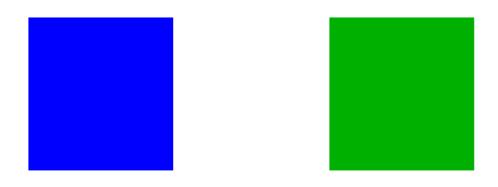
Indistinguishability Theory

Ueli Maurer

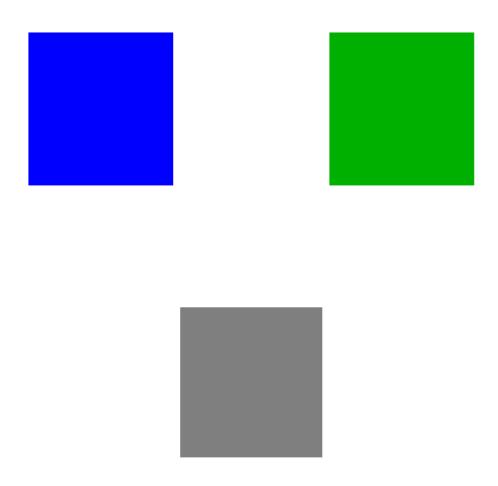
ETH Zurich

FOSAD 2009, Bertinoro, Sept. 2009.

Distinguishing two objects:



Distinguishing two objects:



left or right?

Distinguishing two types of numbers

Set A:

2048-bit integers with exactly 2 prime factors, each with at least 512 bits.

Set B:

2048-bit integers with exactly 3 prime factors, each with at least 512 bits.

Distinguishing two types of numbers

Set A:

2048-bit integers with exactly 2 prime factors, each with at least 512 bits.

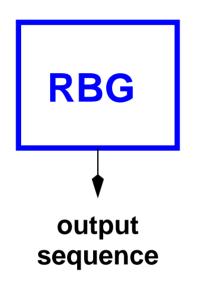
Set B:

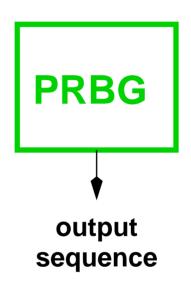
2048-bit integers with exactly 3 prime factors, each with at least 512 bits.

374095762974511873398056743981753957783254673845967825364509871 365295584882333644985766091852825640501638759879538762635485678 243091425765253648526374099125231764748985576600963327393947586 123498750533495862054987746524351089758393218367443278968764534 3127364987564354675092736565475849823142537584950243685261

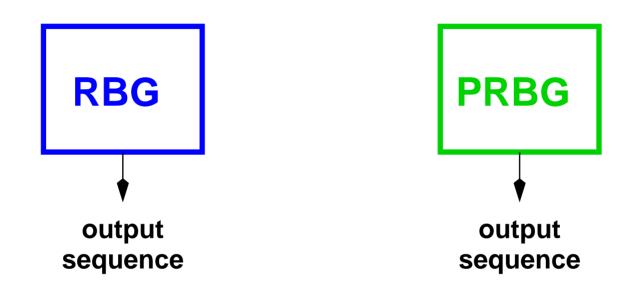
left or right?

Random vs. pseudo-random bit generator



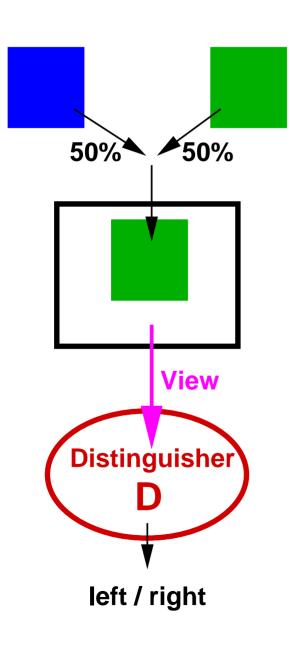


Random vs. pseudo-random bit generator



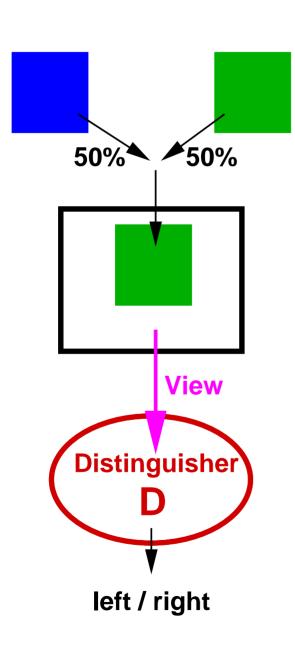
left or right?

Distinguisher's advantage



D's task: Guess left/right

Distinguisher's advantage

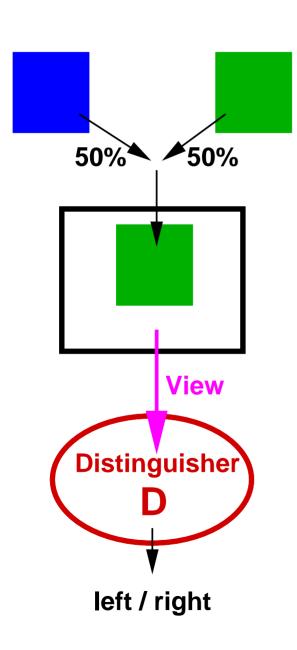


D's task: Guess left/right

Prob(correct guess) = $0.5 + \alpha/2$

$$\alpha = \Delta^{\mathbf{D}}(\blacksquare, \blacksquare)$$
 (D's advantage)

Distinguisher's advantage

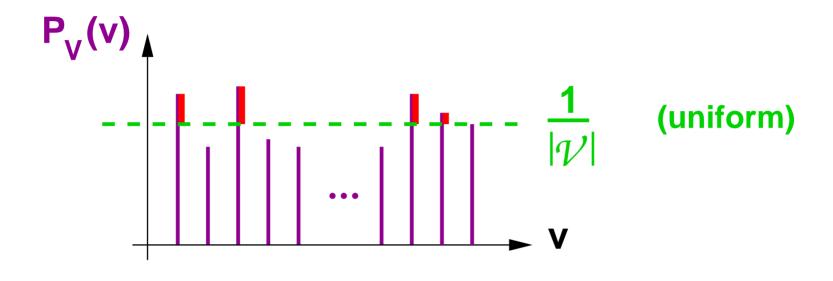


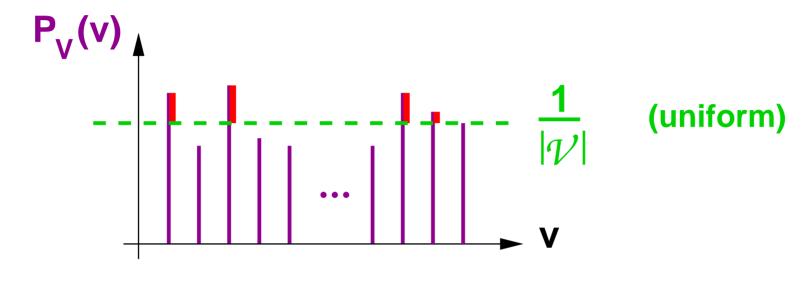
D's task: Guess left/right

Prob(correct guess) = $0.5 + \alpha/2$

$$\alpha = \Delta^{\mathbf{D}}(\blacksquare, \blacksquare)$$
 (D's advantage)

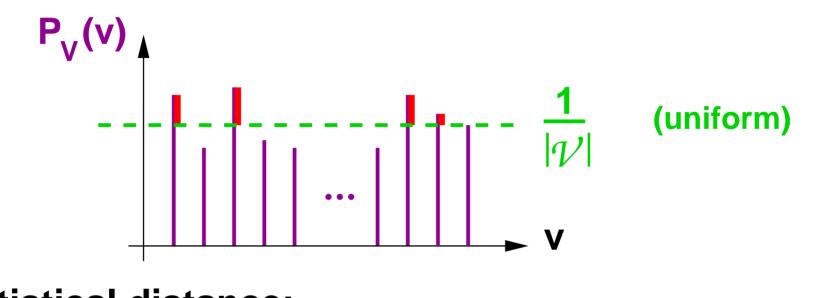
best D: $\triangle(\blacksquare, \blacksquare)$





