Verification of Security Protocols Part II

Véronique Cortier¹

September, 2010

Fosad 2010

Advertisement

ProSecure project

Goal: analysis and design of security systems

- \rightarrow five years project (2011-2015), founded by the European Research Council.
- → Regular job offers!
 - PhD positions and Post-doc positions
 - One research associate position (up to 5 years, with budget for PhD grant and other costs)
 - Permanent positions (CNRS, INRIA, Universities)
- → contact me cortier@loria.fr

LORIA (Nancy)

Size: 500 researchers, among which about 150 permanent researchers and 150 PhD students.

Where is it?

Well connected to:

- Paris, France (90 minutes)
- Luxembourg (90-120 minutes)
- Saarbrucken, Germany (120 minutes)

Yesterday course

How to use formal methods for analysing cryptographic protocols?

- Messages are abstracted by terms
- Intruder can compute new terms using a deduction system
- Protocols can be described by rules of the form $u \rightarrow v$, where u, v are terms with variables.

What formal methods allow to do?

• In general, secrecy preservation is undecidable.

What formal methods allow to do?

- In general, secrecy preservation is undecidable.
- For a bounded number of sessions, secrecy is co-NP-complete [RusinowitchTuruani CSFW01]
 - → several tools for detecting attacks (Casper, Avispa platform...)

What formal methods allow to do?

- In general, secrecy preservation is undecidable.
- For a bounded number of sessions, secrecy is co-NP-complete [RusinowitchTuruani CSFW01]
 - → several tools for detecting attacks (Casper, Avispa platform...)
- For an unbounded number of sessions
 - for one-copy protocols, secrecy is DEXPTIME-complete [CortierComon RTA03] [SeildVerma LPAR04]
 - for message-length bounded protocols, secrecy is DEXPTIME-complete [Durgin et al FMSP99] [Chevalier et al CSL03]
 - → some tools for proving security (ProVerif, EVA Platform)

Limitations of this approach?

Are you ready to use any protocol verified with this technique?

- Only a finite scenario is checked.
 - → What happens if the protocol is used one more time?
- The underlying mathematical properties of the primitives are abstracted away.

Motivation

Back to our running example :

$$A \rightarrow B$$
 : $\{pin\}_{k_a}$
 $B \rightarrow A$: $\{\{pin\}_{k_a}\}_{k_b}$
 $A \rightarrow B$: $\{pin\}_{k_b}$

We need the equation for the commutativity of encryption

$$\{\{z\}_x\}_y = \{\{z\}_y\}_x$$

Some other examples

Encryption-Decryption theory

$$\operatorname{dec}(\operatorname{enc}(x,y),y) = x \quad \pi_1(\langle x,y \rangle) = x \quad \pi_2(\langle x,y \rangle) = y$$

EXclusive Or

$$x \oplus (y \oplus z) = z$$
 $x \oplus y = y \oplus x$
 $x \oplus x = 0$ $x \oplus 0 = x$

Diffie-Hellmann

$$\exp(\exp(z,x),y) = \exp(\exp(z,y),x)$$

E-voting protocols

First phase:

 $V \rightarrow A$: sign(blind(vote, r), V) $A \rightarrow V$: sign(blind(vote, r), A)

Voting phase:

 $V \rightarrow C$: sign(vote, A)

• •

Equational theory for blind signatures

[Kremer Ryan 05]

```
 \begin{array}{rcl} \mathsf{checksign}(\mathsf{sign}(x,y),\mathsf{pk}(y)) & = & x \\ & \mathsf{unblind}(\mathsf{blind}(x,y),y) & = & x \\ \mathsf{unblind}(\mathsf{sign}(\mathsf{blind}(x,y),z),y) & = & \mathsf{sign}(x,z) \end{array}
```

Deduction

$$\frac{}{T\vdash_{\textbf{\textit{E}}} M} M\in T$$

$$\frac{T \vdash_{\mathbf{E}} M_1 \cdots T \vdash_{\mathbf{E}} M_k}{T \vdash_{\mathbf{E}} f(M_1, \dots, M_k)} f \in \Sigma$$

$$\frac{T \vdash M}{T \vdash M'} M =_{\mathbf{E}} M'$$

Deduction

$$\frac{T \vdash_{E} M}{T \vdash_{E} M} M \in T \qquad \frac{T \vdash_{E} M_{1} \cdots T \vdash_{E} M_{k}}{T \vdash_{E} f(M_{1}, \dots, M_{k})} f \in \Sigma$$

$$\frac{T \vdash M}{T \vdash_{E} M'} M =_{E} M'$$

Example: E := dec(enc(x, y), y) = x and $T = \{enc(secret, k), k\}$.

$$\frac{\overline{T \vdash \mathsf{enc}(\mathit{secret}, k)} \qquad \overline{T \vdash k}}{\frac{T \vdash \mathsf{dec}(\mathsf{enc}(\mathit{secret}, k), k)}{T \vdash \mathit{secret}}} \quad f \in \Sigma$$

$$\frac{T \vdash \mathsf{dec}(\mathsf{enc}(\mathsf{x}, \mathsf{y}), \mathsf{y}) = \mathsf{x}}{\mathsf{dec}(\mathsf{enc}(\mathsf{x}, \mathsf{y}), \mathsf{y}) = \mathsf{x}}$$

Rewriting system

For analyzing equational theories, we (try to) associate to E a finite convergent rewriting system $\mathcal R$ such that :

$$u =_E v$$
 iff $u \downarrow = v \downarrow$

Definition (Characterization of the deduction relation)

Let $t_1, \ldots t_n$ and u be terms in normal form.

$$\{t_1,\ldots t_n\} \vdash u \quad \text{iff} \quad \exists C \text{ s.t. } C[t_1,\ldots,t_n] \to^* u$$

(Also called Cap Intruder problem [Narendran et al])

Some results with equational theories

	Security problem	
	Bounded number of sessions	Unbounded number of sessions
Commutative	co-NP-complete	Ping-pong protocols:
encryption	[CKRT04]	co-NP-complete [Turuani04]
Exclusive Or	Decidable [CS03,CKRT03]	One copy - No nonces :
		Decidable [CLC03]
		Two-way automata - No nonces :
		Decidable [Verma03]
Abelian Groups	Decidable [Shmatikov04]	Two-way automata - No nonces :
		Decidable [Verma03]
Prefix encryption	co-NP-complete [CKRT03]	
Abelian Groups and Modular Exponentiation	General case :	AC properties of
	Decidable [Shmatikov04]	the Modular Exponentiation
	Restricted protocols :	No nonces :
	co-NP-complete [CKRT03]	Semi-Decision Procedure [GLRV04]

And now are you ready to use any protocol verified with these techniques?

