nexists$  a  $(k'_l,k'_r)$ -grouping inducing a k-loose association s.t.  $k'_l \cdot k'_r < k_l \cdot k_r$

### 4-loose association – Example

|         |       | Illness   |         |
|---------|-------|-----------|---------|
|         |       | diabetes  |         |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
| 53/12/9 | Oslo  | asthma    | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} c_0 &= \{ \text{SSN} \} \\ c_1 &= \{ \text{Patient, Illness} \} \\ c_2 &= \{ \text{Patient, Doctor} \} \\ c_3 &= \{ \text{Birth, City, Illness} \} \\ c_4 &= \{ \text{Birth, City, Doctor} \} \end{aligned}$ 



© Pierangela Samarati 202/230

## 4-loose association – Example

|         |       | Illness   |         |
|---------|-------|-----------|---------|
|         |       | diabetes  |         |
|         |       | gastritis | Daisy   |
| 58/5/18 | Oslo  | flu       | Damian  |
|         |       | asthma    |         |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 

|         | $F_l$ |     |  |  |  |  |  |  |  |  |
|---------|-------|-----|--|--|--|--|--|--|--|--|
| Birth   | City  | G   |  |  |  |  |  |  |  |  |
| 53/3/19 |       | bc1 |  |  |  |  |  |  |  |  |
| 53/12/9 | Oslo  | bc1 |  |  |  |  |  |  |  |  |
| 56/12/9 |       | bc2 |  |  |  |  |  |  |  |  |
| 57/6/25 | Paris | bc2 |  |  |  |  |  |  |  |  |
| 58/5/18 |       | bc3 |  |  |  |  |  |  |  |  |
| 56/12/9 |       | bc3 |  |  |  |  |  |  |  |  |
| 53/12/1 | NY    | bc4 |  |  |  |  |  |  |  |  |
| 60/7/25 | Rome  | bc4 |  |  |  |  |  |  |  |  |



|     | $F_r$     |         |  |  |  |  |  |  |  |
|-----|-----------|---------|--|--|--|--|--|--|--|
|     |           | Doctor  |  |  |  |  |  |  |  |
| id1 | gastritis | Daisy   |  |  |  |  |  |  |  |
| id1 | diabetes  | David   |  |  |  |  |  |  |  |
| id2 | asthma    | Daniel  |  |  |  |  |  |  |  |
| id2 |           | Damian  |  |  |  |  |  |  |  |
| id3 | obesity   | Drew    |  |  |  |  |  |  |  |
|     | measles   |         |  |  |  |  |  |  |  |
| id4 | gastritis | Dorothy |  |  |  |  |  |  |  |
| id4 | diabetes  | Daisy   |  |  |  |  |  |  |  |

## Heterogeneity properties

- There is a correspondence between  $k_l$ ,  $k_r$  of the groupings and the degree of k-looseness of the induced group association
  - o a  $(k_l, k_r)$ -grouping cannot induce a k-loose association for a  $k > k_l \cdot k_r$
  - the value  $k \leq k_l \cdot k_r$  depends on how groups are defined
- If a (k<sub>l</sub>,k<sub>r</sub>)-grouping satisfies given heterogeneity properties, the induced group association is k-loose with k=k<sub>l</sub>⋅k<sub>r</sub>
  - o group heterogeneity
  - o association heterogeneity
  - o deep heterogeneity

© Pierangela Samarati 203/230

### Group heterogeneity

No group can contain tuples that are alike with respect to the constraints covered by  $F_l$  and  $F_r$ 

• it ensures diversity of tuples within groups

 $c_1$ ={Patient,Illness}  $c_2$ ={Patient,Doctor}  $c_3$ ={Birth,City,Illness}  $c_4$ ={Birth,City,Doctor}



| F         | $F_r$   |          |  |  |  |  |  |
|-----------|---------|----------|--|--|--|--|--|
| Illness   | Doctor  |          |  |  |  |  |  |
| gastritis | Daisy   | NO       |  |  |  |  |  |
| gastritis | Dorothy | NO       |  |  |  |  |  |
| asthma    | Daniel  | _        |  |  |  |  |  |
| flu       | Damian  |          |  |  |  |  |  |
| obesity   | Drew    |          |  |  |  |  |  |
| measles   | Dennis  |          |  |  |  |  |  |
| diabetes  | David   | $]_{NO}$ |  |  |  |  |  |
| diabetes  | Daisy   | INU      |  |  |  |  |  |

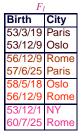
© Pierangela Samarati 204/230

### Group heterogeneity

No group can contain tuples that are alike with respect to the constraints covered by  $F_l$  and  $F_r$ 

• it ensures diversity of tuples within groups

 $c_1$ ={Patient,Illness}  $c_2$ ={Patient,Doctor}  $c_3$ ={Birth,City,Illness}  $c_4$ ={Birth,City,Doctor}



| $F_r$     |         |  |  |  |  |  |  |
|-----------|---------|--|--|--|--|--|--|
| Illness   | Doctor  |  |  |  |  |  |  |
| gastritis | Daisy   |  |  |  |  |  |  |
| diabetes  | David   |  |  |  |  |  |  |
| asthma    | Daniel  |  |  |  |  |  |  |
| flu       | Damian  |  |  |  |  |  |  |
| obesity   | Drew    |  |  |  |  |  |  |
| measles   | Dennis  |  |  |  |  |  |  |
| gastritis | Dorothy |  |  |  |  |  |  |
| diabetes  | Daisy   |  |  |  |  |  |  |

© Pierangela Samarati 204/230

## Association heterogeneity

No group can be associated twice with another group (the group association cannot contain any duplicate)

• it ensures that for each real tuple in the original relation there are at least  $k_l \cdot k_r$  pairs in the group association that may correspond to it





© Pierangela Samarati 205/230

## Association heterogeneity

No group can be associated twice with another group (the group association cannot contain any duplicate)

• it ensures that for each real tuple in the original relation there are at least  $k_l \cdot k_r$  pairs in the group association that may correspond to it



| F                  | l          | $F_r$ |                       |                  |  |  |  |
|--------------------|------------|-------|-----------------------|------------------|--|--|--|
| Birth              | City       |       | Illness               | Doctor           |  |  |  |
| 53/3/19<br>53/12/9 |            |       | gastritis<br>diabetes | ,                |  |  |  |
| 56/12/9<br>57/6/25 |            |       | asthma<br>flu         | Daniel<br>Damian |  |  |  |
| 58/5/18<br>56/12/9 |            |       | measles               |                  |  |  |  |
| 53/12/1<br>60/7/25 | NY<br>Rome |       | gastritis<br>diabetes | ,                |  |  |  |