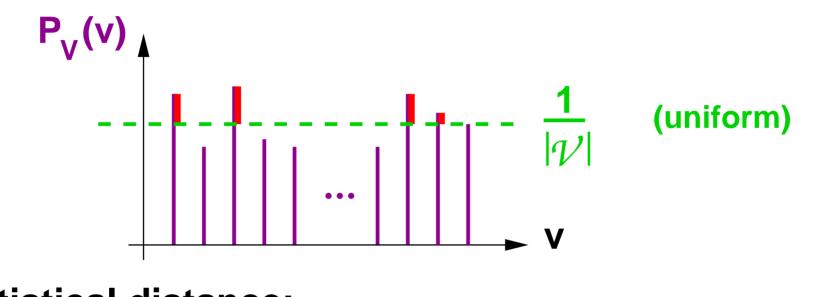
Statistical distance:

$$\mathsf{d}(\mathsf{V},\mathsf{U}) := \frac{1}{2}\sum_{v\in\mathcal{V}}\left|\mathsf{P}_{\mathsf{V}}(v) - \frac{1}{|\mathcal{V}|}\right|$$
 (sum of red quantities)



Statistical distance:

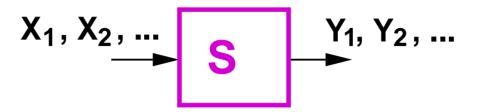
$$\mathbf{d}(\mathbf{V},\mathbf{U}):=rac{1}{2}\sum_{v\in\mathcal{V}}\left|\mathbf{P_V}(v)-rac{1}{|\mathcal{V}|}
ight|$$
 (sum of red quantities) $=\Delta(\mathbf{V},\mathbf{U})$

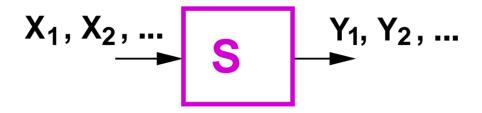


Statistical distance:

$$\mathbf{d}(\mathbf{V},\mathbf{U}):=rac{1}{2}\sum_{v\in\mathcal{V}}\left|\mathbf{P_V}(v)-rac{1}{|\mathcal{V}|}
ight|$$
 (sum of red quantities) $=\Delta(\mathbf{V},\mathbf{U})$

Possible interpretation: P(V=U) = 1 - d(V, U)





Description of S: pseudo-code, figures, text, ...

Description of S: pseudo-code, figures, text, ...
What kind of mathematical object is the behavior?

Description of S: pseudo-code, figures, text, ...

What kind of mathematical object is the behavior?

Only input-output behavior is relevant!

Description of S: pseudo-code, figures, text, ...

What kind of mathematical object is the behavior?

- Only input-output behavior is relevant!
- Characterized by: $\mathbf{p}_{Y_i|X_1\cdots X_iY_1\cdots Y_{i-1}}^{\mathbf{S}}$ for $i=1,2,\ldots$



Description of S: pseudo-code, figures, text, ...

What kind of mathematical object is the behavior?

- Only input-output behavior is relevant!
- Characterized by: $\mathbf{p}_{Y_i|X_1\cdots X_iY_1\cdots Y_{i-1}}^{\mathbf{S}}$ for $i=1,2,\ldots$
 - → abstraction called random system [Mau02]
 - → This description is minimal!
 - ightarrow Redundant (better) description: $p_{Y_1\cdots Y_i|X_1\cdots X_i}^{\mathbf{S}}$

Description of S: pseudo-code, figures, text, ...

What kind of mathematical object is the behavior?

- Only input-output behavior is relevant!
- Characterized by: $\mathbf{p}_{Y_i|X_1\cdots X_iY_1\cdots Y_{i-1}}^{\mathbf{S}}$ for $i=1,2,\ldots$
 - → abstraction called random system [Mau02]
 - → This description is minimal!
 - ightarrow Redundant (better) description: $p_{Y_1\cdots Y_i|X_1\cdots X_i}^{\mathbf{S}}$

Equivalence of systems: $S \equiv T$ if same behavior

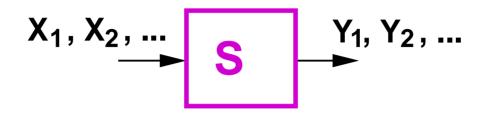
Description of S: pseudo-code, figures, text, ...

What kind of mathematical object is the behavior?

- Only input-output behavior is relevant!
- Characterized by: $\mathbf{p}_{Y_i|X_1\cdots X_iY_1\cdots Y_{i-1}}^{\mathbf{S}}$ for $i=1,2,\ldots$
 - → abstraction called random system [Mau02]
 - → This description is minimal!
 - ightarrow Redundant (better) description: $p_{Y_1\cdots Y_i|X_1\cdots X_i}^{\mathbf{S}}$

Equivalence of systems: $S \equiv T$ if same behavior

Realization of S from a RV (range \mathcal{R}): $f_i^S : \mathcal{X}^i \times \mathcal{R} \to \mathcal{Y}$



Description of S: pseudo-code, figures, text, ...

What kind of mathematical object is the behavior?

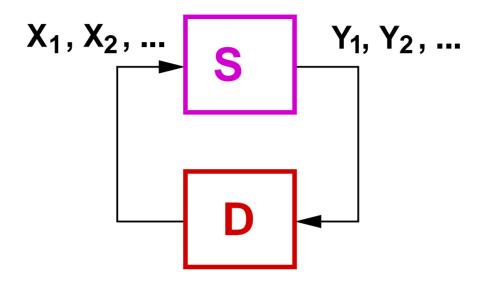
- Only input-output behavior is relevant!
- Characterized by: $\mathbf{p}_{Y_i|X_1\cdots X_iY_1\cdots Y_{i-1}}^{\mathbf{S}}$ for $i=1,2,\ldots$
 - → abstraction called random system [Mau02]
 - → This description is minimal!
 - ightarrow Redundant (better) description: $p_{Y_1\cdots Y_i|X_1\cdots X_i}^{\mathbf{S}}$

Equivalence of systems: $S \equiv T$ if same behavior

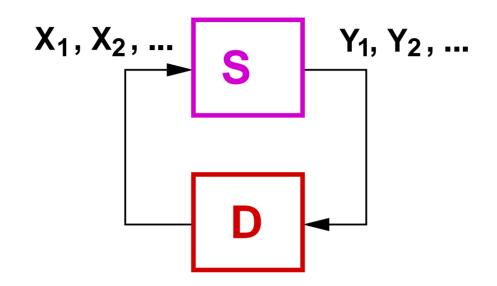
Realization of S from a RV (range \mathcal{R}): $f_i^S : \mathcal{X}^i \times \mathcal{R} \to \mathcal{Y}$

→ notion of independence

Distinguishers



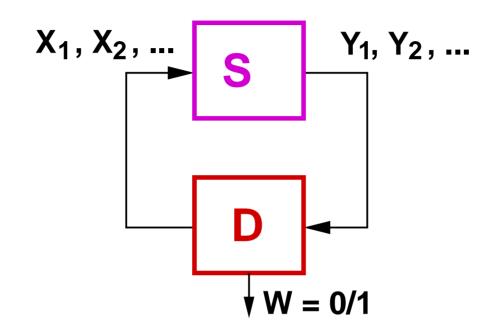
Distinguishers



$$\begin{split} \mathbf{P}_{X^kY^k}^{\mathbf{DS}} &= \prod_{i=1}^k \; \mathbf{p}_{Y_i|X^iY^{i-1}}^{\mathbf{S}} \cdot \mathbf{p}_{X_i|X^{i-1}Y^{i-1}}^{\mathbf{D}} \\ &= \; \mathbf{p}_{Y^k|X^k}^{\mathbf{S}} \cdot \mathbf{p}_{X^k|Y^{k-1}}^{\mathbf{D}} \end{split}$$

notation: $X^i = (X_1, \dots, X_i)$

Distinguishers

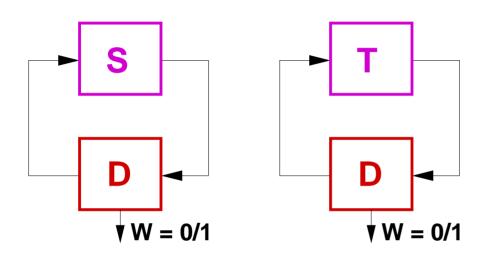


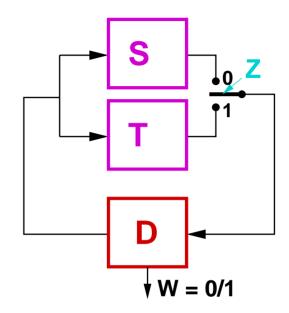
$$\begin{split} \mathbf{P}_{X^kY^k}^{\mathbf{DS}} &= \prod_{i=1}^k \; \mathbf{p}_{Y_i|X^iY^{i-1}}^{\mathbf{S}} \cdot \mathbf{p}_{X_i|X^{i-1}Y^{i-1}}^{\mathbf{D}} \\ &= \; \mathbf{p}_{Y^k|X^k}^{\mathbf{S}} \cdot \mathbf{p}_{X^k|Y^{k-1}}^{\mathbf{D}} \end{split}$$

notation: $X^i = (X_1, \dots, X_i)$

Distinguishing advantage

2 equivalent views:



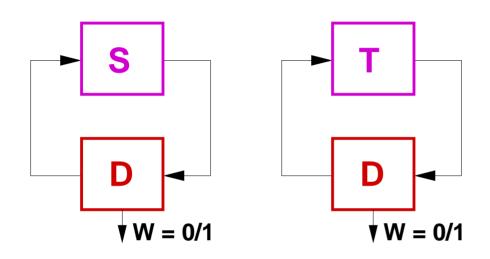


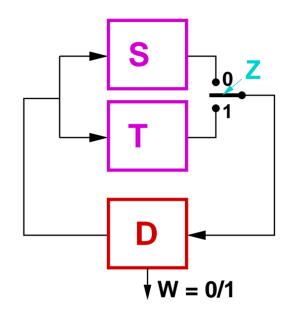
$$\Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T}) := \left| \mathbf{P}^{\mathbf{DS}}(\mathbf{W} = 1) - \mathbf{P}^{\mathbf{DT}}(\mathbf{W} = 1) \right|$$

$$= 2 \left| \mathbf{P}^{\mathbf{DSTZ}}(\mathbf{W} = \mathbf{Z}) - \frac{1}{2} \right|$$

Distinguishing advantage

2 equivalent views:





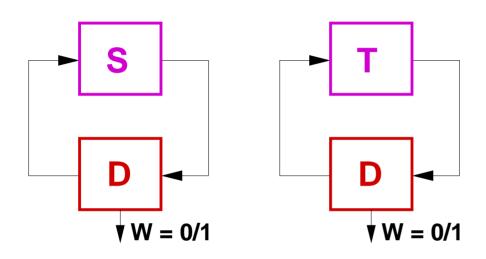
$$\Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T}) := \left| \mathbf{P}^{\mathbf{DS}}(\mathbf{W} = 1) - \mathbf{P}^{\mathbf{DT}}(\mathbf{W} = 1) \right|$$

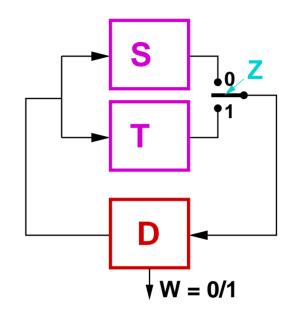
$$= 2 \left| \mathbf{P}^{\mathbf{DSTZ}}(\mathbf{W} = \mathbf{Z}) - \frac{1}{2} \right|$$

best (adaptive) D: $\Delta_k(S, T)$

Distinguishing advantage

2 equivalent views:



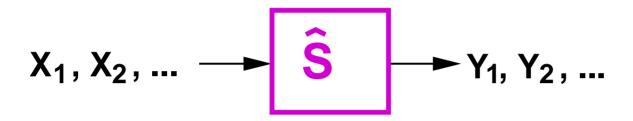


$$\Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T}) := \left| \mathbf{P}^{\mathbf{DS}}(\mathbf{W} = 1) - \mathbf{P}^{\mathbf{DT}}(\mathbf{W} = 1) \right|$$

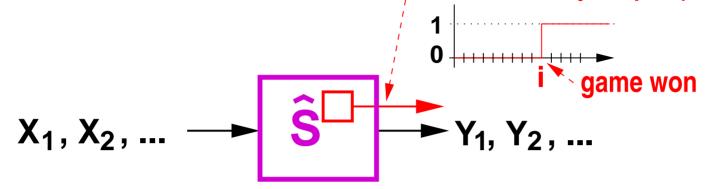
$$= 2 \left| \mathbf{P}^{\mathbf{DSTZ}}(\mathbf{W} = \mathbf{Z}) - \frac{1}{2} \right|$$

best (adaptive) D: $\Delta_k(S,T)$

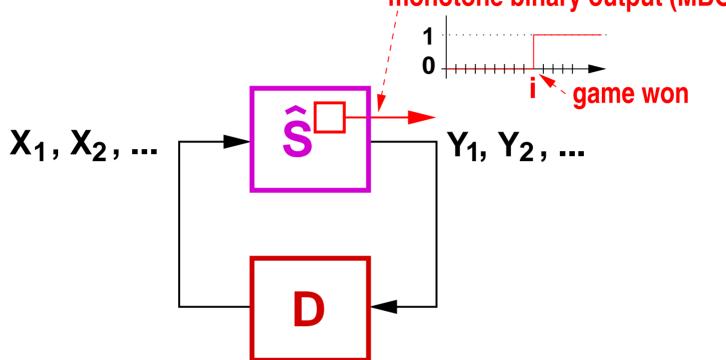
best non-adapt. D: $\Delta_k^{NA}(S,T)$



monotone binary output (MBO)



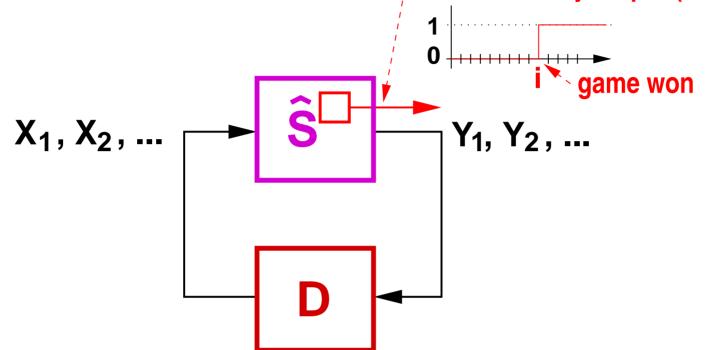
monotone binary output (MBO)



Game-winning monotone binary output (MBO) $X_1, X_2, ... \\ S \\ Y_1, Y_2, ...$

D's prob. of winning with k queries: $\nu_k^{\mathbf{D}}(\hat{\mathbf{S}})$

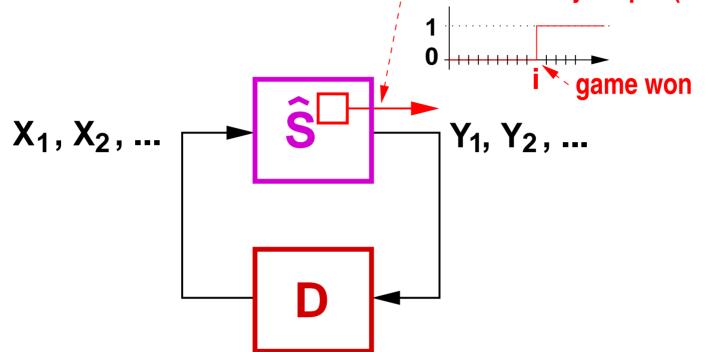
monotone binary output (MBO)



D's prob. of winning with k queries: $\nu_k^{\mathbf{D}}(\hat{\mathbf{S}})$

Optimal (adaptive) D: $\nu_k(\hat{\mathbf{S}}) := \max_{\mathbf{D}} \nu_k^{\mathbf{D}}(\hat{\mathbf{S}})$

monotone binary output (MBO)