Assuming:

- Analysis for an unbounded number of sessions
- With equational theories

Outline of the talk

Towards more cryptographic guarantees

- Formal methods for protocols
 - Yesterday course
 - Adding equational theories
- 2 Cryptographic models
 - Encryption schemes
 - Security of encryption
 - Cryptographic models
 - Linking formal and cryptographic models
- Passive case
 - Setting
 - Patterns
 - Soundness of indistinguishability
- 4 Active case
 - Setting
 - Trace mapping
 - A special case : computational secrecy
 - General computational indistinguishability

Specificity of cryptographic models

- Messages are bitstrings
- Real encryption algorithm
- Real signature algorithm
- General and powerful adversary
- → very little abstract model

Encryption: the old time

- Caesar encryption : $A \rightarrow E$, $B \rightarrow F$, $C \rightarrow G$, ...
- Cypher Disk (Léone Battista Alberti 1466)

Encryption: the old time

- Caesar encryption : $A \rightarrow E$, $B \rightarrow F$, $C \rightarrow G$, ...
- Cypher Disk (Léone Battista Alberti 1466)

→ subject to statistical analysis (Analyzing letter frequencies)

Encryption: mechanized time

Automatic substitutions and permutations

Enigma

Encryption nowadays

→ Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.

- e: public exponent
 - $x \mapsto x^e \mod n$ easy (cubic)
 - $y = x^e \mapsto x \mod n$ difficult $x = y^d$ où $d = e^{-1} \mod \phi(n)$

Encryption nowadays

 \rightarrow Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.

- e: public exponent
 - $x \mapsto x^e \mod n$ easy (cubic)
 - $y = x^e \mapsto x \mod n$ difficult $x = y^d$ où $d = e^{-1} \mod \phi(n)$

Diffie-Hellman Problem

- Given $A = g^a$ and $B = g^b$,
- Compute $DH(A, B) = g^{ab}$

Encryption nowadays

 \rightarrow Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.

- e: public exponent
 - $x \mapsto x^e \mod n$ easy (cubic)
 - $y = x^e \mapsto x \mod n$ difficult $x = y^d$ où $d = e^{-1} \mod \phi(n)$

Diffie-Hellman Problem

- Given $A = g^a$ and $B = g^b$,
- Compute $DH(A, B) = g^{ab}$
- → Based on hardness of integer factorization.

Estimations for integer factorization

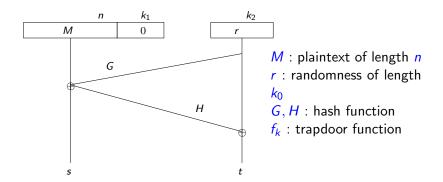
Module	Operations	
(bits)	(in \log_2)	
512	58	
1024	80	2
2048	111	
4096	149	
8192	156	

$$pprox 2^{60}$$
 years

→ Lower bound for RSA and Diffie-Hellman.

How does an (asymmetric) encryption algorithm look like?

Example: OAEP [Bellare Rogaway]



$$E_K(x; r) = f_K(s||t)$$

Encryption schemes
Security of encryption
Cryptographic models
Linking formal and cryptographic models

What is a secure encryption scheme?

What is a secure encryption scheme?

Intuitively:

- An adversary
- should not know the underlying plaintext.

Security of asymmetric encryption

Public data:

- $c = E_{k_e}(m, r)$ cyphertext
- ke encryption key

There exists a unique message m satisfying the relation (with possible several relevant r)

 \rightarrow An exhaustive search on m and r yields m!

Security of asymmetric encryption

Public data:

- $c = E_{k_e}(m, r)$ cyphertext
- ke encryption key

There exists a unique message m satisfying the relation (with possible several relevant r)

- \rightarrow An exhaustive search on m and r yields m!
- \Rightarrow Unconditional secrecy is impossible, one has to rely on algorithmic assumptions.

How to define an attacker/adversary

We wish to model an attacker:

- as clever as possible
 - → he/she should be able to perform any operation
- with a limited time.
 - \bullet E.g. we do not wish to consider attacks that require 2^{60} years
 - Otherwise, the adversary could enumerate all keys (exponential time in 2^{size(keys)})

How to define an attacker/adversary

We wish to model an attacker:

- as clever as possible
 - → he/she should be able to perform any operation
- with a limited time.
 - \bullet E.g. we do not wish to consider attacks that require 2^{60} years
 - Otherwise, the adversary could enumerate all keys (exponential time in 2^{size(keys)})

Model: we consider any Turing machine

- that models any algorithm
- probabilistic : The adversary can generate keys and chose randomly his behavior
- polynomial in the size of the keys: which represents a reasonable execution time.

Security proof in a nutshell

Proof by reduction

• Hypothesis : The algorithmic problem P is hard = there is no polynomial algorithm (P = RSA, DL, DDH, CDH...)

Security proof in a nutshell

Proof by reduction

- Hypothesis: The algorithmic problem P is hard = there is no polynomial algorithm (P = RSA, DL, DDH, CDH...)
- Reduction :
 - If there exists a (polynomial) adversary A un adversaire (polynomial) breaking the encryption scheme,
 - Then one can build upon A for solving P in polynomial time.

Security proof in a nutshell

Proof by reduction

- Hypothesis: The algorithmic problem P is hard = there is no polynomial algorithm (P = RSA, DL, DDH, CDH...)
- Reduction :
 - If there exists a (polynomial) adversary A un adversaire (polynomial) breaking the encryption scheme,
 - Then one can build upon A for solving P in polynomial time.
- Onclusion: the encryption scheme is secure, there is no polynomial adversary.

What is a secure encryption scheme?

- An adversary
- should not know the underlying plaintext.
 - → several possible definitions of knowledge

One-Wayness (OW)

Basic security property : One-Wayness (OW) without the inverse key, one cannot retrieve the underlying plaintext : $\Pr_{m,r}[c=E(m;r)\mid \mathcal{A}(c)=m]$

One-Wayness (OW)

Basic security property : One-Wayness (OW) without the inverse key, one cannot retrieve the underlying plaintext :

$$Pr_{m,r}[c = E(m; r) \mid A(c) = m]$$
 is negligible.

Negligibility : f is negligible if for any polynomial p, there exists η_0 s.t. for all $\eta \geq \eta_0$

$$f(\eta) \leq 1/p(\eta)$$

Not strong enough!

- The adversary may be able to compute half of the secret message.
- There is no guarantee in case that some partial information on the secret is known.

Not strong enough!

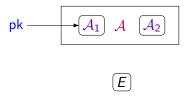
- The adversary may be able to compute half of the secret message.
- There is no guarantee in case that some partial information on the secret is known.

 \rightarrow Introduction of a notion of indistinguishability. :

The adversary shall not guess even one bit of the underlying plaintext.

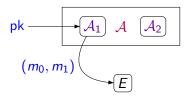
Game Adversary : $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$

1 the adversary A_1 is given the public key pk.



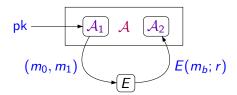
Game Adversary : $A = (A_1, A_2)$

- the adversary A_1 is given the public key pk.
- ② The adversary A_1 chooses two messages m_0, m_1 .



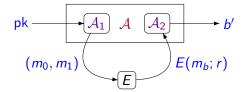
Game Adversary : $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$

- the adversary A_1 is given the public key pk.
- ② The adversary A_1 chooses two messages m_0, m_1 .
- **3** one bit b = 0, 1 is flipped and $c = E(m_b; r)$ is given to the adversary.



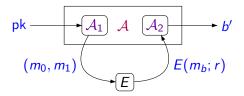
Game Adversary : $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$

- the adversary A_1 is given the public key pk.
- 2 The adversary A_1 chooses two messages m_0, m_1 .
- **3** one bit b = 0, 1 is flipped and $c = E(m_b; r)$ is given to the adversary.
- **1** The adversary A_2 outputs b'.



