ULTRAS at Work: Compositionality and Equational Metaresults for Bisimulation and Trace Metaequivalences

Marco Bernardo

University of Urbino – Italy

Objectives of a Behavioral Metamodel

- Unifying theory: offering a uniform view of existing behavioral models for a deeper understanding of their similarities and differences.
- Reuse facilities: providing general methodologies and tools for the development of new models, calculi, languages, . . .
- A behavioral metamodel should reduce the effort needed for:
 - Defining syntax, semantics, and behavioral relations.
 - Investigating compositionality properties.
 - Studying alternative characterizations (equational, logical, ...).
 - Designing verification algorithms.
- Which existing models does it capture?
 Which new models may be generated from it?
 Which results are valid for all the specific models embodied in it?

Towards Behavioral Metamodels

- Some frameworks may be viewed as metamodels:
 - SOS rule formats.
 - Probabilistic automata.
 - Weighted automata.
- But they were not developed with the explicit purpose of paving the way to unifying theories and reuse facilities.
- Their focus is on ensuring certain *properties in a general setting* or achieving a *higher level of expressivity*.
- Categorical representations based on coalgebras and bialgebras can be considered metamodels.
- Need for something that is *less abstract* and *easier to use*, hopefully closer to automata and languages.

Some Recent Proposals

- The WLTS metamodel by Klin (no internal nondeterminism):
 - Commutative monoids to express and combine weights attached to transition labels under a weight determinacy condition.
 - Equipped with a notion of *weighted bisimilarity* and a *rule format* guaranteeing the compositionality of bisimulation semantics.
- The FuTS metamodel by De Nicola, Massink, Latella & Loreti:
 - Commutative semirings for a compositional and compact definition
 of the operational semantics, useful for a precise understanding of
 similarities and differences among process calculi of the same class.
 - Bisimilarity addressed from a coalgebraic viewpoint with De Vink.
- The ULTRAS metamodel by Bernardo, De Nicola & Loreti:
 - Preordered sets equipped with minimum to describe reachability.
 - Emphasis on bisimulation and trace-based metaequivalences.
 - Rule format and coalgebraic characterization by Miculan & Peressotti.

Definition of the ULTRAS Metamodel

- $(D, \sqsubseteq_D, \bot_D)$ is a preordered set equipped with minimum \bot_D :
 - $d \in D$ represents a degree of one-step reachability.
 - \perp_D denotes unreachability.
- $\Delta \in (S \to D)_{nefs}$ is a reachability distribution such that $0 < |supp(\Delta)| < \omega$ where $supp(\Delta) = \{s \in S \mid \Delta(s) \neq \bot_D\}$.
- A uniform labeled transition system on $(D, \sqsubseteq_D, \bot_D)$, or D-ULTrans, is a triple (S, A, \longrightarrow) where:
 - $S \neq \emptyset$ is an at most countable set of states.
 - $A \neq \emptyset$ is a countable set of transition-labeling actions.
 - $\longrightarrow \subseteq S \times A \times (S \to D)_{nefs}$ is a transition relation.
- Given a transition $s \xrightarrow{a} \Delta$:
 - $\Delta(s')$ quantifies the reachability degree of any $s' \in S$.
 - The set of reachable states is $supp(\Delta)$, which is nonempty and finite.

Generality of the ULTRAS Metamodel

- ULTRAS is much more parsimonious than WLTS and FuTS, preordered sets with minimum are enough to represent reachability.
- Algebraic structures are really necessary only when defining behavioral relations or process language semantics.
- The ULTRAS metamodel is general enough to encompass:
 - Nondeterministic models (LTS).
 - Probabilistic models (ADTMC, MDP, PA).
 - Stochastically timed models (ACTMC, CTMDP, MA).
 - Deterministically timed models (TA, PTA).
- Preordered sets to be used:
 - $(\mathbb{B}, \sqsubseteq_{\mathbb{B}}, \bot)$, where $\bot \sqsubseteq_{\mathbb{B}} \top$, for capturing LTS and TA.
 - $(\mathbb{R}_{[0,1]}, \leq, 0)$ for capturing ADTMC, MDP, PA, PTA, MA.
 - $(\mathbb{R}_{>0}, \leq, 0)$ for capturing ACTMC and CTMDP.

Ingredients for Behavioral Metaequivalences

- Importing resolutions of nondeterminism with a formalization inspired by testing theories for nondeterministic and probabilistic processes.
- Adding a reachability-consistent semiring structure for:
 - Calculating multistep reachability values.
 - The overall reachability of a set of states.
- Defining measure schemata, based on the semiring operations, that consist of a reachability measure function for each resolution.
- Playing with the order of certain universal quantifiers in the definition of the metaequivalences thus obtaining pre-/post-metaequivalences.