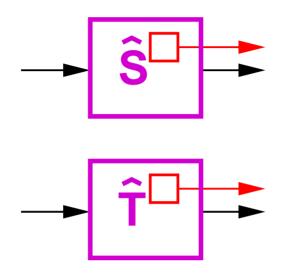


D's prob. of winning with k queries: $\nu_k^{\mathbf{D}}(\hat{\mathbf{S}})$

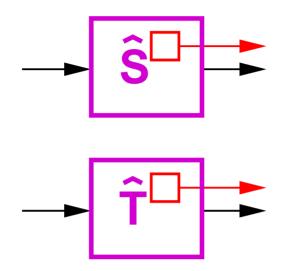
Optimal (adaptive) D: $\nu_k(\hat{s}) := \max_{\mathbf{D}} \nu_k^{\mathbf{D}}(\hat{s})$

Optimal non-adapt. D: $\nu_k^{NA}(\hat{s}) := \max_{\mathbf{D} \in \mathbf{NA}} \nu_k^{\mathbf{D}}(\hat{s})$

Playing 2 games in parallel

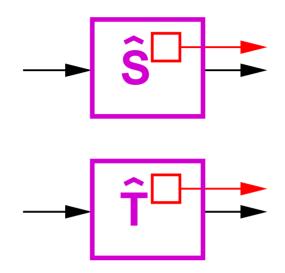


Playing 2 games in parallel



Can a combined strategy be better than optimal individual strategies?

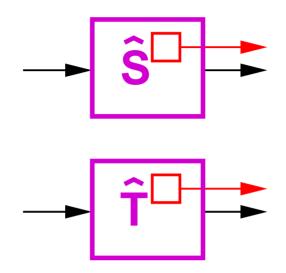
Playing 2 games in parallel



Can a combined strategy be better than optimal individual strategies?

YES! Chess grand-masters' problem!

Playing 2 games in parallel



Can a combined strategy be better than optimal individual strategies?

YES! Chess grand-masters' problem!

Lemma [MPR07]: For winning both games, playing individual optimal strategies is optimal.

Def.: \hat{S} and \hat{T} are restricted equivalent, denoted $\hat{S} \stackrel{r}{=} \hat{T}$, if the I/O behavior is identical as long as MBO =0.

Def.: \hat{S} and \hat{T} are restricted equivalent, denoted $\hat{S} \stackrel{r}{=} \hat{T}$, if the I/O behavior is identical as long as MBO =0.

Lemma (
$$\Rightarrow$$
) [Mau02]: If $\hat{\mathbf{S}} \stackrel{r}{\equiv} \hat{\mathbf{T}}$, then, for every D, $\Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T}) \leq \nu_k^{\mathbf{D}}(\hat{\mathbf{S}}) \quad (= \nu_k^{\mathbf{D}}(\hat{\mathbf{T}})).$

Def.: \hat{S} and \hat{T} are restricted equivalent, denoted $\hat{S} \stackrel{r}{=} \hat{T}$, if the I/O behavior is identical as long as MBO =0.

Lemma (\Rightarrow) [Mau02]: If $\hat{S} \stackrel{r}{\equiv} \hat{T}$, then, for every D, $\Delta_k^{\mathbf{D}}(S,T) \leq \nu_k^{\mathbf{D}}(\hat{S}) \quad (=\nu_k^{\mathbf{D}}(\hat{T})).$

In particular, $\Delta_k(\mathbf{S}, \mathbf{T}) \leq \nu_k(\hat{\mathbf{S}})$

Def.: \hat{S} and \hat{T} are restricted equivalent, denoted $\hat{S} \stackrel{T}{=} \hat{T}$, if the I/O behavior is identical as long as MBO =0.

Lemma (\Rightarrow) [Mau02]: If $\hat{\mathbf{S}} \stackrel{r}{\equiv} \hat{\mathbf{T}}$, then, for every D, $\Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T}) \leq \nu_k^{\mathbf{D}}(\hat{\mathbf{S}}) \quad (= \nu_k^{\mathbf{D}}(\hat{\mathbf{T}})).$

In particular, $\Delta_k(\mathbf{S}, \mathbf{T}) \leq \nu_k(\hat{\mathbf{S}})$

Note: This lemma talks about a system as a mathematical object and is independent of the description language used for systems!

Def.: \hat{S} and \hat{T} are restricted equivalent, denoted $\hat{S} \stackrel{r}{=} \hat{T}$, if the I/O behavior is identical as long as MBO =0.

Lemma (\Rightarrow) [Mau02]: If $\hat{S} \stackrel{r}{\equiv} \hat{T}$, then, for every D, $\Delta_k^{\mathbf{D}}(S,T) \leq \nu_k^{\mathbf{D}}(\hat{S}) \quad (=\nu_k^{\mathbf{D}}(\hat{T})).$

In particular, $\Delta_k(\mathbf{S}, \mathbf{T}) \leq \nu_k(\hat{\mathbf{S}})$

Def.: \hat{S} and \hat{T} are restricted equivalent, denoted $\hat{S} \stackrel{T}{=} \hat{T}$, if the I/O behavior is identical as long as MBO =0.

Lemma (\Rightarrow) [Mau02]: If $\hat{S} \stackrel{r}{\equiv} \hat{T}$, then, for every D, $\Delta_k^{\mathbf{D}}(S,T) \leq \nu_k^{\mathbf{D}}(\hat{S}) \quad (=\nu_k^{\mathbf{D}}(\hat{T})).$

In particular, $\Delta_k(\mathbf{S}, \mathbf{T}) \leq \nu_k(\hat{\mathbf{S}})$

Lemma (\Leftarrow) [MPR07]: Any S and T can be enhanced by MBOs to systems $\hat{\mathbf{S}}$ and $\hat{\mathbf{T}}$ such that $\hat{\mathbf{S}} \stackrel{r}{\equiv} \hat{\mathbf{T}}$ and, for every D, $\nu_k^{\mathbf{D}}(\hat{\mathbf{S}}) = \Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T})$

Security amplification paradigm

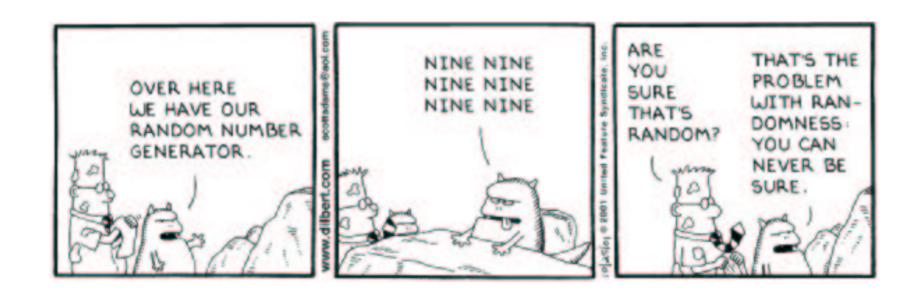
Security amplification paradigm



Idea: Combine several mildly secure systems to obtain a highly secure system.

Example: XOR of mildly uniform independent keys yields a highly uniform key!

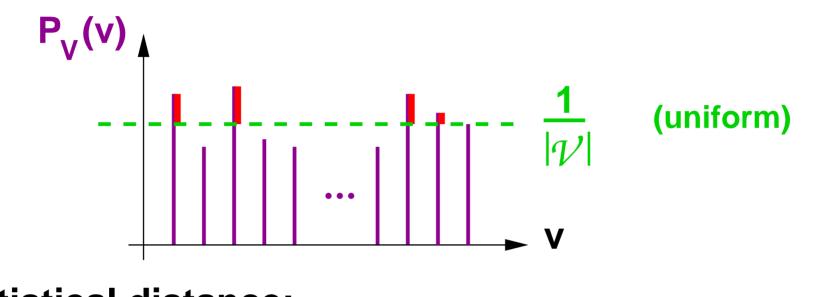
Security amplification paradigm



Idea: Combine several mildly secure systems to obtain a highly secure system.

Example: Cascade of mildly secure ciphers yields a highly secure cipher!