Game Adversary : $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$

- the adversary A_1 is given the public key pk.
- 2 The adversary A_1 chooses two messages m_0, m_1 .
- **3** one bit b = 0, 1 is flipped and $c = E(m_b; r)$ is given to the adversary.
- **1** The adversary A_2 outputs b'.



The probability $Pr[b = b'] - \frac{1}{2}$ should be negligible.

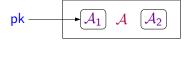
Even stronger!

Non Malleability (NM)

Given a cyphertext E(m; r), the adversary should not be able to create a cyphertext E(m'; r') such that messages m and m' have a meaningful relation.

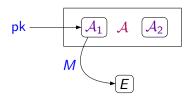
Game Adversary : $A = (A_1, A_2)$

1 The adversary A_1 is given the public key pk.



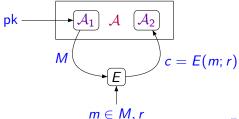
Game Adversary : $A = (A_1, A_2)$

- **1** The adversary A_1 is given the public key pk.
- **②** The adversary A_1 chooses a set of messages M.



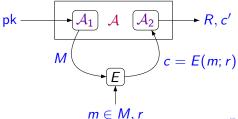
Game Adversary : $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$

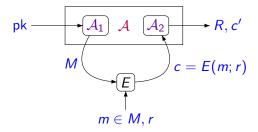
- **1** The adversary A_1 is given the public key pk.
- 2 The adversary A_1 chooses a set of messages M.
- **3** Two messages m and m^* are chosen at random in M and c = E(m; r) is given to the adversary.

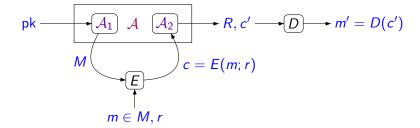


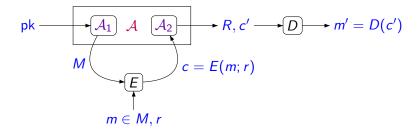
Game Adversary : $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)$

- **1** The adversary A_1 is given the public key pk.
- ② The adversary A_1 chooses a set of messages M.
- Two messages m and m^* are chosen at random in M and c = E(m; r) is given to the adversary.
- **1** The adversary A_2 outputs a binary relation R and a cyphertext c'.









The probability $Pr[R(m, m')] - Pr[R(m, m^*)]$ should be negligible.

Relations

Non Malleability

↓
Indistinguishability

↓
One-Wayness

Exercise (medium) : show the implications.

Adding even more security

The adversary has access to oracles:

- → Encryption of all messages of his choice
- → Decryption of all messages of his choice

Three standard levels of security:

Chosen-Plaintext Attacks (CPA)

Adding even more security

The adversary has access to oracles:

- → Encryption of all messages of his choice
- → Decryption of all messages of his choice

Three standard levels of security:

- Chosen-Plaintext Attacks (CPA)
- Non adaptive Chosen-Ciphertext Attacks (CCA1)
 - \rightarrow access to the (decryption) oracle before the challenge.

Adding even more security

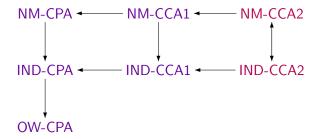
The adversary has access to oracles:

- → Encryption of all messages of his choice
- → Decryption of all messages of his choice

Three standard levels of security:

- Chosen-Plaintext Attacks (CPA)
- Non adaptive Chosen-Ciphertext Attacks (CCA1)
 - \rightarrow access to the (decryption) oracle before the challenge.
- Adaptive Chosen-Ciphertext Attacks (CCA2)
 - \rightarrow unlimited access to the (decryption) oracle (except for the challenge)

Relations



Outline of the talk

Towards more cryptographic guarantees

- Formal methods for protocols
 - Yesterday course
 - Adding equational theories
- 2 Cryptographic models
 - Encryption schemes
 - Security of encryption
 - Cryptographic models
 - Linking formal and cryptographic models
- Passive case
 - Setting
 - Patterns
 - Soundness of indistinguishability
- 4 Active case
 - Setting
 - Trace mapping
 - A special case : computational secrecy
 - General computational indistinguishability

Cryptographic models

Encryption is only one component of cryptographic models

- Cryptographic primitives : encryption, signatures, ...
- Protocol model
- Adversary
- Security notions

Setting for cryptographic protocols

Protocol:

- Message exchange program
- using cryptographic primitives

Adversary A: any probabilistic polynomial Turing machine, *i.e.* any probabilistic polynomial program.

- polynomial : captures what is feasible
- probabilistic : the adversary may try to guess some information

Definition of secrecy preservation

 \rightarrow Several notions of secrecy :

One-Wayness: The probability for an adversary $\mathcal A$ to compute the secret s against a protocol $\mathcal P$ is negligible (smaller than any inverse of polynomial).

$$\forall p \text{ polynomial } \exists \eta_0 \ \forall \eta \geq \eta_0 \ \ \Pr_{m,r}^{\eta}[\mathcal{A}(\mathcal{P}_K) = s] \leq \frac{1}{p(\eta)}$$

 η : security parameter = key length

Definition of secrecy preservation

 \rightarrow Several notions of secrecy :

One-Wayness: The probability for an adversary $\mathcal A$ to compute the secret s against a protocol $\mathcal P$ is negligible (smaller than any inverse of polynomial).

$$\forall p \text{ polynomial } \exists \eta_0 \ \forall \eta \geq \eta_0 \ \ \Pr_{m,r}^{\eta}[\mathcal{A}(\mathcal{P}_K) = s] \leq \frac{1}{p(\eta)}$$

 η : security parameter = key length

 \rightarrow Not enough! (why?)

Computational secrecy

Computational secrecy of s is defined through the following game :

- Two values n_0 and n_1 are randomly generated instead of s;
- The adversary interacts with the protocol where s is replaced by n_b , $b \in \{0,1\}$;
- We give the pair (n_0, n_1) to the adversary;
- The adversary gives b',

The data s is secret if $Pr[b=b']-\frac{1}{2}$ is a negligible function.

A typical cryptographic proof

- Assume that some algorithmic problem P is difficult (E.g. RSA or integer factorization or Discrete Log or CDH, DDH, ...)
- ullet Suppose that a (polynomial probabilistic) adversary ${\cal A}$ breaks the protocol security with non negligible probability

A typical cryptographic proof

- Assume that some algorithmic problem P is difficult (E.g. RSA or integer factorization or Discrete Log or CDH, DDH, ...)
- ullet Suppose that a (polynomial probabilistic) adversary ${\cal A}$ breaks the protocol security with non negligible probability
- **3** Build out of \mathcal{A} an adversary \mathcal{B} that solves P.

A typical cryptographic proof

- Assume that some algorithmic problem P is difficult (E.g. RSA or integer factorization or Discrete Log or CDH, DDH, ...)
- ullet Suppose that a (polynomial probabilistic) adversary ${\cal A}$ breaks the protocol security with non negligible probability
- **3** Build out of \mathcal{A} an adversary \mathcal{B} that solves P.
- Conclude that the protocol is secure provided P is difficult.