Importing Resolutions in the ULTRAS Metamodel

- Behavioral metaequivalences on ULTRAS requires calculations that may be hampered by the presence of nondeterminism.
- A resolution of a state s belonging to an ULTRAS $\mathcal{U} = (S, A, \longrightarrow)$ is the result of a possible way of resolving choices starting from s.
- As if a *deterministic scheduler* were applied that, at the current state, selects one of its outgoing transitions or no transitions at all.
- Formalized as an acyclic deterministic ULTRAS $\mathcal{Z} = (Z, A, \longrightarrow_{\mathcal{Z}})$ obtained by unfolding the graph structure of \mathcal{U} (special case of WLTS).
- ullet Defined through a correspondence function from Z to S inspired by testing theories for probabilistic and nondeterministic processes.
- Res(s) is the set of resolutions of s (for trace semantics).
- k-Res(s) is the set of k-resolutions of s (for bisimulation semantics).

Formal Definition of Resolution of Nondeterminism

- Given an ULTRAS $\mathcal{U}=(S,A,\longrightarrow)$, a resolution of $s\in S$ is an ULTRAS $\mathcal{Z}=(Z,A,\longrightarrow_{\mathcal{Z}})$, with no cycles and Z disjoint from S, for which there exists a correspondence function $corr_{\mathcal{Z}}:Z\to S$ such that $s=corr_{\mathcal{Z}}(z_s)$, for some $z_s\in Z$, and for all $z\in Z$:
 - If $z \stackrel{a}{\longrightarrow}_{\mathcal{Z}} \Delta$ then $corr_{\mathcal{Z}}(z) \stackrel{a}{\longrightarrow} \Delta'$, with $corr_{\mathcal{Z}}$ being bijective between $supp(\Delta)$ and $supp(\Delta')$ and $\Delta(z') = \Delta'(corr_{\mathcal{Z}}(z'))$ for all $z' \in supp(\Delta)$.
 - At most one transition departs from z.
- In the case of a k-resolution for $k \in \mathbb{N}_{\geq 1}$, if z is reachable from z_s with a sequence of less than k transitions then:
 - $z \notin S$;
 - z cannot be part of a cycle;
 - z has at most one outgoing transition;

otherwise z is equal to $corr_{\mathcal{Z}}(z) \in S$ and has the same outgoing transitions that it has in \mathcal{U} .

Adding a Reachability-Consistent Semiring Structure

- The calculations required by ULTRAS behavioral metaequivalences refer to degrees of multistep reachability taken from $(D, \sqsubseteq_D, \bot_D)$.
- Need for a *commutative semiring* $(D, \oplus, \otimes, 0_D, 1_D)$ where:
 - enables the calculation of multistep reachability from values of consecutive single-step reachability along the same trajectory.
 - ⊕ is useful for aggregating values of multistep reachability along different trajectories starting from the same state.
- The semiring must be consistent with the notion of reachability:
 - $0_D = \bot_D$ (both represent unreachability);
 - ullet $d_1\otimes d_2
 eq 0_D$ whenever $d_1
 eq 0_D
 eq d_2$ (so consecutive steps cannot yield unreachability);
 - the sum via \oplus of finitely many values 1_D is $\neq 0_D$ characteristic zero (it ensures that two nonzero values sum up to zero only if they are one the inverse of the other w.r.t. \oplus , thus avoiding inappropriate zero results when aggregating values of trajectories from the same state; no \mathbb{Z}_n).

Measuring Multistep Reachability

• A measure schema \mathcal{M} for an ULTRAS $\mathcal{U}=(S,A,\longrightarrow)$ on a reachability-consistent semiring $(D,\oplus,\otimes,0_D,1_D)$ is a set of measure functions $\mathcal{M}_{\mathcal{Z}}: Z\times A^*\times 2^Z\to D$, one for each $\mathcal{Z}=(Z,A,\longrightarrow_{\mathcal{Z}})\in Res(s)$ and $s\in S$:

$$\mathcal{M}_{\mathcal{Z}}(z, \alpha, Z') = \begin{cases} f_{\mathcal{Z}}(\bigoplus_{z' \in supp(\Delta)} (\Delta(z') \otimes \mathcal{M}_{\mathcal{Z}}(z', \alpha', Z')), z, a, \Delta) \\ & \text{if } \alpha = a \, \alpha' \text{ and } z \xrightarrow{a}_{\mathcal{Z}} \Delta \\ 1_{D} & \text{if } \alpha = \varepsilon \text{ and } z \in Z' \\ 0_{D} & \text{otherwise} \end{cases}$$

- $f_Z: D \times Z \times A \times (Z \to D)_{nefs} \to D$ provides some flexibility.
- The definition applies to $\mathcal{Z} \in k\text{-}Res(s)$ by restricting to traces $\alpha \in A^*$ such that $|\alpha| \leq k$.
- \mathcal{M}_{nd} denotes the measure schema for $(\mathbb{B}, \vee, \wedge, \perp, \top)$.
- ullet \mathcal{M}_{pb} denotes the measure schema for $(\mathbb{R}_{\geq 0},+, imes,0,1).$
- $\mathcal{M}_{\mathrm{ete}}$ and $\mathcal{M}_{\mathrm{sbs}}$, developed for the stochastic case, also exploit $f_{\mathcal{Z}}$.