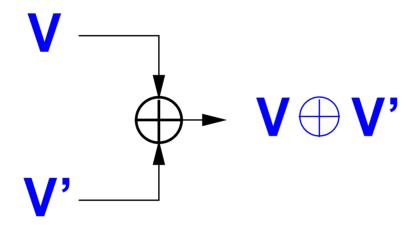
Distinguishing a RV V from a uniform RV U

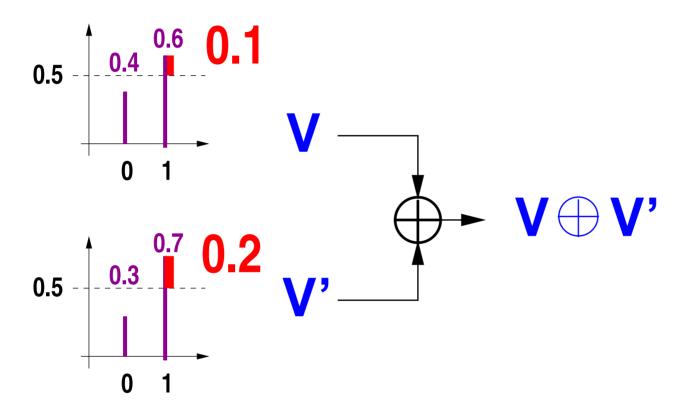


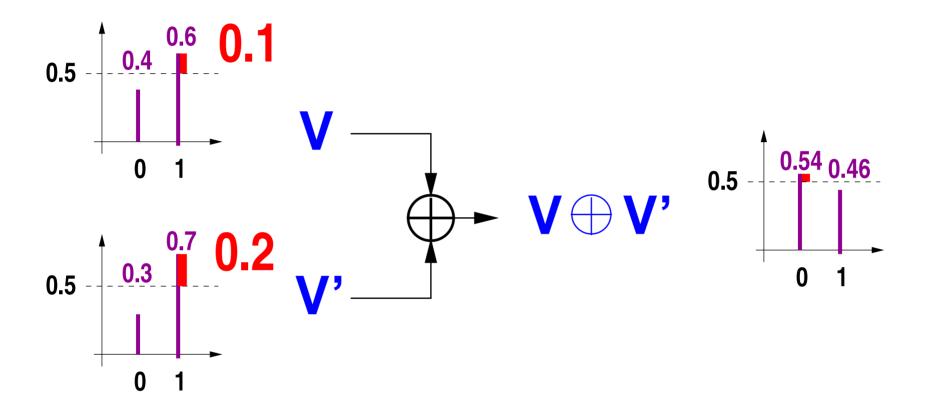
Statistical distance:

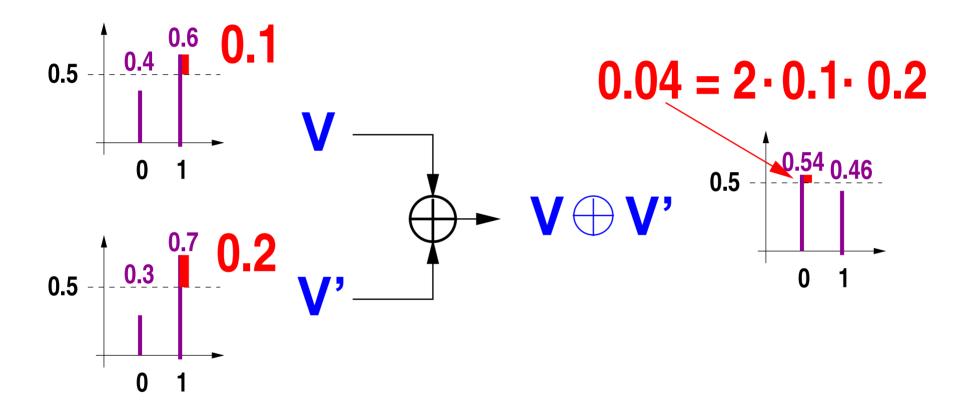
$$\mathbf{d}(\mathbf{V},\mathbf{U}):=rac{1}{2}\sum_{v\in\mathcal{V}}\left|\mathbf{P_V}(v)-rac{1}{|\mathcal{V}|}
ight|$$
 (sum of red quantities) $=\Delta(\mathbf{V},\mathbf{U})$

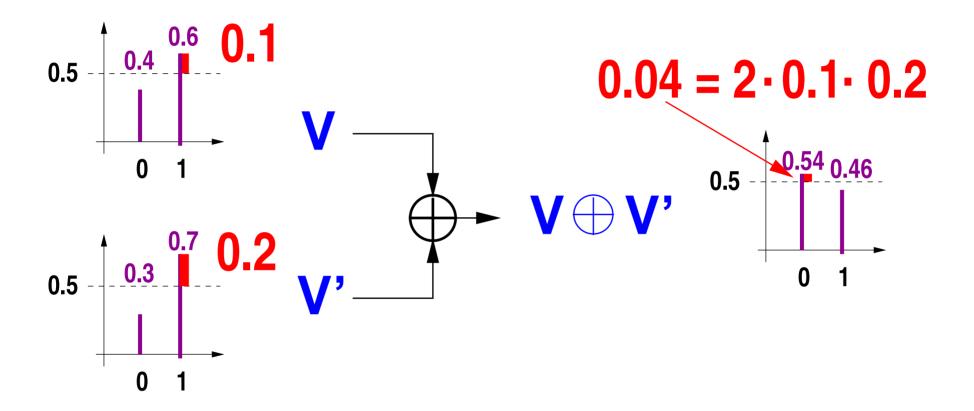
Possible interpretation: P(V=U) = 1 - d(V, U)



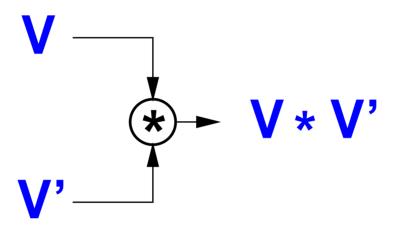








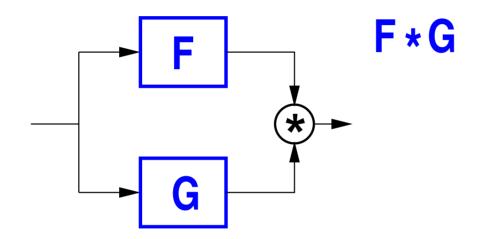
Theorem: $d(V \oplus V', U) \leq 2 \cdot d(V, U) \cdot d(V', U)$



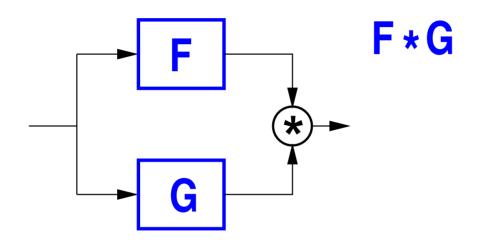
Theorem: $d(V * V', U) \le 2 \cdot d(V, U) \cdot d(V', U)$ for any quasi-group operation *

Product theorems for systems?

Let F and G be (possibly stateful) functions.



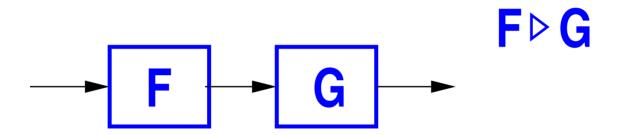
Let F and G be (possibly stateful) functions.



Theorem: $\Delta_k(\mathbf{F} \star \mathbf{G}, \mathbf{R}) \leq 2 \cdot \Delta_k(\mathbf{F}, \mathbf{R}) \cdot \Delta_k(\mathbf{G}, \mathbf{R})$ for any quasi-group operation \star .

(R = uniform random function)

Let F and G be (possibly stateful) permutations.

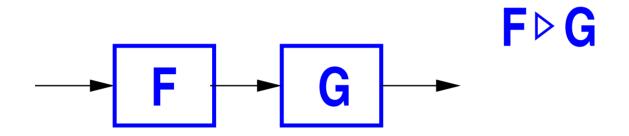


Let F and G be (possibly stateful) permutations.