Outline of the talk

Towards more cryptographic guarantees

- 1 Formal methods for protocols
 - Yesterday course
 - Adding equational theories
- 2 Cryptographic models
 - Encryption schemes
 - Security of encryption
 - Cryptographic models
 - Linking formal and cryptographic models
- Passive case
 - Setting
 - Patterns
 - Soundness of indistinguishability
- 4 Active case
 - Setting
 - Trace mapping
 - A special case : computational secrecy
 - General computational indistinguishability

Formal and Cryptographic approaches

	Formal approach	Cryptographic approach
Messages	terms	bitstrings
Encryption	idealized	algorithm
Adversary	idealized	any pol <u>y</u> nomial algorithm
Secrecy property	reachability-based property	indistinguishability
Guarantees	unclear	strong
Protocol	may be complex	usually simpler

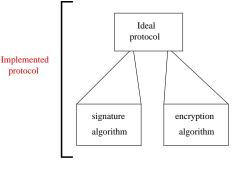
Formal and Cryptographic approaches

	Formal approach	Cryptographic approach
Messages	terms	bitstrings
Encryption	idealized	algorithm
Adversary	idealized	any polynomial algorithm
Secrecy property	reachability-based property	indistinguishability
Guarantees	unclear	strong
Protocol	may be complex	usually simpler
Proof	automatic	by hand, tedious and error-prone

Link between the two approaches?

Composition of the two approaches

Automatic cryptographically sound proofs



Formal approach: verification of idealized protocols

Cryptographers: verification of the cryptographic primitives

Passive Case

A first result : seminal result from M. Abadi and Ph. Rogaway

J. of Cryptology, 2002

How to symbolically abstract computational indistinguishability of distributions?

Setting

Messages are represented by terms

In the initial result of Abadi and Rogaway, $\mathcal{F} = \{\text{enc}, \langle , \rangle \}$

Each functional symbol has a concrete implementation
 ⇒ a sequence of messages

$$n$$
, enc (n, k) , enc $(\langle n, n \rangle, k)$

generates a distribution: uniform distribution for nonces and application of the functions (symmetric encryption and pairing).

The two distributions $\llbracket \psi \rrbracket$ and $\llbracket \psi' \rrbracket$ are indistinguishable, $\llbracket \psi \rrbracket \approx \llbracket \psi' \rrbracket$, if

$$\mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right] - \mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi' \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right]$$

is a negligible function of η .

The two distributions $\llbracket \psi \rrbracket$ and $\llbracket \psi' \rrbracket$ are indistinguishable, $\llbracket \psi \rrbracket \approx \llbracket \psi' \rrbracket$, if

$$\mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right] - \mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi' \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right]$$

is a negligible function of η .

$$\phi_1 = n_0, n_1, \text{enc}(n_0, k)$$
 $\phi_2 = n_0, n_1, \text{enc}(n_1, k)$

The two distributions $\llbracket \psi \rrbracket$ and $\llbracket \psi' \rrbracket$ are indistinguishable, $\llbracket \psi \rrbracket \approx \llbracket \psi' \rrbracket$, if

$$\mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right] - \mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi' \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right]$$

is a negligible function of η .

$$\phi_1 = n_0, n_1, \text{enc}(n_0, k) \approx \phi_2 = n_0, n_1, \text{enc}(n_1, k)$$

$$\phi_3 = n_0, n_1, \text{enc}(n_0, k), k \quad \phi_4 = n_0, n_1, \text{enc}(n_1, k), k$$

The two distributions $\llbracket \psi \rrbracket$ and $\llbracket \psi' \rrbracket$ are indistinguishable, $\llbracket \psi \rrbracket \approx \llbracket \psi' \rrbracket$, if

$$\mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right] - \mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi' \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right]$$

is a negligible function of η .

$$\phi_1 = n_0, n_1, \operatorname{enc}(n_0, k) \approx \phi_2 = n_0, n_1, \operatorname{enc}(n_1, k)$$
 $\phi_3 = n_0, n_1, \operatorname{enc}(n_0, k), k \not\approx \phi_4 = n_0, n_1, \operatorname{enc}(n_1, k), k$
 $\phi_5 = \operatorname{enc}(n_0, k), k \quad \phi_6 = \operatorname{enc}(n_0, k'), k$

The two distributions $\llbracket \psi \rrbracket$ and $\llbracket \psi' \rrbracket$ are indistinguishable, $\llbracket \psi \rrbracket \approx \llbracket \psi' \rrbracket$, if

$$\mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right] - \mathbb{P}\left[\widehat{\psi} \leftarrow \llbracket \psi' \rrbracket; \mathcal{A}(\eta, \widehat{\psi}) = 1\right]$$

is a negligible function of η .

$$\phi_1 = n_0, n_1, \operatorname{enc}(n_0, k) \approx \phi_2 = n_0, n_1, \operatorname{enc}(n_1, k)$$
 $\phi_3 = n_0, n_1, \operatorname{enc}(n_0, k), k \not\approx \phi_4 = n_0, n_1, \operatorname{enc}(n_1, k), k$
 $\phi_5 = \operatorname{enc}(n_0, k), k \not\approx \phi_6 = \operatorname{enc}(n_0, k'), k$

Patterns: Definition of what is visible to an intruder

Given a sequence $S = M_1, M_2, \dots, M_k$, we define

$$\mathsf{Pat}(S) = \{\mathsf{Pat}^S(M_1), \mathsf{Pat}^S(M_2), \dots, \mathsf{Pat}^S(M_k)\} \text{ with }$$

Patterns: Definition of what is visible to an intruder

Given a sequence $S = M_1, M_2, \dots, M_k$, we define

$$\mathsf{Pat}(S) = \{\mathsf{Pat}^S(M_1), \mathsf{Pat}^S(M_2), \dots, \mathsf{Pat}^S(M_k)\} \text{ with }$$

$$\mathsf{Pat}^{\mathcal{S}}(a) = \left\{ \begin{array}{ll} a & \text{if } \mathcal{S} \vdash a \\ \square & \text{otherwise} \end{array} \right.$$

Patterns: Definition of what is visible to an intruder

Given a sequence $S = M_1, M_2, \dots, M_k$, we define

$$\mathsf{Pat}(S) = \{\mathsf{Pat}^S(M_1), \mathsf{Pat}^S(M_2), \dots, \mathsf{Pat}^S(M_k)\} \text{ with }$$

$$\mathsf{Pat}^{S}(a) = \left\{ \begin{array}{ll} a & \mathsf{if} \ S \vdash a \\ \square & \mathsf{otherwise} \end{array} \right.$$

$$\mathsf{Pat}^{\mathcal{S}}(\langle M_1, M_2 \rangle) = \langle \mathsf{Pat}^{\mathcal{S}}(M_1), \mathsf{Pat}^{\mathcal{S}}(M_2) \rangle$$

Given a sequence $S = M_1, M_2, \dots, M_k$, we define

Patterns: Definition of what is visible to an intruder

$$\mathsf{Pat}(S) = \{\mathsf{Pat}^S(M_1), \mathsf{Pat}^S(M_2), \dots, \mathsf{Pat}^S(M_k)\}$$
 with $\mathsf{Pat}^S(a) = \left\{ egin{array}{ll} a & \mbox{if } S \vdash a \ & \mbox{otherwise} \end{array}
ight.$

 $\operatorname{Pat}^{S}(\langle M_{1}, M_{2} \rangle) = \langle \operatorname{Pat}^{S}(M_{1}), \operatorname{Pat}^{S}(M_{2}) \rangle$

$$\mathsf{Pat}^{\mathcal{S}}(\{M\}_k) = \begin{cases} \{\mathsf{Pat}^{\mathcal{S}}(M)\}_k & \text{if } S \vdash k \\ \square & \text{otherwise} \end{cases}$$

Reminder: deduction system

Standard "Dolev Yao" deduction system, seen Part I of this course.