Measure Schemata for the Stochastic Case

• The end-to-end option originates a measure schema $\mathcal{M}_{\mathrm{ete}}(t)$ that expresses the probability of performing within $t \in \mathbb{R}_{\geq 0}$ time units a computation from state z labeled with trace α to a state in Z'

(convolution of two probability distributions when $\alpha=a$ α' and t>0 built by taking $x\in\mathbb{R}_{[0,t]}$):

$$\mathcal{M}_{\text{ete}}(z, \alpha, Z')(t) = f_{\text{ete}}(\sum_{z' \in supp(\Delta)} (\Delta(z') \times \mathcal{M}_{\text{ete}}(z', \alpha', Z')(t - x)), z, a, \Delta)(t)$$

$$f_{\text{ete}}(d, z, a, \Delta)(t) = \int_{0}^{t} e^{-E(z) \times x} \times d \, dx$$

• The step-by-step option originates a measure schema $\mathcal{M}_{sbs}(\theta)$ that expresses the prob. of perf. within a sequence of time units $\theta \in (\mathbb{R}_{\geq 0})^*$ a computation from state z labeled with trace α to a state in Z'

(product of two probability distributions when $\alpha=a\,\alpha'$ and $\theta=t\,\theta'$ with t>0):

$$\mathcal{M}_{\mathrm{sbs}}(z, \alpha, Z')(\theta) = f_{\mathrm{sbs}}(\sum_{\substack{z' \in supp(\Delta) \\ E(z)}} (\Delta(z') \times \mathcal{M}_{\mathrm{sbs}}(z', \alpha', Z')(\theta')), z, a, \Delta)(t)$$
$$f_{\mathrm{sbs}}(d, z, a, \Delta)(t) = \frac{1 - e^{-E(z) \times t}}{E(z)} \times d$$

Bisimulation Pre-/Post-Metaequivalences

- $\sim_{B,\mathcal{M}}^{pre}$ and $\sim_{B,\mathcal{M}}^{post}$ are defined in the style of Larsen & Skou and differ for the *position* of the univ. quantif. over *sets* of equivalence classes.
- Partially matching transitions, i.e., with respect to one destination.
- An equivalence relation $\mathcal B$ over S is an $\mathcal M$ -pre-bisimulation iff, whenever $(s_1,s_2)\in \mathcal B$, then for all $a\in A$ and for all $\mathcal G\in 2^{S/\mathcal B}$ it holds that for each $\mathcal Z_1\in 1\text{-}Res(s_1)$ there exists $\mathcal Z_2\in 1\text{-}Res(s_2)$ such that:

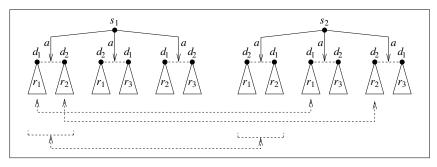
$$\mathcal{M}(z_{s_1}, a, \bigcup \mathcal{G}) = \mathcal{M}(z_{s_2}, a, \bigcup \mathcal{G})$$

- Fully matching transitions, i.e., with respect to all destinations.
- An equivalence relation $\mathcal B$ over S is an $\mathcal M$ -post-bisimulation iff, whenever $(s_1,s_2)\in \mathcal B$, then for all $a\in A$ it holds that for each $\mathcal Z_1\in 1\text{-}Res(s_1)$ there exists $\mathcal Z_2\in 1\text{-}Res(s_2)$ such that for all $\mathcal G\in 2^{S/\mathcal B}$:

$$\mathcal{M}(z_{s_1}, a, \bigcup \mathcal{G}) = \mathcal{M}(z_{s_2}, a, \bigcup \mathcal{G})$$

Pre-Metaequivalences vs. Post-Metaequivalences

• *D*-ULTRAS models identified by $\sim_{B,\mathcal{M}}^{pre}$ but distinguished by $\sim_{B,\mathcal{M}}^{post}$ for $d_1 \neq d_2$ and inequivalent continuations:



- Internal nondeterminism due to three initial a-transitions.
- Continuations and their *D*-values are the same in both models.
- Continuations and their *D*-values are *shuffled within* each model.
- Only D-values are shuffled across the two models too.