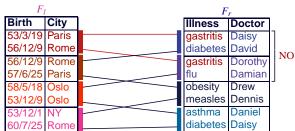
© Pierangela Samarati 205/230

### Deep heterogeneity

#### No group can be associated with two groups that contain alike tuples

 it ensures that all k<sub>l</sub>·k<sub>r</sub> pairs in the group association to which each tuple could correspond to contain diverse values for attributes involved in constraints





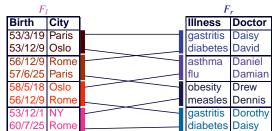
© Pierangela Samarati 206/230

### Deep heterogeneity

No group can be associated with two groups that contain alike tuples

• it ensures that all  $k_l \cdot k_r$  pairs in the group association to which each tuple could correspond to contain diverse values for attributes involved in constraints





© Pierangela Samarati 206/230

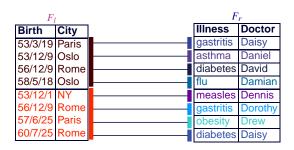
# Flat grouping vs sparse grouping

- A  $(k_l, k_r)$ -grouping is
  - o flat if either  $k_l$  or  $k_r$  is equal to 1
  - o sparse if both  $k_l$  and  $k_r$  are different from 1
- Flat grouping resembles k-anonymity and captures at the same time the ℓ-diversity property, but it works on associations and attributes' values are not generalized
- Sparse grouping guarantees larger applicability than flat grouping, with the same level of protection (there may exist a sparse grouping providing k-looseness but not a flat grouping)

# Flat grouping – Example

|         | ,     | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 |       |           | Damian  |
| 53/12/9 |       |           | Daniel  |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} c_0 &= \{ \text{SSN} \} \\ c_1 &= \{ \text{Patient,Illness} \} \\ c_2 &= \{ \text{Patient,Doctor} \} \\ c_3 &= \{ \text{Birth,City,Illness} \} \\ c_4 &= \{ \text{Birth,City,Doctor} \} \end{aligned}$ 

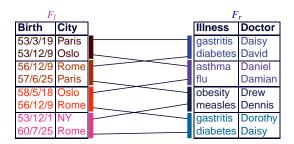


© Pierangela Samarati 208/230

## Sparse grouping – Example

|         | _     | Illness   |         |
|---------|-------|-----------|---------|
| 56/12/9 | Rome  | diabetes  | David   |
| 53/3/19 | Paris | gastritis | Daisy   |
| 58/5/18 |       |           | Damian  |
|         |       | asthma    |         |
| 56/12/9 | Rome  | gastritis | Dorothy |
| 57/6/25 | Paris | obesity   | Drew    |
| 53/12/1 | NY    | measles   | Dennis  |
| 60/7/25 | Rome  | diabetes  | Daisy   |

 $\begin{aligned} &c_0 = &\{\text{SSN}\} \\ &c_1 = &\{\text{Patient,Illness}\} \\ &c_2 = &\{\text{Patient,Doctor}\} \\ &c_3 = &\{\text{Birth,City,Illness}\} \\ &c_4 = &\{\text{Birth,City,Doctor}\} \end{aligned}$ 



#### Privacy vs utility

- The publication of loose associations increases data utility
  - makes it possible to evaluate queries more precisely than if only the fragments were published

Increased utility corresponds to a lower privacy degree

### Association exposure

- The exposure of a sensitive association  $\langle l[c \cap F_l], r[c \cap F_r] \rangle$ , with c a constraint covered by  $F_l$ ,  $F_r$ , can be expressed as the probability of the association to hold in the original relation (given the published information)
- The increased exposure due to the publication of loose associations can be measured as the difference between
  - the probability  $P^A(l[c \cap F_l], r[c \cap F_r])$  that the sensitive association  $\langle l[c \cap F_l], r[c \cap F_r] \rangle$  appears in the original relation, given  $f_l, f_r$ , and A
  - the probability  $P(l[c \cap F_l], r[c \cap F_r])$  that the sensitive association  $\langle l[c \cap F_l], r[c \cap F_r] \rangle$  appears in the original relation, given  $f_l$  and  $f_r$

## Exposure without loose association (1)

• Given  $l \in f_l$  and  $r \in f_r$  the probability P(l,r) that tuple  $\langle l,r \rangle$  belongs to the original relation is  $1/|f_l| = 1/|f_r|$ 

# Exposure without loose association (1)

• Given  $l \in f_l$  and  $r \in f_r$  the probability P(l,r) that tuple  $\langle l,r \rangle$  belongs to the original relation is  $1/|f_l| = 1/|f_r|$ 

|         |       | gastritis | diabetes | asthma | flu    | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|--------|---------|---------|-----------|----------|
|         |       | Daisy     | David    | Daniel | Damian | Drew    | Dennis  | Dorothy   | Daisy    |
| 53/3/19 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/9 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 57/6/25 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 58/5/18 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/1 | NY    | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 60/7/25 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |

# Exposure without loose association (2)

- Exposure (P(l[c∩F<sub>l</sub>], r[c∩F<sub>r</sub>])) depends on the presence of alike tuples
- Let  $l_i, l_j$  be two tuples in  $f_l$  s.t.  $l_i \simeq_c l_j$ ,  $P(l_i[c \cap F_l], r[c \cap F_r])$  is the composition of the probability that
  - *l<sub>i</sub>* is associated with *r*
  - $\circ$   $l_i$  is associated with r

$$P(l_i,r) + P(l_j,r) - (P(l_i,r) \cdot P(l_j,r))$$

# Exposure without loose association – Example

|         |       | gastritis | diabetes | asthma | flu    | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|--------|---------|---------|-----------|----------|
|         |       | Daisy     | David    | Daniel | Damian | Drew    | Dennis  | Dorothy   | Daisy    |
| 53/3/19 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/9 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 57/6/25 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 58/5/18 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/1 | NY    | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 60/7/25 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |

# Exposure without loose association – Example

|         |       | gastritis | diabetes | asthma | flu    | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|--------|---------|---------|-----------|----------|
|         |       | Daisy     | David    | Daniel | Damian | Drew    | Dennis  | Dorothy   | Daisy    |
| 53/3/19 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/9 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 57/6/25 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 58/5/18 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/1 | NY    | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 60/7/25 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |

c<sub>3</sub>={Birth,City,Illness}

|         |       | gastritis | diabetes | asthma | flu | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|-----|---------|---------|-----------|----------|
| 53/3/19 | Paris | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/9 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| 57/6/25 | Paris | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| 58/5/18 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/1 | NY    | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| 60/7/25 | Rome  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |

c<sub>3</sub>={Birth,City,Illness}

|   |         |       | gastritis | diabetes | asthma | flu | obesity | measles | gastritis | diabetes |
|---|---------|-------|-----------|----------|--------|-----|---------|---------|-----------|----------|
|   | 53/3/19 | Paris | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
|   | 53/12/9 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| Γ | 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
|   | 57/6/25 | Paris | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
|   | 58/5/18 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
| L | 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
|   | 53/12/1 | NY    | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |
|   | 60/7/25 | Rome  | 1/8       | 1/8      | 1/8    | 1/8 | 1/8     | 1/8     | 1/8       | 1/8      |

c<sub>3</sub>={Birth,City,Illness}

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right)$$

|         |       | gastritis | diabetes | asthma | flu   | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|-------|---------|---------|-----------|----------|
| 53/3/19 | Paris | 1/8       | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/9 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 15/64     | 15/64    | 15/64  | 15/64 | 15/64   | 15/64   | 15/64     | 15/64    |
| 57/6/25 | Paris | 1/8       | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |
| 58/5/18 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/1 | NY    | 1/8       | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |
| 60/7/25 | Rome  | 1/8       | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |

c<sub>3</sub>={Birth,City,Illness}

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right) = \frac{15}{64}$$

|         |       | _         | $\simeq_{c_3}$ |        |       |         |         |           |          |  |  |  |  |  |
|---------|-------|-----------|----------------|--------|-------|---------|---------|-----------|----------|--|--|--|--|--|
|         |       | gastritis | diabetes       | asthma | flu   | obesity | measles | gastritis | diabetes |  |  |  |  |  |
| 53/3/19 | Paris | 1/8       | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |  |  |  |  |  |
| 53/12/9 | Oslo  | 1/8       | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |  |  |  |  |  |
| 56/12/9 | Rome  | 15/64     | 15/64          | 15/64  | 15/64 | 15/64   | 15/64   | 15/64     | 15/64    |  |  |  |  |  |
| 57/6/25 | Paris | 1/8       | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |  |  |  |  |  |
| 58/5/18 | Oslo  | 1/8       | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |  |  |  |  |  |
| 53/12/1 | NY    | 1/8       | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |  |  |  |  |  |
| 60/7/25 | Rome  | 1/8       | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8       | 1/8      |  |  |  |  |  |

c<sub>3</sub>={Birth,City,Illness}

$$P(53/3/19, \text{Paris,gastritis}) = P(53/12/9, \text{Oslo,gastritis}) = \dots = P(60/7/25, \text{Rome,gastritis}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right)$$

$$P(56/12/9, \text{Rome,gastritis}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right)$$

|         |       | gastritis | diabetes | asthma | flu   | obesity | measles | diabetes |
|---------|-------|-----------|----------|--------|-------|---------|---------|----------|
| 53/3/19 | Paris | 15/64     | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |
| 53/12/9 | Oslo  | 15/64     | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |
| 56/12/9 | Rome  | 1695/4096 | 15/64    | 15/64  | 15/64 | 15/64   | 15/64   | 15/64    |
| 57/6/25 | Paris | 15/64     | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |
| 58/5/18 | Oslo  | 15/64     | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |
| 53/12/1 | NY    | 15/64     | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |
| 60/7/25 | Rome  | 15/64     | 1/8      | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |

c<sub>3</sub>={Birth,City,Illness}

$$P(53/3/19, \text{Paris,gastritis}) = P(53/12/9, \text{Oslo,gastritis}) = \dots = P(60/7/25, \text{Rome,gastritis}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right) = \frac{15}{64}$$

$$P(56/12/9, \text{Rome,gastritis}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right) = \frac{1695}{4096}$$

|         |       |           | $\simeq_{c_3}$ |        |       |         |         |          |  |  |  |  |  |  |
|---------|-------|-----------|----------------|--------|-------|---------|---------|----------|--|--|--|--|--|--|
|         |       | gastritis | diabetes       | asthma | flu   | obesity | measles | diabetes |  |  |  |  |  |  |
| 53/3/19 | Paris | 15/64     | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |  |  |  |  |  |  |
| 53/12/9 | Oslo  | 15/64     | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |  |  |  |  |  |  |
| 56/12/9 | Rome  | 1695/4096 | 15/64          | 15/64  | 15/64 | 15/64   | 15/64   | 15/64    |  |  |  |  |  |  |
| 57/6/25 | Paris | 15/64     | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |  |  |  |  |  |  |
| 58/5/18 | Oslo  | 15/64     | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |  |  |  |  |  |  |
| 53/12/1 | NY    | 15/64     | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |  |  |  |  |  |  |
| 60/7/25 | Rome  | 15/64     | 1/8            | 1/8    | 1/8   | 1/8     | 1/8     | 1/8      |  |  |  |  |  |  |

$$P(53/3/19, \text{Paris,diabetes}) = P(53/12/9, \text{Oslo,diabetes}) = \dots = P(60/7/25, \text{Rome,diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right)$$

$$P(56/12/9, \text{Rome,diabetes}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right)$$

|         |       | gastritis | diabetes  | asthma | flu   | obesity | measles |
|---------|-------|-----------|-----------|--------|-------|---------|---------|
| 53/3/19 | Paris | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 53/12/9 | Oslo  | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 56/12/9 | Rome  | 1695/4096 | 1695/4096 | 15/64  | 15/64 | 15/64   | 15/64   |
| 57/6/25 | Paris | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 58/5/18 | Oslo  | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 53/12/1 | NY    | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 60/7/25 | Rome  | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |

c<sub>3</sub>={Birth,City,Illness}

$$P(53/3/19, \text{Paris,diabetes}) = P(53/12/9, \text{Oslo,diabetes}) = \dots = P(60/7/25, \text{Rome,diabetes}) = \frac{1}{8} + \frac{1}{8} - \left(\frac{1}{8} \cdot \frac{1}{8}\right) = \frac{15}{64}$$

$$P(56/12/9, \text{Rome,diabetes}) = \frac{15}{64} + \frac{15}{64} - \left(\frac{15}{64} \cdot \frac{15}{64}\right) = \frac{1695}{4096}$$

