

Anonymity Protocols as Noisy Channels

Kostas Chatzikokolakis, Catuscia Palamidessi and Prakash Panangaden

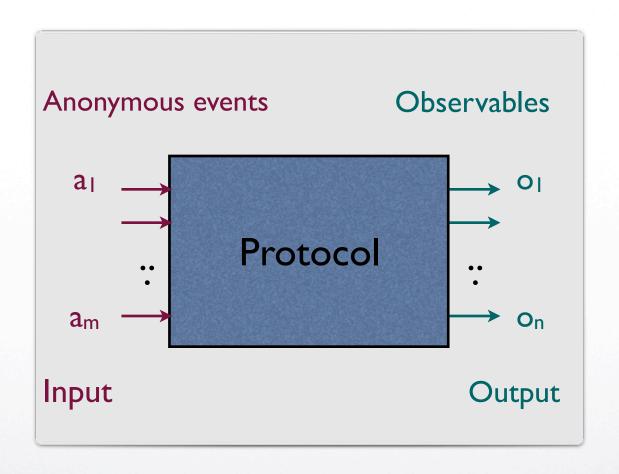
Plan of the talk

- Motivation
- Protocols as channels
- Preliminary notions of Information Theory
- Anonymity as converse of channel capacity
- Statistical inference and Bayesian error
- Relation with other notions in literature

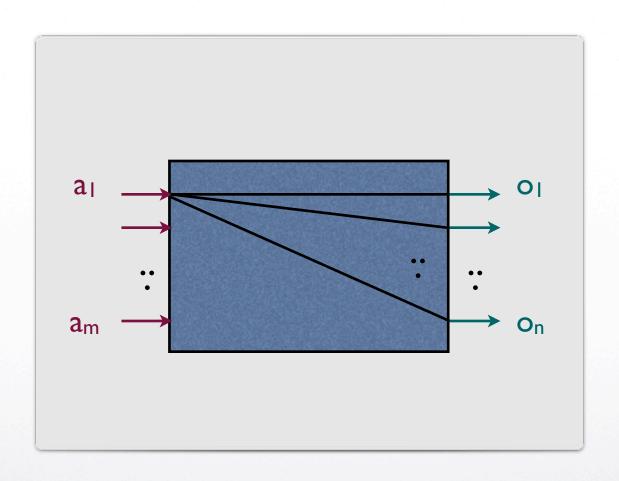
Motivation

Protection of information:

- Identity protection (Anonymity)
 - Hide the link between the data and its sender/receiver
 - The action of sending itself can reveal one's identity
 - Many applications
 - Anonymous message-sending
 - Elections
 - Donations
- Data protection
 - Information flow
 - ..