Theorem: $\Delta_k(\mathsf{F} \triangleright \mathsf{G}, \mathsf{P}) \leq 2 \cdot \Delta_k(\mathsf{F}, \mathsf{P}) \cdot \Delta_k(\mathsf{G}, \mathsf{P})$ if **G** is stateless.

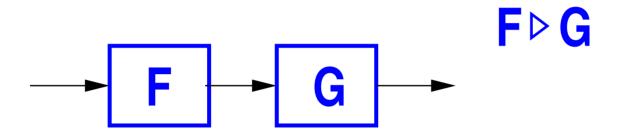
Let F and G be (possibly stateful) permutations.



Theorem: $\Delta_k(\mathsf{F} \triangleright \mathsf{G}, \mathsf{P}) \leq 2 \cdot \Delta_k(\mathsf{F}, \mathsf{P}) \cdot \Delta_k(\mathsf{G}, \mathsf{P})$ if **G** is stateless.

Special case: Vaudenay's decorrelation theorem

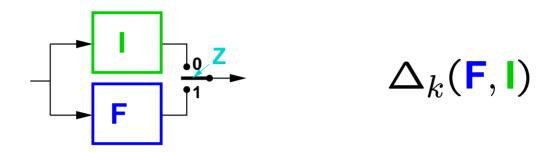
Let F and G be (possibly stateful) permutations.

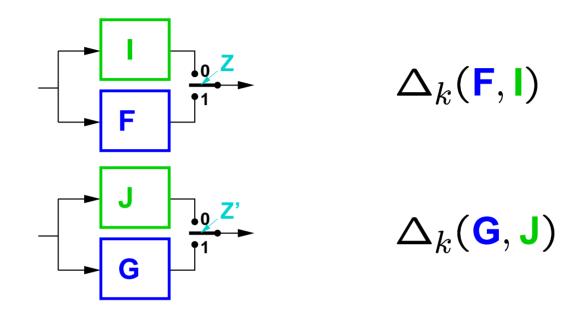


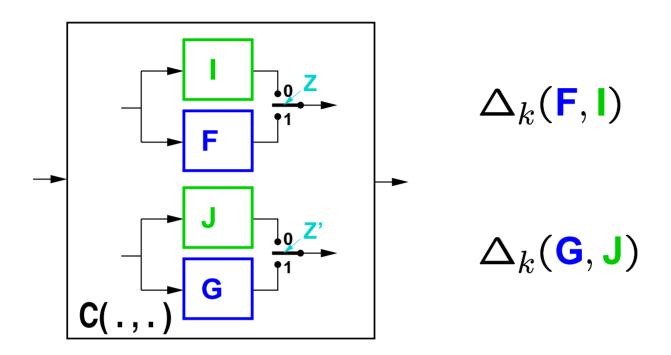
Theorem: $\Delta_k(\mathsf{F} \triangleright \mathsf{G}, \mathsf{P}) \leq 2 \cdot \Delta_k(\mathsf{F}, \mathsf{P}) \cdot \Delta_k(\mathsf{G}, \mathsf{P})$ if **G** is stateless.

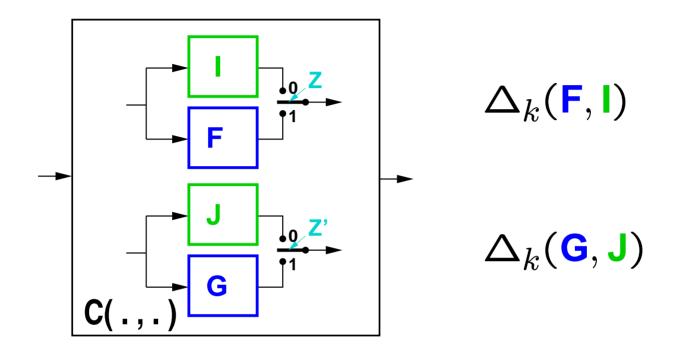
Special case: Vaudenay's decorrelation theorem

What is the general principle?

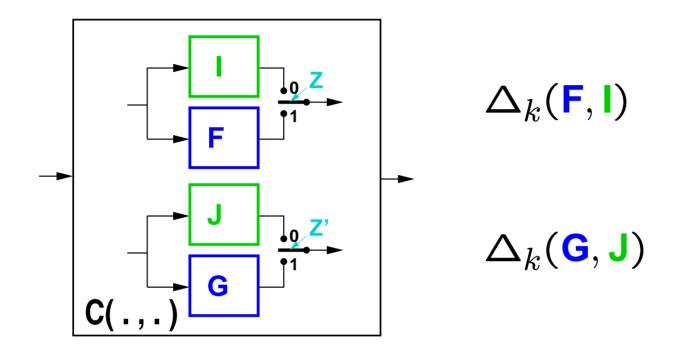






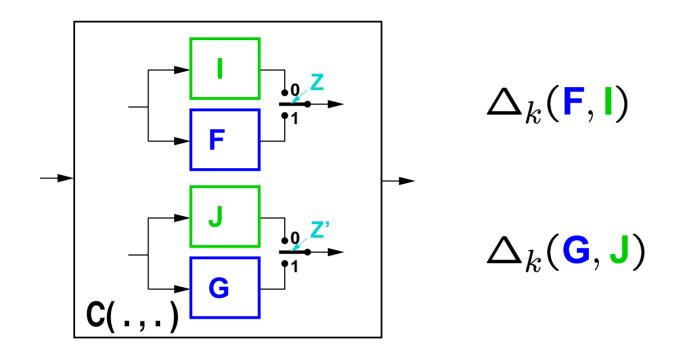


Def.: C(.,.) is neutralizing if $C(I,G) \equiv C(F,J) \equiv C(I,J) \equiv Q$



Def.: C(.,.) is neutralizing if $C(I,G) \equiv C(F,J) \equiv C(I,J) \equiv Q$

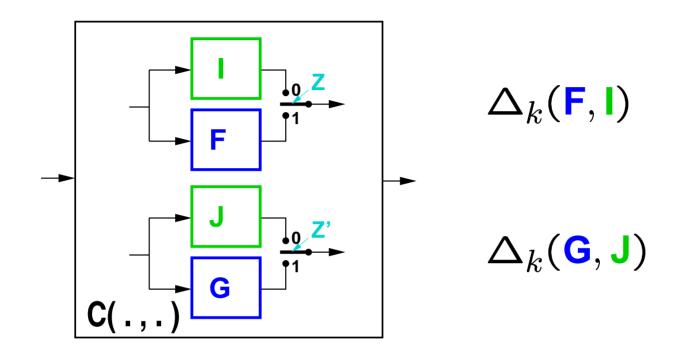
Examples: $C(F, G) = F \star G$, I = J = Q = R



Def.:
$$C(.,.)$$
 is neutralizing if $C(I,G) \equiv C(F,J) \equiv C(I,J) \equiv Q$

Examples:
$$C(F, G) = F * G$$
, $I = J = Q = R$

$$C(F,G) = F \triangleright G$$
, $I = J = Q = P$



Def.:
$$C(.,.)$$
 is neutralizing if $C(I,G) \equiv C(F,J) \equiv C(I,J) \equiv Q$

Examples:
$$C(F, G) = F * G$$
, $I = J = Q = R$

$$C(F,G) = F \triangleright G$$
, $I = J = Q = P$

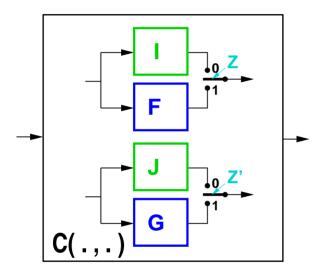
Theorem:
$$\Delta_k(C(F,G),Q) \leq 2 \cdot \Delta_k(F,I) \cdot \Delta_k(G,J)$$

Proof of the product theorem (1)

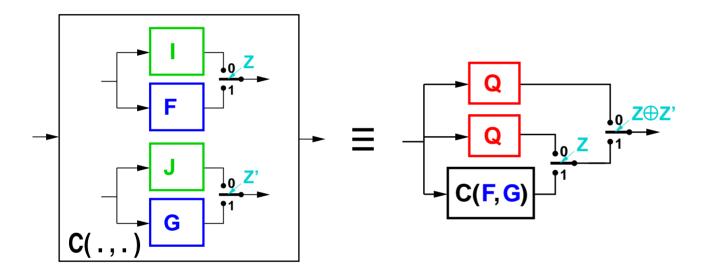
Theorem: $\Delta_k(\mathbf{C}(\mathbf{F},\mathbf{G}),\mathbf{Q}) \leq 2 \cdot \Delta_k(\mathbf{F},\mathbf{I}) \cdot \Delta_k(\mathbf{G},\mathbf{J})$