#### Exposure with loose association

- Given  $l \in f_l$  and  $r \in f_r$  the probability  $P^A(l,r)$  that tuple  $\langle l,r \rangle$  belongs to the original relation is at most 1/k
- $P^A(l[c \cap F_l], r[c \cap F_r])$  is evaluated considering the alike  $\simeq_c$  relationship
  - ∘ let  $l_i, l_j$  in  $f_l$  s.t.  $l_i \simeq_c l_j$ ,  $P^A(l_i[c \cap F_l], r[c \cap F_r])$  is the composition of the probability that
    - *l<sub>i</sub>* is associated with *r*
    - $l_i$  is associated with r

$$P^{A}(l_{i},r) + P^{A}(l_{j},r) - (P^{A}(l_{i},r) \cdot P^{A}(l_{j},r))$$

|         |       | gastritis | diabetes | asthma | flu    | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|--------|---------|---------|-----------|----------|
|         |       | Daisy     | David    | Daniel | Damian | Drew    | Dennis  | Dorothy   | Daisy    |
| 53/3/19 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/9 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 57/6/25 | Paris | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 58/5/18 | Oslo  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 56/12/9 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 53/12/1 | NY    | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |
| 60/7/25 | Rome  | 1/8       | 1/8      | 1/8    | 1/8    | 1/8     | 1/8     | 1/8       | 1/8      |

 $F_l$ 

Birth City 53/3/19 Paris 53/12/9 Oslo 56/12/9 Rome 57/6/25 Paris 58/5/18 Oslo 56/12/9 Rome 53/12/1 NY 60/7/25 Rome Illness Doctor
gastritis Daisy
diabetes David
asthma Daniel
flu Damian
obesity Drew
measles Dennis
gastritis Dorothy
diabetes Daisy

|         |       | gastritis | diabetes | asthma | flu    | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|--------|---------|---------|-----------|----------|
|         |       | Daisy     | David    | Daniel | Damian | Drew    | Dennis  | Dorothy   | Daisy    |
| 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4    | -       | -       | -         | -        |
| 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4    | _       | _       | _         | _        |
| 56/12/9 | Rome  | 1/4       | 1/4      | -      | _      | 1/4     | 1/4     | 1         | _        |
| 57/6/25 | Paris | 1/4       | 1/4      | -      | _      | 1/4     | 1/4     | -         | _        |
| 58/5/18 | Oslo  | -         | _        | 1/4    | 1/4    | _       | _       | 1/4       | 1/4      |
| 56/12/9 | Rome  | -         | _        | 1/4    | 1/4    | _       | -       | 1/4       | 1/4      |
| 53/12/1 | NY    | -         | _        | -      | _      | 1/4     | 1/4     | 1/4       | 1/4      |
| 60/7/25 | Rome  | -         | -        | _      | _      | 1/4     | 1/4     | 1/4       | 1/4      |

| $F_{i}$ | !     | <u> </u> |               | F         | r       |
|---------|-------|----------|---------------|-----------|---------|
| Birth   | City  |          |               | Illness   | Doctor  |
| 53/3/19 | Paris |          |               | gastritis | Daisy   |
| 53/12/9 | Oslo  |          |               | diabetes  | David   |
| 56/12/9 | Rome  |          | $\neg$        | asthma    | Daniel  |
| 57/6/25 | Paris |          |               | flu       | Damian  |
| 58/5/18 | Oslo  |          | $\neg$        | obesity   | Drew    |
| 56/12/9 | Rome  |          | <br>-         | measles   | Dennis  |
| 53/12/1 | NY    |          | $\overline{}$ | gastritis | Dorothy |
| 60/7/25 | Rome  |          | _             | diabetes  | Daisy   |

|         |       | gastritis | diabetes | asthma | flu    | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|--------|---------|---------|-----------|----------|
|         |       | Daisy     | David    | Daniel | Damian | Drew    | Dennis  | Dorothy   | Daisy    |
| 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4    | -       | _       | _         | -        |
| 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4    | _       | _       | _         | -        |
| 56/12/9 | Rome  | 1/4       | 1/4      | -      | _      | 1/4     | 1/4     | _         | _        |
| 57/6/25 | Paris | 1/4       | 1/4      | _      | _      | 1/4     | 1/4     | _         | _        |
| 58/5/18 | Oslo  | -         | _        | 1/4    | 1/4    | _       | _       | 1/4       | 1/4      |
| 56/12/9 | Rome  | -         | _        | 1/4    | 1/4    | _       | _       | 1/4       | 1/4      |
| 53/12/1 | NY    | _         | _        | _      | _      | 1/4     | 1/4     | 1/4       | 1/4      |
| 60/7/25 | Rome  | _         | _        | _      | _      | 1/4     | 1/4     | 1/4       | 1/4      |

 $c_3 = \{Birth, City, Illness\}$ 

|   |         |       | gastritis | diabetes | asthma | flu | obesity | measles | gastritis | diabetes |
|---|---------|-------|-----------|----------|--------|-----|---------|---------|-----------|----------|
|   | 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4 | -       | -       | -         | -        |
|   | 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4 | _       | _       | _         | _        |
| Γ | 56/12/9 | Rome  | 1/4       | 1/4      | _      | -   | 1/4     | 1/4     | _         | _        |
|   | 57/6/25 | Paris | 1/4       | 1/4      | _      | _   | 1/4     | 1/4     | _         | _        |
|   | 58/5/18 | Oslo  | _         | _        | 1/4    | 1/4 | -       | _       | 1/4       | 1/4      |
| L | 56/12/9 | Rome  | -         | _        | 1/4    | 1/4 | -       | _       | 1/4       | 1/4      |
|   | 53/12/1 | NY    | _         | _        | _      | _   | 1/4     | 1/4     | 1/4       | 1/4      |
|   | 60/7/25 | Rome  | _         | _        | _      | -   | 1/4     | 1/4     | 1/4       | 1/4      |

c<sub>3</sub>={Birth,City,Illness}

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right)$$

|         |       | gastritis | diabetes | asthma | flu | obesity | measles | gastritis | diabetes |
|---------|-------|-----------|----------|--------|-----|---------|---------|-----------|----------|
| 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4 | -       | _       | _         | -        |
| 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4 | _       | _       | _         | _        |
| 56/12/9 | Rome  | 1/4       | 1/4      | 1/4    | 1/4 | 1/4     | 1/4     | 1/4       | 1/4      |
| 57/6/25 | Paris | 1/4       | 1/4      | -      | _   | 1/4     | 1/4     | -         | _        |
| 58/5/18 | Oslo  | _         | _        | 1/4    | 1/4 | _       | _       | 1/4       | 1/4      |
| 53/12/1 | NY    | _         | _        | -      | _   | 1/4     | 1/4     | 1/4       | 1/4      |
| 60/7/25 | Rome  | -         | _        | -      | _   | 1/4     | 1/4     | 1/4       | 1/4      |