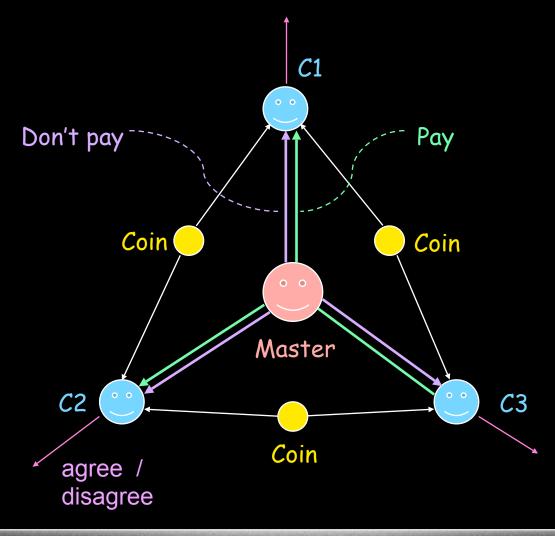
Protocols as channels

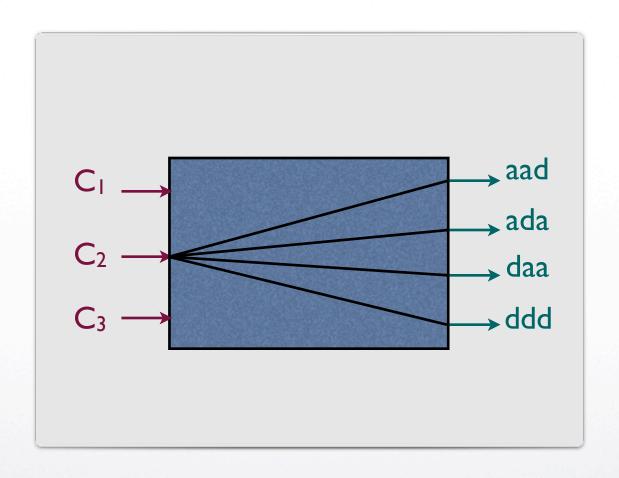


Protocols as noisy channels

Chatzikokolakis, Palamidessi and Panangaden

Example: the dining cryptographers

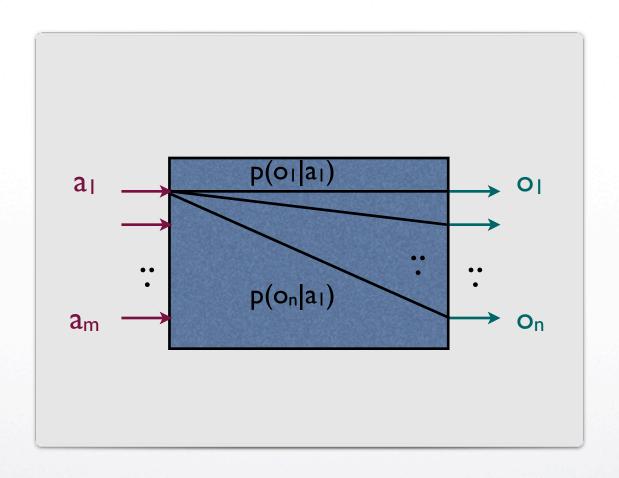




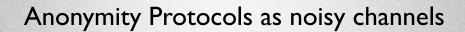
The protocol of the dining cryptographers

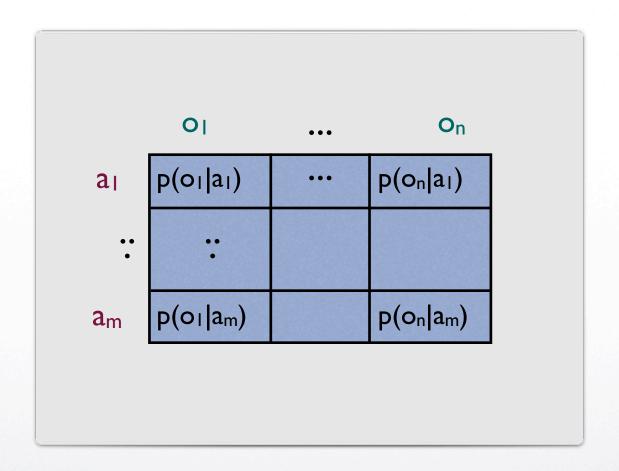
Protocols as noisy channels

- We consider a probabilistic approach
 - Inputs: elements of a random variable A
 - Outputs: elements of a random variable O
 - For each input a_i , the probability that we obtain an observable o_j is given by $p(o_j \mid a_i)$
- We assume that the protocol receives exactly one input at each session
- We want to define the degree of anonymity independently from the input's distribution, i.e. the users



The conditional probabilities





The channel is completely characterized by the matrix of conditional probabilities

Preliminaries of Information Theory

• The entropy H(A) measures the uncertainty about the anonymous events:

$$H(A) = -\sum_{a \in \mathcal{A}} p(a) \log p(a)$$

- The conditional entropy H(A|O) measures the uncertainty about A after we know the value of O (after the execution of the protocol).
- The mutual information I(A; O) measures how much uncertainty about A we lose by observing O:

$$I(A; O) = H(A) - H(A|O)$$

Degree of Anonymity

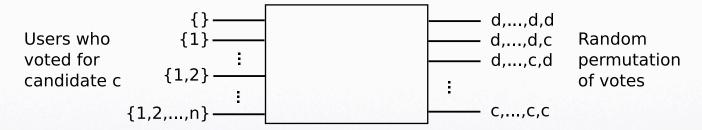
 We define the degree of anonymity provided by the protocol as the converse of the capacity of the channel:

$$C = \max_{p(a)} I(A; O)$$

 Note that this definition is independent from the distribution on the inputs, as desired