Generality of Bisimulation Metaequivalences

- Specific bisimulation equivalences captured by both metaequivalences:
 - Park/Milner bisimilarity for LTS.
 - Giacalone, Jou & Smolka bisimilarity for ADTMC.
 - Larsen & Skou bisimilarity for MDP.
 - Hillston bisimilarity for ACTMC.
 - Neuhäußer & Katoen bisimilarity for CTMDP.
- Differences emerge in the case of specific models in which there are internal nondeterminism & probabilities/stochasticity.
- Only $\sim_{B,\mathcal{M}_{\mathrm{pb}}}^{\mathrm{post}}$ coincides with the strong bisimulation equivalence of Segala & Lynch for PA.
- $\sim_{B,\mathcal{M}_{pb}}^{pre}$ coincides with a new bisimulation equivalence for PA, which is logically characterized by Larsen & Skou PML (like in the case of fully prob. processes, reactive prob. processes, alternating PA).

Trace Pre-/Post-Metaequivalences

- $\sim_{T,\mathcal{M}}^{pre}$ and $\sim_{T,\mathcal{M}}^{post}$ differ for the *position* of the universal quantifiers over traces w.r.t. the computations of the challenger and the defender.
- Partially matching resolutions, i.e., with respect to one trace.
- $s_1 \sim_{T,\mathcal{M}}^{\operatorname{pre}} s_2$ iff for all $\alpha \in A^*$ it holds that for each $\mathcal{Z}_1 \in \operatorname{Res}^{\operatorname{c}}(s_1)$ there exists $\mathcal{Z}_2 \in \operatorname{Res}^{\operatorname{c}}(s_2)$ such that:

$$\mathcal{M}(z_{s_1}, \alpha, Z_1) = \mathcal{M}(z_{s_2}, \alpha, Z_2)$$

and symmetrically \dots for each $\mathcal{Z}_2 \in Res^{\mathrm{c}}(s_2)$ there exists $\mathcal{Z}_1 \in Res^{\mathrm{c}}(s_1)$ \dots

- Fully matching resolutions, i.e., with respect to all traces.
- $s_1 \sim_{T,\mathcal{M}}^{post} s_2$ iff for each $\mathcal{Z}_1 \in Res^c(s_1)$ there exists $\mathcal{Z}_2 \in Res^c(s_2)$ such that for all $\alpha \in A^*$:

$$\mathcal{M}(z_{s_1}, \alpha, Z_1) = \mathcal{M}(z_{s_2}, \alpha, Z_2)$$

and symmetrically \dots for each $\mathcal{Z}_2 \in Res^{\mathrm{c}}(s_2)$ there exists $\mathcal{Z}_1 \in Res^{\mathrm{c}}(s_1)$ \dots

Coherent Resolutions for Trace Semantics

- ULTRAS submodels rooted in the support of the target distribution of a transition:
 - · are not necessarily distinct;
 - can have several outgoing transitions.
- The scheduler thus has the freedom of making *different* decisions in different occurrences of the *same* submodel.
- Overdiscriminating trace metaequivalences (violation of desirable properties).
- Coherent resolutions are resolutions in which the same decisions are made in different occurrences of the same submodel.
- If two states in the target distribution of a transition of *U* possess the same traces of a certain length,
 then so do the two states to which they correspond in *Z*.
- $Res^{c}(s)$ is the set of coherent resolutions of s.

Generality of Trace Metaequivalences

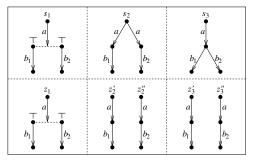
- Specific trace equivalences captured by both metaequivalences:
 - Brookes, Hoare & Roscoe trace equivalence for LTS.
 - Jou & Smolka trace equivalence for ADTMC.
 - Seidel trace equivalence for MDP.
 - Wolf, Baier & Majster-Cederbaum trace equiv. for ACTMC (ete option).
 - Bernardo trace equivalence for ACTMC (sbs option).
- Differences again emerge in the case of specific models in which there are internal nondeterminism & probabilities/stochasticity.
- Only $\sim_{T,\mathcal{M}_{\rm pb}}^{post}$ coincides with the strong trace-distribution equivalence of Segala for PA.
- $\sim_{T,\mathcal{M}_{pb}}^{pre}$ coincides with a new trace equivalence for PA, which is a congruence with respect to parallel composition (this is not the case with any other probabilistic trace equivalence).