 $c_3 = \{Birth, City, IIIness\}$ 

$$P(56/12/9, \text{Rome, gastritis}) = P(56/12/9, \text{Rome, diabetes}) = \dots = P(56/12/9, \text{Rome, diabetes}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right) = \frac{1}{4}$$

|         |       |           |          |        | $\simeq_{c_3}$ |         |         |           |          |
|---------|-------|-----------|----------|--------|----------------|---------|---------|-----------|----------|
|         |       | gastritis | diabetes | asthma | flu            | obesity | measles | gastritis | diabetes |
| 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4            | _       | _       | -         | _        |
| 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4            | _       | _       | -         | -        |
| 56/12/9 | Rome  | 1/4       | 1/4      | 1/4    | 1/4            | 1/4     | 1/4     | 1/4       | 1/4      |
| 57/6/25 | Paris | 1/4       | 1/4      | -      | -              | 1/4     | 1/4     | -         | -        |
| 58/5/18 | Oslo  | -         | -        | 1/4    | 1/4            | _       | _       | 1/4       | 1/4      |
| 53/12/1 | NY    | _         | -        | _      | _              | 1/4     | 1/4     | 1/4       | 1/4      |
| 60/7/25 | Rome  | -         | _        | -      | _              | 1/4     | 1/4     | 1/4       | 1/4      |

 $c_3 = \{Birth, City, IIIness\}$ 

$$P(53/3/19, \text{Paris,gastritis}) = P(53/12/9, \text{Oslo,gastritis}) = \dots = P(60/7/25, \text{Rome,gastritis}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right)$$
 
$$P(56/12/9, \text{Rome,gastritis}) = \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right)$$

|         |       | gastritis | diabetes | asthma | flu | obesity | measles | diabetes |
|---------|-------|-----------|----------|--------|-----|---------|---------|----------|
| 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4 | -       | -       | -        |
| 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4 | -       | _       | _        |
| 56/12/9 | Rome  | 7/16      | 1/4      | 1/4    | 1/4 | 1/4     | 1/4     | 1/4      |
| 57/6/25 | Paris | 1/4       | 1/4      | -      | _   | 1/4     | 1/4     | _        |
| 58/5/18 | Oslo  | 1/4       | _        | 1/4    | 1/4 | -       | _       | 1/4      |
| 53/12/1 | NY    | 1/4       | _        | -      | _   | 1/4     | 1/4     | 1/4      |
| 60/7/25 | Rome  | 1/4       | _        | -      | _   | 1/4     | 1/4     | 1/4      |

 $c_3 = \{Birth, City, IIIness\}$ 

$$\begin{split} P(53/3/19, & \text{Paris,gastritis}) = P(53/12/9, \text{Oslo,gastritis}) = \dots = P(60/7/25, \text{Rome,gastritis}) = \\ & \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right) = \frac{1}{4} \\ P(56/12/9, & \text{Rome,gastritis}) = \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{7}{16} \end{split}$$

|         |       |           | $\simeq_{c_3}$ |        |     |         |         |          |  |  |  |  |
|---------|-------|-----------|----------------|--------|-----|---------|---------|----------|--|--|--|--|
|         | i     |           |                |        |     |         |         |          |  |  |  |  |
|         |       | gastritis | diabetes       | asthma | flu | obesity | measles | diabetes |  |  |  |  |
| 53/3/19 | Paris | 1/4       | 1/4            | 1/4    | 1/4 | _       | _       | -        |  |  |  |  |
| 53/12/9 | Oslo  | 1/4       | 1/4            | 1/4    | 1/4 | _       | _       | -        |  |  |  |  |
| 56/12/9 | Rome  | 7/16      | 1/4            | 1/4    | 1/4 | 1/4     | 1/4     | 1/4      |  |  |  |  |
| 57/6/25 | Paris | 1/4       | 1/4            | _      | l   | 1/4     | 1/4     | _        |  |  |  |  |
| 58/5/18 | Oslo  | 1/4       | _              | 1/4    | 1/4 | _       | _       | 1/4      |  |  |  |  |
| 53/12/1 | NY    | 1/4       | _              | _      | _   | 1/4     | 1/4     | 1/4      |  |  |  |  |
| 60/7/25 | Rome  | 1/4       | _              | _      | _   | 1/4     | 1/4     | 1/4      |  |  |  |  |

 $c_3 = \{Birth, City, IIIness\}$ 

$$P(53/3/19, \text{Paris,diabetes}) = P(53/12/9, \text{Oslo,diabetes}) = \dots = P(60/7/25, \text{Rome,diabetes}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right)$$
 
$$P(56/12/9, \text{Rome,diabetes}) = \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right)$$

|         |       | gastritis | diabetes | asthma | flu | obesity | measles |
|---------|-------|-----------|----------|--------|-----|---------|---------|
| 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4 | -       | -       |
| 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4 | _       | _       |
| 56/12/9 | Rome  | 7/16      | 7/16     | 1/4    | 1/4 | 1/4     | 1/4     |
| 57/6/25 | Paris | 1/4       | 1/4      | -      | -   | 1/4     | 1/4     |
| 58/5/18 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4 | -       | _       |
| 53/12/1 | NY    | 1/4       | 1/4      | -      | -   | 1/4     | 1/4     |
| 60/7/25 | Rome  | 1/4       | 1/4      | -      | -   | 1/4     | 1/4     |

#### $c_3 = \{Birth, City, IIIness\}$

$$P(53/3/19, \text{Paris, diabetes}) = P(53/12/9, \text{Oslo, diabetes}) = \dots = P(60/7/25, \text{Rome, diabetes}) = \frac{1}{4} + 0 - \left(\frac{1}{4} \cdot 0\right) = \frac{1}{4}$$
 
$$P(56/12/9, \text{Rome, diabetes}) = \frac{1}{4} + \frac{1}{4} - \left(\frac{1}{4} \cdot \frac{1}{4}\right) = \frac{7}{16}$$

#### Measuring privacy and utility

- Utility: average over the variation of probability
   |P<sup>A</sup>(l[c∩F<sub>l</sub>], r[c∩F<sub>r</sub>]) − P(l[c∩F<sub>l</sub>], r[c∩F<sub>r</sub>])| for each sensitive association ⟨l[c∩F<sub>l</sub>], r[c∩F<sub>r</sub>]⟩
  - o measured also in terms of the precision in responding to queries
- Privacy: in addition to the k-loose degree, an exposure threshold δ<sub>max</sub> could be specified
  - o given a threshold  $\delta_{\max}$ , A can be published if  $\delta_{\max} \geq (P^A(l[c \cap F_l], r[c \cap F_r]) P(l[c \cap F_l], r[c \cap F_r]))$  for all sensitive associations  $\langle l[c \cap F_l], r[c \cap F_r] \rangle$