Proof of the product theorem (1)

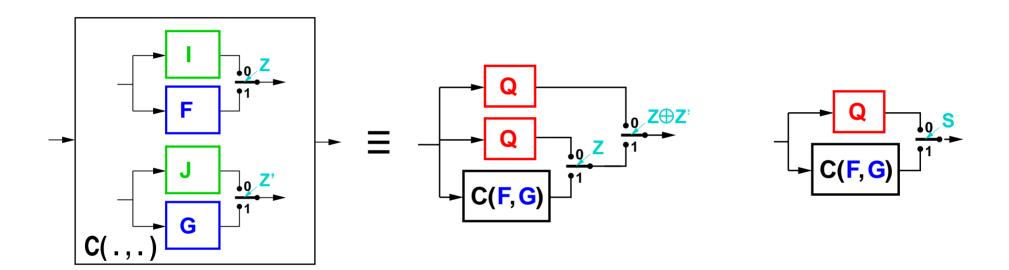
Theorem: $\Delta_k(\mathbf{C}(\mathbf{F},\mathbf{G}),\mathbf{Q}) \leq 2 \cdot \Delta_k(\mathbf{F},\mathbf{I}) \cdot \Delta_k(\mathbf{G},\mathbf{J})$



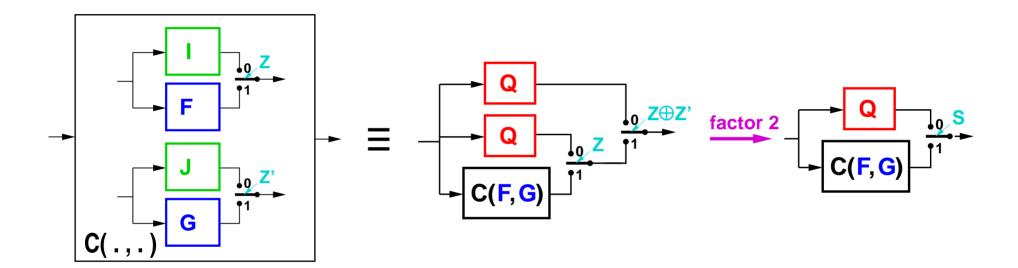
Theorem: $\Delta_k(\mathbf{C}(\mathbf{F},\mathbf{G}),\mathbf{Q}) \leq 2 \cdot \Delta_k(\mathbf{F},\mathbf{I}) \cdot \Delta_k(\mathbf{G},\mathbf{J})$



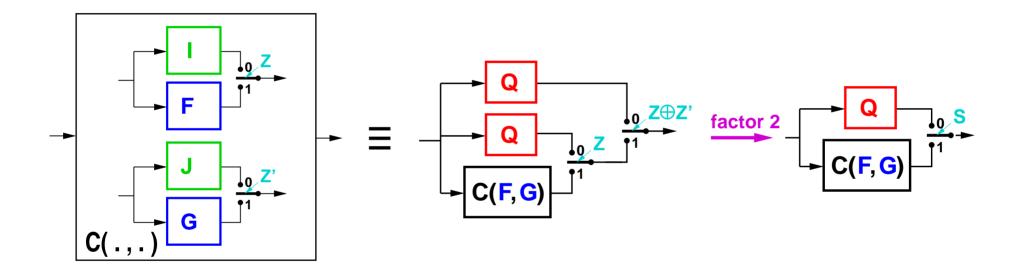
Theorem: $\Delta_k(\mathbf{C}(\mathbf{F},\mathbf{G}),\mathbf{Q}) \leq 2 \cdot \Delta_k(\mathbf{F},\mathbf{I}) \cdot \Delta_k(\mathbf{G},\mathbf{J})$



Theorem: $\Delta_k(\mathbf{C}(\mathbf{F},\mathbf{G}),\mathbf{Q}) \leq 2 \cdot \Delta_k(\mathbf{F},\mathbf{I}) \cdot \Delta_k(\mathbf{G},\mathbf{J})$



Theorem: $\Delta_k(\mathbf{C}(\mathbf{F},\mathbf{G}),\mathbf{Q}) \leq 2 \cdot \Delta_k(\mathbf{F},\mathbf{I}) \cdot \Delta_k(\mathbf{G},\mathbf{J})$



C(I/F, J/G)

 $\Delta_k(C(F,G),Q) = 2 \cdot adv.$ in guessing $Z \oplus Z'$ in C(I/F,J/G)

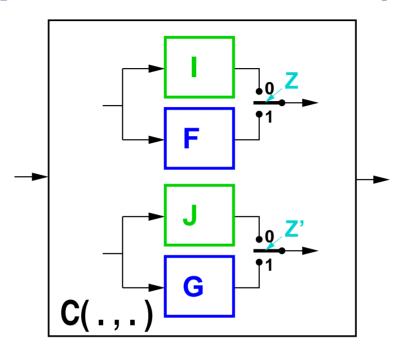
Game-winning \iff Indistinguishability

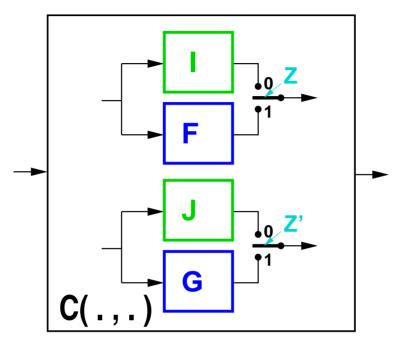
Def.: \hat{S} and \hat{T} are restricted equivalent, denoted $\hat{S} \stackrel{r}{=} \hat{T}$, if the I/O behavior is identical as long as MBO =0.

Lemma (\Rightarrow) [Mau02]: If $\hat{\mathbf{S}} \stackrel{r}{\equiv} \hat{\mathbf{T}}$, then, for every D, $\Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T}) \leq \nu_k^{\mathbf{D}}(\hat{\mathbf{S}}) \quad (=\nu_k^{\mathbf{D}}(\hat{\mathbf{T}})).$

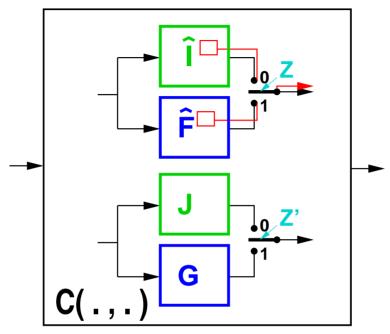
In particular, $\Delta_k(\mathbf{S}, \mathbf{T}) \leq \nu_k(\hat{\mathbf{S}})$

Lemma (\Leftarrow) [MPR07]: Any S and T can be enhanced by MBOs to systems $\hat{\mathbf{S}}$ and $\hat{\mathbf{T}}$ such that $\hat{\mathbf{S}} \stackrel{r}{\equiv} \hat{\mathbf{T}}$ and, for every D, $\nu_k^{\mathbf{D}}(\hat{\mathbf{S}}) = \Delta_k^{\mathbf{D}}(\mathbf{S}, \mathbf{T})$

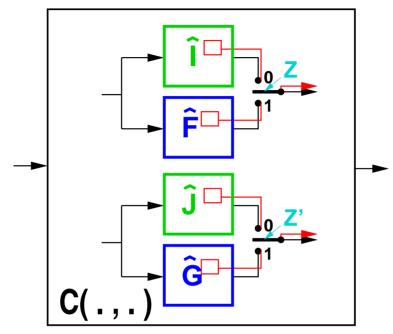




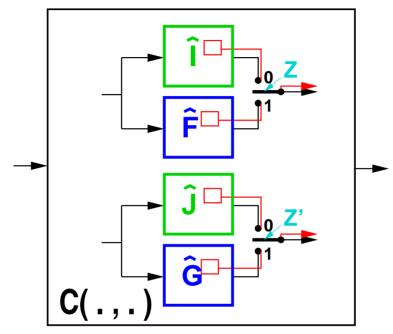
Task: Guess Z ⊕ Z'



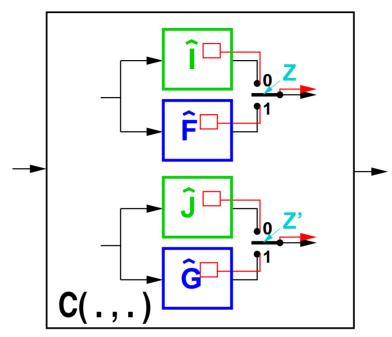
- Task: Guess Z ⊕ Z'
- Define MBOs and give the guesser access to them.