Discriminating Power of the Metaequivalences

- $\bullet \sim_{B,\mathcal{M}}^{post}$ is finer than $\sim_{B,\mathcal{M}}^{pre}$ (obvious from their definitions).
- ullet $\sim_{T,\mathcal{M}}^{post}$ is finer than $\sim_{T,\mathcal{M}}^{pre}$ (obvious from their definitions).
- \bullet $\sim_{B,\mathcal{M}}^{post}$ is finer than $\sim_{T,\mathcal{M}}^{post}$ (requires coherent resolutions).
- $\bullet \sim_{B,\mathcal{M}}^{pre}$ and $\sim_{T,\mathcal{M}}^{post}$ / $\sim_{T,\mathcal{M}}^{pre}$ are incomparable if there is internal nondet.
- $\sim_{B,\mathcal{M}}^{post}$ and $\sim_{B,\mathcal{M}}^{pre}$ coincide on ULTRAS without internal nondet.
- \bullet $\sim_{T,\mathcal{M}}^{post}$ and $\sim_{T,\mathcal{M}}^{pre}$ may not coincide even if there is no internal nondet.
- Weighted bisimilarity for WLTS coincides with both $\sim_{B,\mathcal{M}}^{pre}$ and $\sim_{B,\mathcal{M}}^{post}$ when the same commutative monoid is considered.
- Bisimilarity for FuTS coincides with both $\sim_{B,\mathcal{M}}^{pre}$ and $\sim_{B,\mathcal{M}}^{post}$ when the same commut. semiring is considered (deterministic state spaces).

Strictness of Inclusions and Internal Nondeterminism

• Three B-ULTRAS models and their maximal resolutions $(b_1 \neq b_2)$:



- $s_1 \sim_{\mathrm{B},\mathcal{M}_{\mathrm{nd}}}^{\mathrm{pre}} s_2$ but $s_1 \not\sim_{\mathrm{B},\mathcal{M}_{\mathrm{nd}}}^{\mathrm{post}} s_2 \mid s_1 \not\sim_{\mathrm{B},\mathcal{M}_{\mathrm{nd}}}^{\mathrm{pre}} s_3$ hence $s_1 \not\sim_{\mathrm{B},\mathcal{M}_{\mathrm{nd}}}^{\mathrm{post}} s_3$ (s_2 and s_3 have different maximal 1-resolutions).
- $s_1 \sim_{T,\mathcal{M}_{\mathrm{nd}}}^{\mathrm{pre}} s_2$ but $s_1 \not\sim_{T,\mathcal{M}_{\mathrm{nd}}}^{\mathrm{post}} s_2 \mid s_1 \sim_{T,\mathcal{M}_{\mathrm{nd}}}^{\mathrm{pre}} s_3$ but $s_1 \not\sim_{T,\mathcal{M}_{\mathrm{nd}}}^{\mathrm{post}} s_3$ (s_1 and s_3 have no internal nondeterminism, but s_1 is *not* the canonical representation of any LTS).
- $s_2 \sim_{\mathrm{T},\mathcal{M}_{\mathrm{nd}}}^{\mathrm{post}} s_3$ but $s_2 \not\sim_{\mathrm{B},\mathcal{M}_{\mathrm{nd}}}^{\mathrm{post}} s_3$.

A Process Algebraic View of ULTRAS

- Search for metaresults for behavioral metaequivalences.
- UPROC uniform process calculus over $(D, \oplus, \otimes, 0_D, 1_D)$.
- Syntax of the set P of process terms:

$$P ::= \underline{0} \mid a \cdot \mathcal{D} \mid P + P \mid P \parallel_L P$$

where $a \in A$ and $L \subseteq A$.

• Syntax of the set D of *distribution terms*:

$$\mathcal{D} ::= d \triangleright P \mid \mathcal{D} \oplus \mathcal{D}$$

where $d \in D \setminus \{0_D\}$.

- Operator + describes a nondeterministic choice.
- A probabilistic choice like in $P'_{p}+P''$, where $p\in\mathbb{R}_{]0,1[}$, is rendered as τ . $(p\triangleright P' + (1-p)\triangleright P'')$ with τ invisible action.

Operational Semantics of Dynamic Process Operators

- The operational semantic rules generate a D-ULTRAS $(\mathbb{P}, A, \longrightarrow)$.
- Action prefix:

• Alternative composition:

$$\begin{array}{ccc} P_1 \stackrel{a}{\longrightarrow} \Delta & & P_2 \stackrel{a}{\longrightarrow} \Delta \\ \hline P_1 + P_2 \stackrel{a}{\longrightarrow} \Delta & & P_1 + P_2 \stackrel{a}{\longrightarrow} \Delta \end{array}$$

Operational Semantics of Distribution Operators

Singleton support distribution:

$$d \triangleright P \longmapsto \{(P,d)\}$$

- $\{(P,d)\}$ is a shorthand for the reachability distribution identically equal to 0_D except in P where its value is d.
- Distribution composition:

$$\begin{array}{ccc}
\mathcal{D}_1 & \longmapsto \Delta_1 & \mathcal{D}_2 & \longmapsto \Delta_2 \\
\hline
\mathcal{D}_1 & \downarrow \mathcal{D}_2 & \longmapsto \Delta_1 \oplus \Delta_2
\end{array}$$

- $\bullet \ (\Delta_1 \oplus \Delta_2)(P) = \Delta_1(P) \oplus \Delta_2(P).$
- Whenever $\mathcal{D} \longmapsto \Delta$, we let $supp(\mathcal{D}) = supp(\Delta)$.