## Measuring utility – Example

|         |       |           | $P^A$    |        |     |         |         |  |  |  |  |  |
|---------|-------|-----------|----------|--------|-----|---------|---------|--|--|--|--|--|
|         |       | gastritis | diabetes | asthma | flu | obesity | measles |  |  |  |  |  |
| 53/3/19 | Paris | 1/4       | 1/4      | 1/4    | 1/4 | _       | _       |  |  |  |  |  |
| 53/12/9 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4 | _       | _       |  |  |  |  |  |
| 56/12/9 | Rome  | 7/16      | 7/16     | 1/4    | 1/4 | 1/4     | 1/4     |  |  |  |  |  |
| 57/6/25 | Paris | 1/4       | 1/4      | _      | _   | 1/4     | 1/4     |  |  |  |  |  |
| 58/5/18 | Oslo  | 1/4       | 1/4      | 1/4    | 1/4 | ı       | _       |  |  |  |  |  |
| 53/12/1 | NY    | 1/4       | 1/4      | _      | _   | 1/4     | 1/4     |  |  |  |  |  |
| 60/7/25 | Rome  | 1/4       | 1/4      | _      | _   | 1/4     | 1/4     |  |  |  |  |  |

|         |       |           |           | 1      |       |         |         |
|---------|-------|-----------|-----------|--------|-------|---------|---------|
|         |       | gastritis | diabetes  | asthma | flu   | obesity | measles |
| 53/3/19 | Paris | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 53/12/9 | Oslo  | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 56/12/9 | Rome  | 1695/4096 | 1695/4096 | 15/64  | 15/64 | 15/64   | 15/64   |
| 57/6/25 | Paris | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 58/5/18 | Oslo  | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 53/12/1 | NY    | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |
| 60/7/25 | Rome  | 15/64     | 15/64     | 1/8    | 1/8   | 1/8     | 1/8     |

P

 $P^{A}(l[Birth,City], r[Illness]) - P(l[Birth,City], r[Illness])$ 

## Measuring utility – Example

 $P^{A}(I[\mathsf{Birth},\mathsf{City}],\ r[\mathsf{Illness}]) - P(I[\mathsf{Birth},\mathsf{City}],\ r[\mathsf{Illness}])$ 

|         |       | gastritis | diabetes | asthma | flu  | obesity | measles |
|---------|-------|-----------|----------|--------|------|---------|---------|
| 53/3/19 | Paris | 1/64      | 1/64     | 1/8    | 1/8  | -1/8    | -1/8    |
| 53/12/9 | Oslo  | 1/64      | 1/64     | 1/8    | 1/8  | -1/8    | -1/8    |
| 56/12/9 | Rome  | 97/4096   | 97/4096  | 1/64   | 1/64 | 1/64    | 1/64    |
| 57/6/25 | Paris | 1/64      | 1/64     | -1/8   | -1/8 | 1/8     | 1/8     |
| 58/5/18 | Oslo  | 1/64      | 1/64     | 1/8    | 1/8  | -1/8    | -1/8    |
| 53/12/1 | NY    | 1/64      | 1/64     | -1/8   | -1/8 | 1/8     | 1/8     |
| 60/7/25 | Rome  | 1/64      | 1/64     | -1/8   | -1/8 | 1/8     | 1/8     |

## Measuring utility – Example

 $P^{A}(l[\mathsf{Birth},\mathsf{City}],\ r[\mathsf{Illness}]) - P(l[\mathsf{Birth},\mathsf{City}],\ r[\mathsf{Illness}])$ 

|         |       | gastritis | diabetes | asthma | flu  | obesity | measles |
|---------|-------|-----------|----------|--------|------|---------|---------|
| 53/3/19 | Paris | 1/64      | 1/64     | 1/8    | 1/8  | -1/8    | -1/8    |
| 53/12/9 | Oslo  | 1/64      | 1/64     | 1/8    | 1/8  | -1/8    | -1/8    |
| 56/12/9 | Rome  | 97/4096   | 97/4096  | 1/64   | 1/64 | 1/64    | 1/64    |
| 57/6/25 | Paris | 1/64      | 1/64     | -1/8   | -1/8 | 1/8     | 1/8     |
| 58/5/18 | Oslo  | 1/64      | 1/64     | 1/8    | 1/8  | -1/8    | -1/8    |
| 53/12/1 | NY    | 1/64      | 1/64     | -1/8   | -1/8 | 1/8     | 1/8     |
| 60/7/25 | Rome  | 1/64      | 1/64     | -1/8   | -1/8 | 1/8     | 1/8     |

$$\text{Utility} = \frac{\sum_{l,r} |P^A(l[\text{Birth,City}],r[\text{Illness}]) - P(l[\text{Birth,City}],r[\text{Illness}])|}{42} = \frac{13506}{172032}$$

#### **Future directions**

- Schema vs. instance constraints and visibility requirements
- Data dependencies not captured by confidentiality constraints
- External knowledge
- Support for different kinds of queries
- Different metrics to measure privacy and utility

## References (1)

- [ABGGKMSTX-05] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, Y. Xu, "Two can keep a secret: A distributed architecture for secure database services," in *Proc. of CIDR* 2005 Asilomar, CA, USA, January 4-7, 2005.
- [AKSX-04] R. Agrawal, J. Kierman, R. Srikant, Y. Xu, "Order preserving encryption for numeric data," in *Proc. of ACM SIGMOD 2004*, Paris, France, 2004.
- [AT-83] S. Akl, P. Taylor, "Cryptographic solution to a problem of access control in a hierarchy," *ACM Transactions on Computer System*, 1(3):239–248, 1983.
- [AW-89] N.R. Adam, J.C. Wortmann, "Security-control methods for statistical databases: A comparative study," in ACM Computing Survey, vol. 21, n. 4, December 1989, pp. 515-556.
- [BA-05] R.J. Bayardo, R. Agrawal, "Data privacy through optimal k-anonymization," in *Proc. of ICDE 2005*), pp. 217–228, Tokyo, Japan, 2005.
- [CM-08] A. Calì, D. Martinenghi, "Querying data under access limitations," in IEEE ICDE 2008, Cancun, Mexico, April 7-12, 2008.