Relative anonymity

- Some information about A may be revealed intentionally
- Example: elections



 We model the revealed information with a third random variable R

R = number of users who voted for c

Relative anonymity

We use the notion of conditional mutual information

$$I(A; O|R) = H(A|R) - H(A|R, O)$$

And define the conditional capacity similarly

$$C_R = \max_{p(a)} I(A; O|R)$$

Partitions: a special case of relative anonymity

- We say that R partitions \mathcal{X} iff p(r|x) is either 0 or 1 for every r, x
- Examples: elections, group anonymity

Theorem

If R partitions \mathcal{A} and \mathcal{O} then the transition matrix of the protocol is of the form

and

$$C_R \leq d \Leftrightarrow C_i \leq d, \forall i \in 1..l$$

where C_i is the capacity of matrix M_i .

Statistical inference

- An adversary tries to infer the hidden information (input) from the observables (output)
- We assume that the adversary can force the reexecution of the protocol (with the same input).
 Intuitively this increases his inference power

Statistical inference

- $o = o_1, o_2, ..., o_k$: a sequence of observations
- f: the function used by the adversary to infer the input from a sequence of observations
- Error region of f for input a: $E_f(a) = \{o \in \mathcal{O}^n \mid f(o) \neq a\}$
- Probability of error for input a: $\eta(a) = \sum_{o \in E_f(a)} p(o|a)$
- Bayesian probability of error for f:

$$P_{f_n} = \sum_{a \in A} p(a)\eta(a)$$

Bayesian decision functions

- f is a Bayesian decision function if f(o) = a implies $p(o \mid a) p(a) >= p(o \mid a') p(a')$ for all a, a' and o
- Proposition: Bayesian decision functions minimize the Bayesian probability of error
- Note that the property of being Bayesian depends on the input's distribution

Independence from the users

- However, for large sequences of observations the input distribution becomes negligible:
- **Proposition:** A Bayesian decision function f can be approximated by a function g such that g(o) = a implies $p(o \mid a) >= p(o \mid a')$ for all a, a' and o
- "approximated" means that the more observations we make, the smaller is the difference in the error probability of f and g

Relation with existing notions

Strong probabilistic anonymity

$$p(a) = p(a|o) \quad \forall a, o$$

 $p(a) = p(a|o) \quad \forall a, o$ [Chaum, 88], aka "conditional" anonymity" [Halpern and O'Neill, 03].

$$p(o|a_i) = p(o|a_i) \quad \forall o, i, j$$

 $p(o|a_i) = p(o|a_i) \quad \forall o, i, j$ [Bhargava and Palamidessi, 05]

Proposition

An anonymity protocol satisfies strong probabilistic anonymity iff C = 0.

Example: Dining cryptographers

Strong anonymity and Bayesian inference

- When the rows of the matrix associated to the protocol are all the same, the adversary has no criteria for defining the decision function.
- The Bayesian probability of error is maximal:

$$P_E = \frac{|A|-1}{|A|}$$

Probable Innocence

- A weaker notion of anonymity
- Verbally defined [Reiter and Rubin, 98] as:

"from the attacker's point of view, the sender appears no more likely to be the originator of the message than to not be the originator"

Can be formally defined [Chatzikokolakis and Palamidessi, 05] as:

$$(n-1) \ge \frac{p(o|a)}{p(o|a')} \quad \forall o \in \mathcal{O}, \forall a, a' \in \mathcal{A}$$

Probable Innocence

 Can be generalized into a more general concept of partial anonymity:

$$\gamma \ge \frac{p(o|a)}{p(o|a')} \quad \forall o \in \mathcal{O}, \forall a, a' \in \mathcal{A}$$

Theorem

If a protocol satisfies partial anonymity with $\,\gamma>1\,$ then

$$C \le \frac{\log \gamma}{\gamma - 1} - \log \frac{\log \gamma}{\gamma - 1} - \log \ln 2 - \frac{1}{\ln 2}$$

Future work

- Challenging problem (not much investigated in statistical inference): infer the input distribution without the power of forcing the input to remain the same through the observations
- Investigate characterizations for other (weaker) notions of information hiding, which are easy to model check (i.e. they do not require to analyze the capacity as a function of the input distribution)
- Develop a logic for efficient model checking