Operational Semantics of Static Process Operators

Parallel composition:

$$\frac{P_1 \xrightarrow{a} \Delta_1 \quad a \notin L}{P_1 \parallel_L P_2 \xrightarrow{a} \Delta_1 \otimes \delta_{P_2}} \qquad \frac{P_2 \xrightarrow{a} \Delta_2 \quad a \notin L}{P_1 \parallel_L P_2 \xrightarrow{a} \delta_{P_1} \otimes \Delta_2}$$

$$\underline{P_1 \xrightarrow{a} \Delta_1 \quad P_2 \xrightarrow{a} \Delta_2 \quad a \in L}$$

$$\underline{P_1 \parallel_L P_2 \xrightarrow{a} \Delta_1 \otimes \Delta_2}$$

- $\bullet \ (\Delta_1 \otimes \Delta_2)(P_1 \parallel_L P_2) = \Delta_1(P_1) \otimes \Delta_2(P_2).$
- δ_P is identically equal to 0_D except in P where its value is 1_D .

Compositionality Metaresults

- Investigating whether the behavioral metaequivalences are *compositional* with respect to the various operators of UPROC.
- Search for congruence results independent from specific models.
- Achieved for distribution operators and dynamic process operators.
- Confirm the existence, between bisimulation and trace semantics, of a foundational difference with respect to parallel composition, which shows up in the presence of internal nondeterminism:
 - Bisimilarity: only the post-metaequivalence is always a congruence.
 - Trace: it is the pre-metaequivalence that is always a congruence.
- Is there a semantics for which both pre- and post-metaequivalences are always congruences with respect to parallel composition?

Compositionality of Bisimulation Metaequivalences

- $\bullet \sim_{B,\mathcal{M}}^{pre}$ and $\sim_{B,\mathcal{M}}^{post}$ are both congruences with respect to distribution operators, action prefix, alternative composition.
- $\sim_{B,\mathcal{M}}^{post}$ is a congruence with respect to parallel composition too, hence so is $\sim_{B,\mathcal{M}}^{pre}$ in the absence of internal nondeterminism.
- $\sim_{\mathrm{B},\mathcal{M}_{\mathrm{nd}}}^{\mathrm{pre}}$ is a congruence with respect to parallel composition, because in the only reachability-consistent semiring with |D|=2, which is $(\mathbb{B},\vee,\wedge,\perp,\top)$, parallel composition cannot generate values different from \perp and \top .
- ullet $\sim_{{
 m B},{\cal M}}^{{
 m pre}}$ is *not* a congruence with respect to parallel composition when $|D|\geq 3$ and there is internal nondeterminism.
- ullet $\sim_{B,\mathcal{M}}^{post}$ is the coarsest congruence contained in $\sim_{B,\mathcal{M}}^{pre}$ w.r.t. parallel composition in the case of an *image-finite* ULTRAS on a reachability-consistent *field* (algebraic and topological properties of vector spaces).

Compositionality of Trace Metaequivalences

- $\sim^{\mathrm{pre}}_{\mathrm{T},\mathcal{M}}$ and $\sim^{\mathrm{post}}_{\mathrm{T},\mathcal{M}}$ are both congruences with respect to distribution operators, action prefix, alternative composition (action prefix requires coherent resolutions).
- \bullet $\sim^{pre}_{T,\mathcal{M}}$ is a congruence with respect to parallel composition too.
- The proof is based on the alternative characterization of $\sim_{T,\mathcal{M}}^{pre}$, which associates with each state the *set of traces* it can perform in the various resolutions, each extended with its *degree of executability*.
- $\sim_{T,\mathcal{M}_{\mathrm{nd}}}^{post}$ is a congruence with respect to parallel composition if we rule out ULT_{RAS} that are not canonical representations of LTS.
- ullet $\sim_{T,\mathcal{M}}^{post}$ is *not* a congruence with respect to parallel composition whenever it does *not* coincide with $\sim_{T,\mathcal{M}}^{pre}$ (due to internal nondeterminism).
- A coarsest congruence result is not possible for trace semantics because $\sim^{\mathrm{post}}_{T,\mathcal{M}}$ is finer than $\sim^{\mathrm{pre}}_{T,\mathcal{M}}$.