## References (2)

- [CDDJPS-05] A. Ceselli, E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, P. Samarati, "Modeling and assessing inference exposure in encrypted databases," in ACM Transactions on Information and System Security (TISSEC), February, 2005.
- [CMW-06] J. Crampton, K. Martin, P. Wild, "On key assignment for hierarchical access control," in *Proc. of CSFW 2006*, Los Alamitos, CA, USA, 2006.
- [CDFS-07a] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, P. Samarati, "k-Anonymity," in Secure Data Management in Decentralized Systems, T. Yu and S. Jajodia (eds), Springer-Verlag, 2007.
- [CDFS-07b] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, P. Samarati, "Microdata protection," in Secure Data Management in Decentralized Systems, T. Yu, and S. Jajodia (eds.), Springer, 2007.
- [CDFJPS-07] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Fragmentation and encryption to enforce privacy in data storage," in *Proc. of ESORICS 2007*, Dresden, Germany, September 24-26, 2007.

## References (3)

- [CDFJPS-10] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Combining fragmentation and encryption to protect privacy in data storage," in ACM Transactions on Information and System Security (TISSEC), vol. 13, no. 3, July, 2010.
- [CDFJPS-09a] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati, "Fragmentation design for efficient query execution over sensitive distributed databases," in *Proc. of ICDCS* 2009, Montreal, Quebec, Canada, June 22-26, 2009.
- [CDFJPS-09b] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Keep a few: outsourcing data while maintaining confidentiality," in *Proc. of ESORICS* 2009), Saint Malo, France, September 21-25, 2009.
- [CLR-07] B-C. Chen, K. LeFevre, R. Ramakrishnan, "Privacy skyline: Privacy with multidimensional adversarial knowledge," in *Proc. of VLDB 2007*, Vienna, Austria, September 23-28 2007.
- [CMFDX-11] R. Chen, N. Mohammed, B.C.M. Fung, B.C. Desai, L. Xiong, "Publishing set-valued data via differential privacy," in *PVLDB*, 4(11):1087-1098, September 2011.

## References (4)

- [CSYZ-08] G. Cormode, D. Srivastava, T. YU, Q. Zhang, "Anonymizing bipartite graph data using safe groupings," in *Proc. of VLDB 2008*, Auckland, New Zealand, August 23-28, 2008.
- [DFJPS-12] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Support for write privileges on outsourced data," in *Proc. of SEC* 2012, Heraklion, Crete, Greece, June 4-6, 2012.
- [DFJPS-10a] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Encryption policies for regulating access to outsourced data," in *ACM Transactions on Database Systems (TODS)*, vol. 35, no. 2, April, 2010.
- [DFJPS-10b] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Fragments and loose associations: Respecting privacy in data publishing," in *Proc. of the VLDB Endowment*, vol. 3, no. 1, 2010.
- [DFPPS-11] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, P. Samarati, "Efficient and private access to outsourced data," in *Proc. of ICDCS* 2011, Minneapolis, Minnesota, USA, June 20-24, 2011.
- [DFJPS-11] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, P. Samarati, "Authorization enforcement in distributed query evaluation," in *Journal of Computer Security*, 2011.

## References (5)

- [DFS-12] S. De Capitani di Vimercati, S. Foresti, P. Samarati, "Protecting data in outsourcing scenarios," in *Handbook on Securing Cyber-Physical Critical Infrastructure*, S.K Das, K. Kant, and N. Zhang (eds.), Morgan Kaufmann, 2012.
- [DFM-04] A. De Santis, A.L. Ferrara, B. Masucci, "Cryptographic key assignment schemes for any access control policy," *Inf. Process. Lett.*, 92(4):199–205, 2004.
- [DGMS-00] P.T. Devanbu, M. Gertz, C.U. Martel, S.G. Stubblebine, "Authentic third-party data publication," in *Proc. of DBSec 2000*, Schoorl, The Netherlands, 2000.
- [DWHL-11] B. Ding, M. Winslett, J. Han, Z. Li, "Differentially private data cubes: Optimizing noise sources and consistency," in *Proc. of SIGMOD 2011*, Athens, Greece, June 2011.
- [D-06] C. Dwork, "Differential privacy," in Proc. of the 33rd International Colloquium on Automata, Languages and Programming (ICALP 2006), Venice, Italy, July 2006.
- [D-11] C. Dwork, "Differential privacy," in *Encyclopedia on Cryptography and Security*, H.C.A. van Tilborg, and S. Jajodia (eds.), Springer, 2011.
- [FWS-08] A. Friedman, R. Wolff, A. Schuster, "Providing k-anonymity in data mining," in *The VLDB Journal*, 17(4):789-804, July 2008.

## References (6)

- [FZ-08] K.B. Frikken, Y. Zhang, "Yet another privacy metric for publishing micro-data," In *Proc. of WPES 2008*, Alexandria, VA, USA, 2008.
- [FWY-07] B.C.M. Fung, K. Wang, P.S. Yu, "Anonymizing classification data for privacy preservation," in *IEEE TKDE*, 19(5):711-725, May 2007.
- [GL-08] B. Gedik, L. Liu, "Protecting location privacy with personalized k-anonymity: Architecture and algorithms," in *IEEE TMC*, 7(1):1-18, January 2008
- [G-09] C. Gentry, "Fully homomorphic encryption using ideal lattices," in Proc. of STOC 2009, Bethesda, MA, USA, 2009.
- [G-80] E. Gudes, "The design of a cryptography based secure file system," *IEEE Transactions on Software Engineering*, 6(5):411–420, 1980.
- [GMT-08] A. Gionis, A. Mazza and T. Tassa, "k-Anonymization revisited," in Proc. of ICDE 2008, Cancun, Mexico, 2008.
- [G-06] P. Golle, "Revisiting the uniqueness of simple demographics in the US population," in *Proc. of WPES 2006*, Alexandria, VA, USA, October 30, 2006.
- [HIML-02] H. Hacigümüs, B. Iyer, S. Mehrotra, S-87 and C. Li, "Executing SQL over encrypted data in the database-service-provider model," in *Proc. of the ACM SIGMOD 2002*, Madison, Wisconsin, USA, June 2002.

#### References (7)

- [HMJTW-08] M. Hay, G. Miklau, D. Jensen, D. Towsley, P. Weis, "Resisting structural re-identification in anonymized social networks," in *PVLDB*, 1(1):102-114, August 2008.
- [HL-90] L. Harn, H. Lin, "A cryptographic key generation scheme for multilevel data security," *Computers and Security*, 9(6):539–546, 1990.
- [HLMJ-09] M. Hay, C. Li, G. Miklau, D. Jensen, "Accurate estimation of the degree distribution of private networks," in *Proc. of ICDM 2009*, Miami, FL, USA, December 2009.
- [HY-03] M. Hwang, W. Yang, "Controlling access in large partially ordered hierarchies using cryptographic keys," The Journal of Systems and Software, 67(2):99–107, 2003.
- [HR-11] S.-S. Ho, S. Ruan, "Differential privacy for location pattern mining," in *Proc. of SPRINGL 2011*, Chicago, IL, USA, November 2011.
- [KM-11] D. Kifer, A. Machanavajjhala, "No free lunch in data privacy," in *Proc. of SIGMOD 2011*, Athens, Greece, June 2011.
- [KM-12] D. Kifer, A. Machanavajjhala, "A rigorous and customizable framework for privacy." in *Proc. of PODS 2012*, Scottsdale, AZ, USA, May 2012.