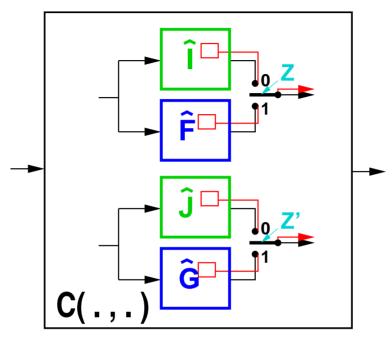
- Task: Guess Z ⊕ Z'
- Define MBOs and give the guesser access to them.



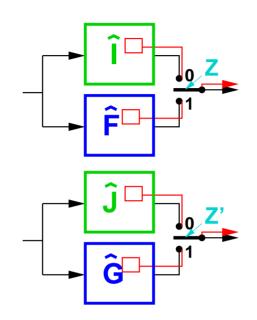
- Task: Guess Z ⊕ Z'
- Define MBOs and give the guesser access to them.
- Game 1 not won ⇒ advantage 0 in guessing Z



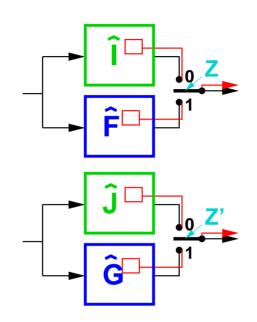
- Task: Guess Z ⊕ Z'
- Define MBOs and give the guesser access to them.
- Game 2 not won ⇒ advantage 0 in guessing Z'



- Task: Guess Z ⊕ Z'
- Define MBOs and give the guesser access to them.
- Game 2 not won ⇒ advantage 0 in guessing Z'
- Game 1 or game 2 not won \Rightarrow adv. 0 in guessing $Z \oplus Z'$.
 - ⇒ advantage ≤ probability that both games won



- Task: Guess Z ⊕ Z'
- Define MBOs and give the guesser access to them.
- Game 2 not won ⇒ advantage 0 in guessing Z'
- Game 1 or game 2 not won \Rightarrow adv. 0 in guessing $Z \oplus Z'$.
 - ⇒ advantage ≤ probability that both games won
- We give the guesser direct access to the 2 games.



- Task: Guess Z ⊕ Z'
- Define MBOs and give the guesser access to them.
- Game 2 not won ⇒ advantage 0 in guessing Z'
- Game 1 or game 2 not won ⇒ adv. 0 in guessing Z ⊕ Z'.
 - ⇒ advantage ≤ probability that both games won
- We give the guesser direct access to the 2 games.
- Prob. of winning = product of winning games 1 and 2.

$$=\Delta_k(\mathbf{F},\mathbf{I})\cdot\Delta_k(\mathbf{G},\mathbf{J})$$
 q.e.d.

Theorem [M-Tessaro09]: The previous statements hold also for computational indistinguishability.

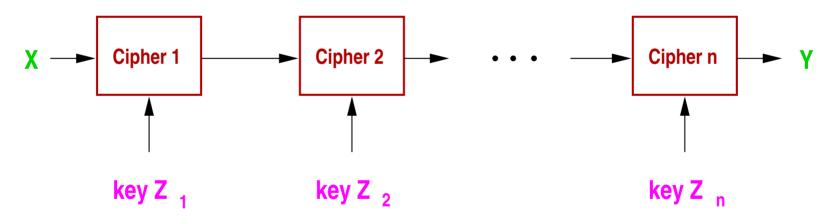
Theorem [M-Tessaro09]: The previous statements hold also for computational indistinguishability.

 \mathcal{E} = class of efficient distinguishers (e.g. poly-time)

Theorem [M-Tessaro09]: The previous statements hold also for computational indistinguishability.

 \mathcal{E} = class of efficient distinguishers (e.g. poly-time)

Example:

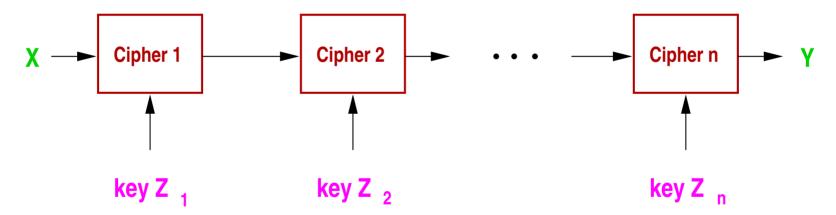


$$\Delta^{\mathcal{E}}(\mathbf{C}_i, \mathbf{P}) \leq \epsilon \implies \Delta^{\mathcal{E}}(\mathbf{C}_1 \cdots \mathbf{C}_n, \mathbf{P}) \approx 2^{n-1} \epsilon^n + \gamma$$

Theorem [M-Tessaro09]: The previous statements hold also for computational indistinguishability.

 \mathcal{E} = class of efficient distinguishers (e.g. poly-time)

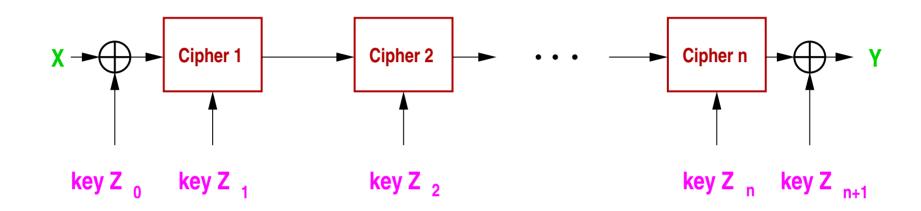
Example:



$$\Delta^{\mathcal{E}}(\mathbf{C}_i, \mathbf{P}) \leq \epsilon \Rightarrow \Delta^{\mathcal{E}}(\mathbf{C}_1 \cdots \mathbf{C}_n, \mathbf{P}) \approx 2^{n-1} \epsilon^n + \gamma$$

Problem: Amplification only if $\epsilon < 0.5$.

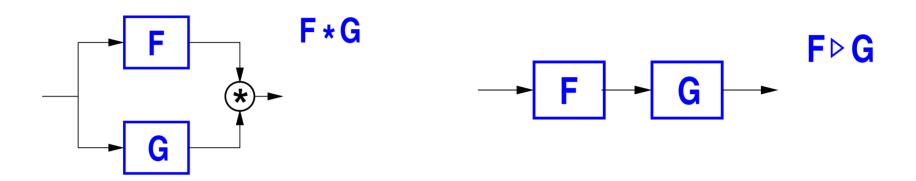
Strong security amplification



Theorem [MT09]:

$$\Delta^{\mathcal{E}}(\mathbf{C}_i, \mathbf{P}) \leq \epsilon \Rightarrow \Delta^{\mathcal{E}}(\oplus \mathbf{C}_1 \cdots \mathbf{C}_n \oplus, \mathbf{P}) \approx \epsilon^n + \gamma$$

Indistinguishability amplification: Type 2



Theorem: $\Delta_k(\mathbf{F} \star \mathbf{G}, \mathbf{R}) \leq \Delta_k^{NA}(\mathbf{F}, \mathbf{R}) + \Delta_k^{NA}(\mathbf{G}, \mathbf{R}).$

Theorem: $\Delta_k(\mathsf{F} \triangleright \mathsf{G}, \mathsf{P}) \leq \Delta_k^{\mathsf{NA}}(\mathsf{F}, \mathsf{P}) + \Delta_k^{\mathsf{NA}}(\mathsf{G}, \mathsf{P}).$