Equational Characterization Metaresults

- Sound and complete axiom systems independent from specific models.
- Core axioms valid for all metaequivalences and measure schemata:

$$(\mathcal{A}_1) \quad (P_1 + P_2) + P_3 = P_1 + (P_2 + P_3)$$

$$(\mathcal{A}_2) \quad P_1 + P_2 = P_2 + P_1$$

$$(\mathcal{A}_3) \quad P + \underline{0} = P$$

$$(\mathcal{A}_4) \quad (\mathcal{D}_1 \oplus \mathcal{D}_2) \oplus \mathcal{D}_3 = \mathcal{D}_1 \oplus (\mathcal{D}_2 \oplus \mathcal{D}_3)$$

$$(\mathcal{A}_5) \quad \mathcal{D}_1 \oplus \mathcal{D}_2 = \mathcal{D}_2 \oplus \mathcal{D}_1$$

- A_1 , A_2 , A_3 are typical of nondeterministic process calculi.
- A_4 , A_5 are typical of probabilistic process calculi:

 - $\begin{array}{l} \bullet \;\; {P'}_{p} + {P''} \; = \; {P''}_{1-p} + {P'}. \\ \bullet \;\; ({P'}_{p} + {P''})_{q} + {P'''} \; = \; {P'}_{p \cdot q} + ({P''}_{(1-p) \cdot q/(1-p \cdot q)} + {P'''}). \end{array}$

$\overline{\mathsf{Idempotency}}$ Axioms for $\overline{\sim_{\mathrm{B}}^{\mathrm{post}}}$

• Additional axioms for \sim_{B}^{post} :

$$(\mathcal{A}_{\mathrm{B},1}^{\mathrm{post}}) \qquad P+P=P$$

$$(\mathcal{A}_{\mathrm{B},2}^{\mathrm{post}}) \quad d_1 \triangleright P \oplus d_2 \triangleright P = (d_1 \oplus d_2) \triangleright P$$

- ullet $\mathcal{A}_{B,1}^{post}$ is typical of bisimilarity over nondeterministic process calculi.
- $\mathcal{A}_{B,2}^{post}$ encodes bisimilarity axioms such as:
 - $P_p + P = P$ typical of probabilistic process calculi.
 - $\lambda_1 . P + \lambda_2 . P = (\lambda_1 + \lambda_2) . P$ typical of stochastic process calculi.
- Sum normal form of a process term $P \in \mathbb{P}$ for studying completeness:
 - either 0,
 - or $\sum_{i \in I} a_i \cdot (\sum_{j \in J_i} d_{i,j} \triangleright P_{i,j})$ with every $P_{i,j}$ in sum normal form.

Shuffling Axiom for $\sim_{ m B}^{ m pre}$

• Additional axiom for \sim_B^{pre} (all index sets are nonempty and finite):

- For all $i_1 \in I_1$ and $\emptyset \neq J_1 \subseteq J_{1,i_1}$ containing the indices of all the occurrences of any process indicated by an index in J_1 itself, there exist $i_2 \in I_2$ and $\emptyset \neq J_2 \subseteq J_{2,i_2}$ containing the indices of all the occurrences of any process indicated by an index in J_2 itself, s.t.:
 - $\forall j_1 \in J_1. (\exists j_2 \in J_2. P_{1,i_1,j_1} = P_{2,i_2,j_2} \lor \nexists j_2 \in J_{2,i_2}. P_{1,i_1,j_1} = P_{2,i_2,j_2}).$
- Symmetric condition obtained by exchanging I_1, J_1 with I_2, J_2 .
- $\mathcal{A}_{B,1}^{\mathrm{pre}}$ subsumes:
 - Both idempotency axioms $\mathcal{A}_{B,1}^{post}$ and $\mathcal{A}_{B,2}^{post}$.
 - $a \cdot \mathcal{D}_1 + a \cdot \mathcal{D}_2 = a \cdot (\mathcal{D}_1 + \mathcal{D}_2)$ under the same constraints.