$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle} \qquad \frac{T \vdash u \quad T \vdash v}{T \vdash \mathsf{enc}(u, v)}$$

$$\frac{T \vdash u}{T \vdash u} \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash u} \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash v}$$

$$\frac{T \vdash \mathsf{enc}(u, v) \quad T \vdash v}{T \vdash u}$$

$$\phi_1 = n_0, n_1, \operatorname{enc}(n_0, k) \approx \phi_2 = n_0, n_1, \operatorname{enc}(n_1, k) n_0, n_1, \square n_0, n_1, \square$$

$$\phi_1 = n_0, n_1, \operatorname{enc}(n_0, k) \approx \phi_2 = n_0, n_1, \operatorname{enc}(n_1, k) \\ n_0, n_1, \square \qquad n_0, n_1, \square$$

$$\phi_3 = n_0, n_1, \operatorname{enc}(n_0, k), k \not\approx \phi_4 = n_0, n_1, \operatorname{enc}(n_1, k), k n_0, n_1, \operatorname{enc}(n_0, k), k n_0, n_1, \operatorname{enc}(n_1, k), k$$

$$\phi_{1} = n_{0}, n_{1}, \operatorname{enc}(n_{0}, k) \approx \phi_{2} = n_{0}, n_{1}, \operatorname{enc}(n_{1}, k) \\ n_{0}, n_{1}, \square \approx \phi_{3} = n_{0}, n_{1}, \operatorname{enc}(n_{0}, k), k \not\approx \phi_{4} = n_{0}, n_{1}, \operatorname{enc}(n_{1}, k), k \\ n_{0}, n_{1}, \operatorname{enc}(n_{0}, k), k \approx \phi_{6} = \operatorname{enc}(n_{0}, k'), k \\ \operatorname{enc}(n_{0}, k), k \approx \phi_{6} = \operatorname{enc}(n_{0}, k'), k \\ \operatorname{enc}(n_{0}, k), k \approx \phi_{6} = \operatorname{enc}(n_{0}, k'), k \\ \operatorname{enc}(n_{0}, k), k \approx 0$$

$$\phi_{1} = n_{0}, n_{1}, \operatorname{enc}(n_{0}, k) \approx \phi_{2} = n_{0}, n_{1}, \operatorname{enc}(n_{1}, k) \\ n_{0}, n_{1}, \square \approx \phi_{3} = n_{0}, n_{1}, \operatorname{enc}(n_{0}, k), k \not\approx \phi_{4} = n_{0}, n_{1}, \operatorname{enc}(n_{1}, k), k \\ n_{0}, n_{1}, \operatorname{enc}(n_{0}, k), k \approx \phi_{6} = \operatorname{enc}(n_{0}, k'), k \\ \operatorname{enc}(n_{0}, k), k \approx \phi_{6} = \operatorname{enc}(n_{0}, k'), k \\ \operatorname{enc}(n_{0}, k), k \approx \phi_{6} = \operatorname{enc}(n_{0}, k'), k \\ \operatorname{enc}(n_{0}, k), k \approx 0$$

Definition

Two patterns are equivalent, denoted by \equiv if they are equal up-to bijective renaming.

Theorem (Abadi-Rogaway)

Equivalence of patterns implies computational indistinguishability

$$\mathsf{Pat}(S_1) \equiv \mathsf{Pat}(S_2) \quad \Rightarrow \quad \llbracket S_1 \rrbracket \approx \llbracket S_2 \rrbracket$$

Theorem (Abadi-Rogaway)

Equivalence of patterns implies computational indistinguishability

$$\operatorname{Pat}(S_1) \equiv \operatorname{Pat}(S_2) \quad \Rightarrow \quad \llbracket S_1 \rrbracket \approx \llbracket S_2 \rrbracket$$

Provided that:

- Encryption is
 - IND-CPA

Theorem (Abadi-Rogaway)

Equivalence of patterns implies computational indistinguishability

$$\operatorname{Pat}(S_1) \equiv \operatorname{Pat}(S_2) \quad \Rightarrow \quad \llbracket S_1 \rrbracket \approx \llbracket S_2 \rrbracket$$

Provided that:

- Encryption is
 - IND-CPA
 - message length-concealing $\mathsf{Pat}(\mathsf{enc}(n,k)) = \square = \mathsf{Pat}(\mathsf{enc}(\langle n,n,n,n\rangle,k))$

Theorem (Abadi-Rogaway)

Equivalence of patterns implies computational indistinguishability

$$\operatorname{Pat}(S_1) \equiv \operatorname{Pat}(S_2) \quad \Rightarrow \quad \llbracket S_1 \rrbracket \approx \llbracket S_2 \rrbracket$$

Provided that:

- Encryption is
 - IND-CPA
 - message length-concealing $Pat(enc(n,k)) = \Box = Pat(enc)$

$$\mathsf{Pat}(\mathsf{enc}(n,k)) = \square = \mathsf{Pat}(\mathsf{enc}(\langle n \ , n, n, n \rangle, k))$$

which key-concealing

$$\mathsf{Pat}(\mathsf{enc}(n,k),\mathsf{enc}(n',k)) = \square = \mathsf{Pat}(\mathsf{Pat}(\mathsf{enc}(n,k),\mathsf{enc}(n',k')))$$

Theorem (Abadi-Rogaway)

Equivalence of patterns implies computational indistinguishability

$$\operatorname{Pat}(S_1) \equiv \operatorname{Pat}(S_2) \quad \Rightarrow \quad \llbracket S_1 \rrbracket \approx \llbracket S_2 \rrbracket$$

Provided that:

- Encryption is
 - IND-CPA
 - message length-concealing $\mathsf{Pat}(\mathsf{enc}(n,k)) = \square = \mathsf{Pat}(\mathsf{enc}(\langle n,n,n,n\rangle,k))$
 - which key-concealing

$$\mathsf{Pat}(\mathsf{enc}(n,k),\mathsf{enc}(n',k)) = \square = \mathsf{Pat}(\mathsf{Pat}(\mathsf{enc}(n,k),\mathsf{enc}(n',k')))$$

• S_1 , S_2 contain no key cycles Examples : enc(k, k) or $enc(k_1, k_2)$, $enc(k_2, k_1)$

Proof of soundness of indistinguishability

Lemma (Main lemma)

 $\llbracket S \rrbracket \approx \llbracket \operatorname{Pat}(S) \rrbracket$

We can then easily deduce the main theorem.

Proof of soundness of indistinguishability

Lemma (Main lemma)

$$\llbracket S \rrbracket \approx \llbracket \mathsf{Pat}(S) \rrbracket$$

We can then easily deduce the main theorem.