## References (8)

- [LDR-06] K. LeFevre, D.J. DeWitt, R. Ramakrishnan, "Mondrian multidimensional k-anonymity," in *Proc. of the International Conference on Data Engineering (ICDE'06)*, Atlanta, GA, USA, 2006.
- [LLV-07] N. Li, T. Li, and S. Venkatasubramanian. "t-closeness: Privacy beyond k-anonymity and  $\ell$ -diversity," In *Proc. of ICDE 2007*), Istanbul, Turkey, April 2007.
- [LWL-89] H. Liaw, S. Wang, C. Lei, "On the design of a single-key-lock mechanism based on newton's interpolating polynomial," *IEEE Transaction on Software Engineering*, 15(9):1135–1137, 1989.
- [M-85] S. MacKinnon et al., "An optimal algorithm for assigning cryptographic keys to control access in a hierarchy," *IEEE Transactions on Computers*, 34(9):797–802, 1985.
- [MW-09] D.J. Mir, R.N. Wright, "A differentially private graph estimator," in *Proc. of ICDMW 2009*, Miami, FL, USA, December 2009.
- [MCFY-11] N. Mohammed, R. Chen, B.C.M. Fung, P.S. Yu, "Differentially private data release for data mining," in *Proc. of KDD 2011*, San Diego, CA, USA, August 2011.
- [MGK-06] A. Machanavajjhala, J. Gehrke, D. Kifer "ℓ-diversity: Privacy beyond k-anonymity," in *Proc. of the International Conference on Data Engineering* (ICDE'06). Atlanta. GA. USA. 2006.

## References (9)

- [MKMGH-07] D.J. Martin, D. Kifer, A. Machanavajjhala, J. Gehrke, J.Y. Halpern, "Worst-case background knowledge for privacy-preserving data publishing," in *Proc. of ICDE 2007*), Istanbul, Turkey, April 2007.
- [NAC-07] M.E. Nergiz, M. Atzori, C. Clifton, "Hiding the presence of individuals from shared databases," in *Proc. of SIGMOD 2007*, Beijing, China, 2007.
- [MNT-06] E. Mykletun, M. Narasimha, G. Tsudik, "Authentication and integrity in outsourced databases," *ACM Transactions on Storage*, 2(2):107–138, 2006.
- [NT-05] M. Narasimha, G. Tsudik, "DSAC: Integrity for outsourced databases with signature aggregation and chaining," in *Proc. CIKM 2005*, Bremen, Germany, 2005.
- [PPP-10] B. Palazzi, M. Pizzonia, S. Pucacco, "Query racing: Fast completeness certification of query results," in *Proc. DBSEC 2010*, Rome, Italy, 2010.
- [RHMS-09] V. Rastogi, M. Hay, G. Miklau, D. Suciu, "Relationship privacy: Output perturbation for queries with joins," in *Proc. of PODS 2009*, Providence, RI, USA, June-July 2009.
- [S-01] P. Samarati, "Protecting respondents' identities in microdata release," in IEEE Transactions on Knowledge and Data Engineering, vol. 13, n. 6, November/December 2001, pp. 1010-1027.

#### References (10)

- [S-05] R. Sion, "Query execution assurance for outsourced databases," in Proc. of VLDB 2005, Trondheim, Norway, 2005.
- [SD-10] P. Samarati, S. De Capitani di Vimercati, "Data protection in outsourcing scenarios: Issues and directions," in *Proc. of ASIACCS 2010*, Beijing, China, April, 2010.
- [S-87] R. Sandhu, "On some cryptographic solutions for access control in a tree hierarchy," in *Proc. of the 1987 Fall Joint Computer Conference on Exploring Technology: Today and Tomorrow*, Dallas, TX, USA, 1987.
- [S-88] R. Sandhu, "Cryptographic implementation of a tree hierarchy for access control," *Information Processing Letters*, 27(2):95–98, 1988.
- [SC-02] V. Shen, T. Chen, "A novel key management scheme based on discrete logarithms and polynomial interpolations," *Computer and Security*, 21(2):164–171, 2002.
- [TMK-08] M. Terrovitis, N. Mamoulis, P. Kalnis, "Privacy-preserving anonymization of set-valued data," *Proc. of the VLDB Endowment*, vol. 1, August 2008, pp. 115-125.
- [WF-06] K. Wang, B. Fung, "Anonymizing sequential releases," in *Proc. of KDD* 2006, Philadelphia, PA, USA, 2006.

## References (11)

- [WL-06] H. Wang, Laks V. S. Lakshmanan, "Efficient secure query evaluation over encrypted XML databases," in Proc. of VLDB 2006, Seoul, Korea, 2006.
- [WXWF-10] K. Wang, Y. Xu, R. Wong, A. Fu, "Anonymizing temporal data," in *Proc. of ICDM 2010*, Sydney, Australia, 2010.
- [XWG-11] X. Xiao, G.Wang, J. Gehrke, "Differential privacy via wavelet transforms," in *IEEE Trans. on Knowl. Data Eng.*, 23(8): 1200-1214, 2011.
- [XT-06] X. Xiao, Y. Tao, "Personalized privacy preservation," in *Proc. of SIGMOD 2006*, Chicago, IL, USA, 2006.
- [XT-07] X. Xiao, Y. Tao, "*m*-invariance: Towards privacy preserving re-publication of dynamic datasets," in *Proc. of SIGMOD 2007*, Beijing, China, 2007.
- [XWYM-07] M. Xie, H. Wang, J. Yin, X. Meng, "Integrity auditing of outsourced data," in *Proc. VLDB 2007*, Vienna, Austria, 2007.
- [WYPY-08] H. Wang, J. Yin, C. Perng, P.S. Yu, "Dual encryption for query integrity assurance," in *Proc. CIKM 2008*, Napa Valley, USA, 2008.
- [ZHPJTJ-09] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, Y. Jia, "Continuous privacy preserving publishing of data streams," in *Proc. of EDBT 2009*, Saint Petersburg, Russia, 2009.