Indeed, assume $Pat(S_1) \equiv Pat(S_2)$.

- ① By the lemma, we have $\llbracket S_1 \rrbracket \approx \llbracket \mathsf{Pat}(S_1) \rrbracket$ and $\llbracket S_2 \rrbracket \approx \llbracket \mathsf{Pat}(S_2) \rrbracket$.
- ho Then $Pat(S_1) \equiv Pat(S_2)$ implies $\llbracket Pat(S_1) \rrbracket \approx \llbracket Pat(S_2) \rrbracket$.

Proof of the main lemma $S \approx Pat(S)$

Main steps :

Renaming Let K_1, \ldots, k_n be the hidden (non deducible) keys of S and J_1, \ldots, J_l be the visible (deducible) keys of S.

Since 5 contain no key cycles,

we may assume that K_j does not encrypt k_i whenever i < j.

Proof of the main lemma $[S] \approx [Pat(S)]$

Main steps :

Renaming Let K_1, \ldots, k_n be the hidden (non deducible) keys of S and J_1, \ldots, J_l be the visible (deducible) keys of S.

Since 5 contain no key cycles,

we may assume that K_j does not encrypt k_i whenever i < j.

Intermediate patterns We define a sequence

$$\mathsf{Pat}_o(S), \ldots, \mathsf{Pat}_n(S)$$
 such that

$$\operatorname{Pat}_o(S) = \operatorname{Pat}(S)$$
 and $\operatorname{Pat}_n(S) = S$

Proof of the main lemma $[S] \approx [Pat(S)]$

Main steps :

Renaming Let K_1, \ldots, k_n be the hidden (non deducible) keys of S and J_1, \ldots, J_l be the visible (deducible) keys of S.

Since 5 contain no key cycles,

we may assume that K_j does not encrypt k_i whenever i < j.

Intermediate patterns We define a sequence

$$\mathsf{Pat}_o(S), \ldots, \mathsf{Pat}_n(S)$$
 such that

$$\operatorname{Pat}_o(S) = \operatorname{Pat}(S)$$
 and $\operatorname{Pat}_n(S) = S$

Hybrid argument If $[S] \not\approx [Pat(S)]$ then there exists i such that $[Pat_i(S)] \not\approx [Pat_{i+1}(S)]$.

Proof of the main lemma $[S] \approx [Pat(S)]$

Main steps :

Renaming Let K_1, \ldots, k_n be the hidden (non deducible) keys of S and J_1, \ldots, J_l be the visible (deducible) keys of S.

Since *S* contain no key cycles,

we may assume that K_j does not encrypt k_i whenever i < j.

Intermediate patterns We define a sequence

$$\mathsf{Pat}_o(S), \ldots, \mathsf{Pat}_n(S)$$
 such that

$$\operatorname{Pat}_o(S) = \operatorname{Pat}(S)$$
 and $\operatorname{Pat}_n(S) = S$

Hybrid argument If $[S] \not\approx [Pat(S)]$ then there exists i such that $[Pat_i(S)] \not\approx [Pat_{i+1}(S)]$.

Security of encryption $[\![\operatorname{Pat}_i(S)]\!] \not\approx [\![\operatorname{Pat}_{i+1}(S)]\!]$ contradicts the security of encryption.

Intermediate patterns

Let $K_1, ..., k_n$ be the hidden (non deducible) keys of S and $J_1, ..., J_l$ be the visible (deducible) keys of S such that K_j does not encrypt k_i whenever i < j.

Definition (Intermediate patterns)

$$\operatorname{Pat}_{i}(S) = \operatorname{Pat}_{S \cup \{K_{1}, \dots, K_{i}\}}(S)$$

 $\mathsf{Pat}_i(S)$: what is visible to an intruder, with the extra knowledge K_1, \ldots, K_i .

Example of intermediate patterns

Visible keys : J_1 , J_2 Hidden keys : K_1 , K_2

Example of intermediate patterns

```
Visible keys : J_1, J_2
Hidden keys : K_1, K_2
```

$$S = \operatorname{Pat}_2(S) = \operatorname{enc}(\langle \operatorname{enc}(J_1, \mathcal{K}_2), J_1 \rangle, \mathcal{K}_1), \operatorname{enc}(J_1, J_2), J_2$$

$$\operatorname{Pat}_1(S) = \operatorname{enc}(\langle \square, J_1 \rangle, \mathcal{K}_1), \operatorname{enc}(J_1, J_2), J_2$$

Example of intermediate patterns

Visible keys : J_1 , J_2 Hidden keys : K_1 , K_2

Hybrid argument

$$\operatorname{Pat}(S) = \operatorname{Pat}_0(S)$$
 $\operatorname{Pat}_n(S)$ $\operatorname{Pat}_{n-1}(S)$ $\operatorname{Pat}_n(S) = S$

Assume by contradiction that $[Pat(S)] \not\approx [S]$.

Then, since the number n of intermediate steps is fixed, there must exist i such that

$$\llbracket \mathsf{Pat}_i(S) \rrbracket \not\approx \llbracket \mathsf{Pat}_{i+1}(S) \rrbracket$$

Exercises

Abstracting indistinguishability in various contexts

- How to adapt the definition of patterns for encryption schemes that are not which key-concealing?
- When to adapt the definition of patterns for encryption schemes that are not message length-concealing?
- Mow to adapt the definition of patterns for asymmetric encryption schemes?

Active Case

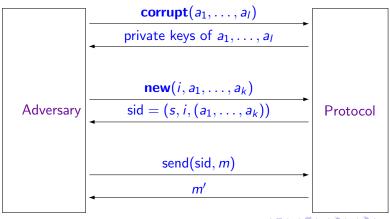
Can we extend the work to the active case?

that is,

Are standard Dolev-Yao models sound w.r.t. to computational ones?

A common setting

Same setting in formal and cryptographic models



Formal Intruder Deduction Rules

$$\frac{S \vdash m_1 \quad S \vdash m_2}{S \vdash \langle m_1 , m_2 \rangle}$$

$$\frac{S \vdash \mathsf{ek}(b)}{S \vdash \{m\}_{\mathsf{ek}(b)}^{\mathsf{adv}(i)}} i \in \mathbb{N}$$

$$\frac{S \vdash \mathsf{sk}(b)}{S \vdash [m]^{\mathsf{adv}(i)}_{\mathsf{sk}(b)}} i \in \mathbb{N}$$

$$\frac{S \vdash \langle m_1, m_2 \rangle}{S \vdash m_i} i \in \{1, 2\}$$

$$\frac{S \vdash \{m\}_{\mathsf{ek}(b)}^{I} \quad S \vdash \mathsf{dk}(b)}{S \vdash m}$$

$$\frac{S \vdash [m]_{\mathsf{sk}(b)}^{I}}{S \vdash m}$$

Result : Soundness of trace properties

Theorem (extension of [Micciancio Warinschi TCC'04])

Every concrete trace is the image of a valid formal trace, except with negligible probability.

Result : Soundness of trace properties

Theorem (extension of [Micciancio Warinschi TCC'04])

Every concrete trace is the image of a valid formal trace, except with negligible probability.

Corollary:

Let Π be protocol, P^s an arbitrary predicate on formal traces and P^c its corresponding predicate on concrete traces.

Then $\Pi \models^s P^s$ implies $\Pi \models^c P^c$.

Result: Soundness of trace properties

Theorem (extension of [Micciancio Warinschi TCC'04])

Every concrete trace is the image of a valid formal trace, except with negligible probability.

Corollary:

Let Π be protocol, P^s an arbitrary predicate on formal traces and P^c its corresponding predicate on concrete traces.

Then $\Pi \models^s P^s$ implies $\Pi \models^c P^c$.

Applications: authentication, secrecy, ...

Hypotheses on the Implementation

- encryption : IND-CCA2
 - \rightarrow the adversary cannot distinguish between $\{n_0\}_k$ and $\{n_1\}_k$ even if he has access to encryption and decryption oracles.
- signature: randomized and existentially unforgeable under chosen-message attack *i.e.* one can not produce a valid pair (m, σ)
- parsing :
 - each bit-string has a label which indicates his type (identity, nonce, key, signature, ...)
 - one can retrieve the (public) encryption key from an encrypted message.
 - one can retrieve the signed message from the signature

Proof technique: Reducing the protocol security to the robustness of the primitives (which itself reduces to hardness of algorithmic problem like integer factorization).

$$\mathcal{A}$$
 breaks $\mathcal{P} \Rightarrow \mathcal{A}'$ breaks $\{\ \}$ or sign

Proof technique: Reducing the protocol security to the robustness of the primitives (which itself reduces to hardness of algorithmic problem like integer factorization).

$$\mathcal{A}$$
 breaks $\mathcal{P} \Rightarrow \mathcal{A}'$ breaks $\{\ \}$ or sign

Example : If a computational (concrete) adversary \mathcal{A} is able to compute $\{n_a\}_{K_a}$ out of $\{<A,n_a>\}_{K_a}$, Then we can build an adversary \mathcal{A}' that breaks the encryption $\{\ \}_{K_a}$.

Key result : every concrete trace is the image of a valid formal trace, except with negligible probability.

$$\begin{array}{cccc} & \mathit{init}(1,a,b) & \to & \{a,n_a\}_{K_b} & & \{n_a\}_{K_b} \mathsf{non \ valid} \,! \\ & \uparrow & & \downarrow & & \uparrow \\ \mathcal{A}: & \mathit{init}(1,a,b) & & m_1 & \to & \mathit{send}(m_2) \end{array}$$

Key result : every concrete trace is the image of a valid formal trace, except with negligible probability.

$$\begin{array}{cccc} & \mathit{init}(1,a,b) & \rightarrow & \{a,n_a\}_{K_b} & & \{n_a\}_{K_b} \mathsf{non \ valid} \,! \\ & \uparrow & & \downarrow & \uparrow \\ \mathcal{A}: & \mathit{init}(1,a,b) & & m_1 & \rightarrow & \mathit{send}(m_2) \end{array}$$

Using the adversary \mathcal{A} , we build an adversary \mathcal{A}' that breaks encryption.

$$\mathcal{A}': (\langle a, n_a^0 \rangle, \langle a, n_a^1 \rangle) \rightarrow \begin{array}{c} \text{encryption} \\ \text{oracle} \end{array} \rightarrow \{a, n_a^{\alpha}\}_{\mathcal{K}_b}$$

Key result : every concrete trace is the image of a valid formal trace, except with negligible probability.

$$\begin{array}{cccc} & \mathit{init}(1,a,b) & \to & \{a,n_a\}_{K_b} & & \{n_a\}_{K_b} \mathsf{non \ valid} \,! \\ & \uparrow & & \downarrow & \uparrow \\ \mathcal{A}: & \mathit{init}(1,a,b) & & m_1 & \to & \mathit{send}(m_2) \end{array}$$

Using the adversary A, we build an adversary A' that breaks encryption.

$$\mathcal{A}': \quad (\langle a, n_a^0 \rangle, \langle a, n_a^1 \rangle) \rightarrow \begin{array}{c} \text{encryption} \\ \text{oracle} \end{array} \rightarrow \{a, n_a^{\alpha}\}_{K_b}$$

$$\rightarrow \mathcal{A} \rightarrow \{n_a^{\alpha}\}_{K_b}$$

Key result : every concrete trace is the image of a valid formal trace, except with negligible probability.

$$\begin{array}{cccc} & \mathit{init}(1,a,b) & \rightarrow & \{a,n_a\}_{K_b} & & \{n_a\}_{K_b} \mathsf{non \ valid} \,! \\ & \uparrow & & \downarrow & \uparrow \\ \mathcal{A}: & \mathit{init}(1,a,b) & & m_1 & \rightarrow & \mathit{send}(m_2) \end{array}$$

Using the adversary A, we build an adversary A' that breaks encryption.

$$\begin{array}{ccc} \mathcal{A}': & \left(\langle a, n_a^0 \rangle, \langle a, n_a^1 \rangle\right) \rightarrow & \underset{\text{oracle}}{\text{encryption}} & \rightarrow \{a, n_a^\alpha\}_{K_b} \\ \\ & \rightarrow \mathcal{A} \rightarrow \{n_a^\alpha\}_{K_b} \rightarrow & \underset{\text{oracle}}{\text{decryption}} & \rightarrow n_a^\alpha \rightarrow \alpha \end{array}$$

Trace properties vs observational equivalence

Fact 1 : Computational security properties are often stated as indistinguishability games rather than trace properties.

Example: secrecy, ideal functionalities, ...

Trace properties vs observational equivalence

Fact 1 : Computational security properties are often stated as indistinguishability games rather than trace properties.

Example: secrecy, ideal functionalities, ...

Fact 2 : Some security properties cannot be expressed as trace properties.

Example: Privacy properties of e-voting protocols

$$P(A, a) || P(B, b) \sim_o P(A, b) || P(B, a)$$

Correspondence of computational secrecy

Theorem

Symbolic secrecy implies computational secrecy.

- For protocols with only public key encryption, signatures and nonces
- Provided the public key encryption and the signature algorithms verify strong existing cryptographic properties (IND-CCA2, existentially unforgeable),

The previous result does not work in general

Example

$$A \rightarrow B : h(s)$$

s is inaccessible but not indistinguishable to an attacker : $h(n_b), n_0, n_1 \rightarrow b$

The previous result does not work in general

Example

$$A \rightarrow B : h(s)$$

s is inaccessible but not indistinguishable to an attacker : $h(n_b), n_0, n_1 \rightarrow b$

Results:

- Design of a new formal secrecy property
- Proof of its soundness and its faithfulness w.r.t. indistinguishability in our new setting:
 - pairing
 - asymmetric encryption
 - hashes (random oracle model)
- NP-completeness of the secrecy property

$$\mathsf{Pat}_{\mathcal{T}}(S) = \{\mathsf{Pat}^{S \cup \{T\}}(M_1), \mathsf{Pat}^{S \cup \{T\}}(M_2), \dots, \mathsf{Pat}^{S \cup \{T\}}(M_k)\} \text{ with }$$

$$\mathsf{Pat}_{\mathcal{T}}(S) = \{\mathsf{Pat}^{S \cup \{T\}}(M_1), \mathsf{Pat}^{S \cup \{T\}}(M_2), \dots, \mathsf{Pat}^{S \cup \{T\}}(M_k)\} \text{ with }$$

$$\mathsf{Pat}^{S}(a) = \left\{ \begin{array}{ll} a & \text{if } S \vdash a \\ \square & \text{otherwise} \end{array} \right.$$

$$\mathsf{Pat}_{\mathcal{T}}(S) = \{\mathsf{Pat}^{S \cup \{T\}}(M_1), \mathsf{Pat}^{S \cup \{T\}}(M_2), \dots, \mathsf{Pat}^{S \cup \{T\}}(M_k)\} \text{ with }$$

$$\mathsf{Pat}^{\mathcal{S}}(a) = \begin{cases} a & \text{if } S \vdash a \\ \Box & \text{otherwise} \end{cases}$$
$$\mathsf{Pat}^{\mathcal{S}}(\langle M_1, M_2 \rangle) = \langle \mathsf{Pat}^{\mathcal{S}}(M_1), \mathsf{Pat}^{\mathcal{S}}(M_2) \rangle$$

$$\mathsf{Pat}_{\mathcal{T}}(S) = \{\mathsf{Pat}^{S \cup \{\mathcal{T}\}}(M_1), \mathsf{Pat}^{S \cup \{\mathcal{T}\}}(M_2), \dots, \mathsf{Pat}^{S \cup \{\mathcal{T}\}}(M_k)\} \text{ with }$$

$$\begin{array}{rcl} \mathsf{Pat}^{S}(a) & = & \left\{ \begin{array}{l} a & \mathsf{if} \ S \vdash a \\ \square & \mathsf{otherwise} \end{array} \right. \\ \mathsf{Pat}^{S}(\langle M_{1}, M_{2} \rangle) & = & \left\langle \mathsf{Pat}^{S}(M_{1}), \mathsf{Pat}^{S}(M_{2}) \right\rangle \\ \mathsf{Pat}^{S}(\{M\}_{\mathsf{ek}(a)}^{r}) & = & \left\{ \begin{array}{l} \left\{ \mathsf{Pat}^{S}(M) \right\}_{\mathsf{ek}(a)}^{r} & \mathsf{if} \ S \vdash \mathsf{dk}(a) \\ \left\{ \mathsf{Pat}^{S}(M) \right\}_{\mathsf{ek}(a)}^{r} & \mathsf{or} \ \mathsf{if} \ r \in \mathsf{Rand}_{\mathit{adv}} \\ \square & \mathsf{otherwise} \end{array} \right.$$

$$\mathsf{Pat}_{\mathcal{T}}(S) = \{\mathsf{Pat}^{S \cup \{T\}}(M_1), \mathsf{Pat}^{S \cup \{T\}}(M_2), \dots, \mathsf{Pat}^{S \cup \{T\}}(M_k)\} \text{ with }$$

Examples

• $\phi_1 = \{h(\langle n_b, n' \rangle)\}$. Then $\mathsf{Pat}_{n_b}(\phi_1) = \{\Box\}$ $\to n_b$ is intuitively hidden by n'.

Examples

- $\phi_1 = \{h(\langle n_b, n' \rangle)\}$. Then $\mathsf{Pat}_{n_b}(\phi_1) = \{\Box\}$ $\to n_b$ is intuitively hidden by n'.
- $\bullet \ \phi_2 = \{h(\langle n_b, \{n'\}_{\mathsf{ek}(a)}^r \rangle), n'\}. \ \mathsf{Pat}_{n_b}(\phi_2) = \{\Box, n'\}.$
 - \rightarrow The encryption of n' does hide n_b .

Pattern-based secrecy definition

```
\Pi protocol X_{A_i}^j nonce variable occurring in some role A_i. \mathcal{M} set of sent messages s session number
```

Definition

```
X_{A_i}^j is secret in \Pi, written \Pi \models^f \mathsf{Invisible}(i,j), if : n^{a_i,j,s} \text{ does not occur in } \mathsf{Pat}_{n^{a_i,j,s}}(\mathcal{M}) \qquad \forall \mathcal{M} \in \mathsf{Exec}(\Pi) \ \forall s
```

Soundness and decidability of the secrecy property

Theorem

$$\Pi \models^f \mathsf{Invisible}^f(i,j) \quad \textit{iff} \quad \Pi \models^c \mathsf{Indist}(i,j)$$

Remark : Our formal secrecy definition is both sufficient and necessary for indistinguishability in the computational world.

Soundness and decidability of the secrecy property

Theorem

$$\Pi \models^f \mathsf{Invisible}^f(i,j) \quad \textit{iff} \quad \Pi \models^c \mathsf{Indist}(i,j)$$

Remark: Our formal secrecy definition is both sufficient and necessary for indistinguishability in the computational world.

Theorem

Deciding $\Pi \models^f \mathsf{Invisible}^f(i,j)$ is NP-complete for a finite number of sessions.

General computational indistinguishability

Observational equivalence is a sound abstraction of computational indistinguishability.

$$P \sim_o Q \Rightarrow \llbracket P \rrbracket \approx \llbracket Q \rrbracket$$

- For simple processes
 (A fragment of applied pi-calculus that captures most security protocols)
- For symmetric encryption implemented using IND-CC2 schemes

General computational indistinguishability

Observational equivalence is a sound abstraction of computational indistinguishability.

$$P \sim_o Q \Rightarrow \llbracket P \rrbracket \approx \llbracket Q \rrbracket$$

- For simple processes
 (A fragment of applied pi-calculus that captures most security protocols)
- For symmetric encryption implemented using IND-CC2 schemes

Limitation: No dishonest keys!

(currently solved by Guillaume Scerri)

Related Work

Abadi-Rogaway, followed by several extensions: passive case.

Backes-Pfitzmann

- very general results: symmetric and asymmetric encryption, pairing, signatures, MACs.
- less abstract model than classical Dolev-Yao models,

Laud : specialized decision procedure for symmetric encryption

Datta-Derek-Mitchell-Shmatikov-Turuani : symbolic deduction system for proofs in the concrete model (asymmetric encryption, no automatic procedure)

Blanchet : direct automation of the (game-based) cryptographic proofs in the concrete model \rightarrow tool CryptoVerif

Conclusion

Formal methods form a powerful approach for analyzing security protocols

- Makes use of classical techniques in formal methods: term algebra, equational theories, clauses and resolution techniques, tree automata, etc.
 - ⇒ Many decision procedures
- Several automatic tools
 - For successfully detecting attacks on protocols (e.g. Casper, Avispa)
 - For proving security for an arbitrary number of sessions (e.g. ProVerif)
- Provides cryptographic guarantees under classical assumptions on the implementation of the primitives

Some current directions of research

- Enriching the symbolic model
 - Considering more equational theories (e.g. theories for e-voting protocols)
 - Adding more complex structures for data (list, XML, ...)
 - Considering recursive protocols (e.g. group protocol) where the number of message exchanges in a session is not fixed
 - Proving more complex security properties like equivalence-based properties (e.g. for anonymity or e-voting protocols)
- With cryptographic guarantees
 - Combining formal and cryptographic models for more complex primitives and security properties.
 - How far can we go?
 - Is it possible to consider weaker cryptographic primitives?