Choice-Deferring Axioms for $\sim_{ m T}^{ m post}$

• Additional axioms for $\sim_{\rm T}^{\rm post}$ with respect to $\sim_{\rm B}^{\rm post}$:

```
 \begin{array}{|c|c|c|} \hline (\mathcal{A}_{\mathrm{T},1}^{\mathrm{post}}) & a_1 \cdot (\mathcal{D}_1 \oplus d_1 \rhd (P_1 + a_2 \cdot (\mathcal{D}_2 \oplus d_2 \rhd (\ldots \rhd (P_{n-1} + a_n \cdot (\mathcal{D}_n \oplus d_n \rhd P'))\ldots)))) \\ & + \\ & a_1 \cdot (\mathcal{D}_1 \oplus d_1 \rhd (P_1 + a_2 \cdot (\mathcal{D}_2 \oplus d_2 \rhd (\ldots \rhd (P_{n-1} + a_n \cdot (\mathcal{D}_n \oplus d_n \rhd P''))\ldots)))) \\ & = \\ & a_1 \cdot (\mathcal{D}_1 \oplus d_1 \rhd (P_1 + a_2 \cdot (\mathcal{D}_2 \oplus d_2 \rhd (\ldots \rhd (P_{n-1} + a_n \cdot (\mathcal{D}_n \oplus d_n \rhd (P' + P'')))\ldots)))) \\ & & \text{where } P', P'' \notin supp(\mathcal{D}_n) \\ \hline (\mathcal{A}_{\mathrm{T},2}^{\mathrm{post}}) & a \cdot (\mathcal{D} \oplus d_1 \rhd (\sum_{j \in J} b_j \cdot \mathcal{D}_{1,j}) \oplus d_2 \rhd (\sum_{j \in J} b_j \cdot \mathcal{D}_{2,j})) \\ & = \\ & a \cdot (\mathcal{D} \oplus d' \rhd (\sum_{j \in J} b_j \cdot (\mathcal{D}_{1,j}' \oplus \mathcal{D}_{2,j}'))) \\ & & \text{if } d' = d_1 \oplus d_2 \text{ and for } 1 \leq i \leq 2 \text{ there exists } d'_i \in D \text{ such that } d' \otimes d'_i = d_i \\ & & \text{where } \mathcal{D}_{i,j}' \text{ is obtained from } \mathcal{D}_{i,j} \text{ by multiplying each of its } D\text{-values by } d'_i \end{array}
```

- Simplest instance of $\mathcal{A}_{T,1}^{\text{post}}$, typical of nondeterministic process calculi: $a \cdot (d \triangleright P') + a \cdot (d \triangleright P'') = a \cdot (d \triangleright (P' + P''))$.
- Application of $\mathcal{A}_{\mathrm{T},2}^{\mathrm{post}}$, typical of probabilistic process calculi: $a \cdot (d_1 \triangleright (b \cdot (1_D \triangleright P_1)) \oplus d_2 \triangleright (b \cdot (1_D \triangleright P_2))) = a \cdot (1_D \triangleright b \cdot (d_1 \triangleright P_1 \oplus d_2 \triangleright P_2))$ where $d_1 \oplus d_2 = 1_D$.

Expansion Law for Parallel Composition

- The validity of this law (for all the behavioral metaequivalences) stems from the operational semantic rules.
- Let P_1 and P_2 be in sum normal form (with I_1 and I_2 possibly empty):

$$\sum_{i \in I_1} a_{1,i} \cdot \left(\sum_{j \in J_{1,i}} d_{1,i,j} \triangleright P_{1,i,j} \right)$$
$$\sum_{i \in I_2} a_{2,i} \cdot \left(\sum_{j \in J_{2,i}} d_{2,i,j} \triangleright P_{2,i,j} \right)$$

• The axiom (where any empty summation yields <u>0</u>):

$$P_{1} \parallel_{L} P_{2} = \sum_{i \in I_{1}}^{a_{1,i} \notin L} a_{1,i} \cdot \left(\sum_{j \in J_{1,i}} d_{1,i,j} \triangleright (P_{1,i,j} \parallel_{L} P_{2}) \right)$$

$$+ \sum_{i \in I_{2}}^{a_{2,i} \notin L} a_{2,i} \cdot \left(\sum_{j \in J_{2,i}} d_{2,i,j} \triangleright (P_{1} \parallel_{L} P_{2,i,j}) \right)$$

$$+ \sum_{i \in I_{1}}^{a_{1,i} \in L} \sum_{i' \in I_{2}}^{a_{2,i'} = a_{1,i}} a_{1,i} \cdot \left(\sum_{j \in J_{1,i}} \sum_{i' \in I_{2,i'}} (d_{1,i,j} \otimes d_{2,i',j'}) \triangleright (P_{1,i,j} \parallel_{L} P_{2,i',j'}) \right)$$

is sound with respect to all considered metaequivalences.

Future Work

- Keep putting ULTRAS at work on behavioral metaequivalences to further extend the resulting unifying process theory:
 - Logical characterization metaresults.
 - Metaresults for other bisimulation-/trace-based metaequivalences.
 - Metaresults for testing metaequivalences.
 - The spectrum of metaequivalences.
- Defining and studying properties of:
 - Behavioral metapreorders.
 - Weak variants of behavioral metarelations.
 - Approximate variants of behavioral metarelations.
- On the metamodel side, capturing also:
 - Interleaving models with continuous state spaces.
 - Truly concurrent models such as Petri nets and event structures.

References

- M. Bernardo, R. De Nicola, M. Loreti, "A Uniform Framework for Modeling Nondeterministic, Probabilistic, Stochastic, or Mixed Processes and their Behavioral Equivalences", Information and Computation 225:29–82, April 2013.
- M. Bernardo, L. Tesei, "Encoding Timed Models as Uniform Labeled Transition Systems", in Proc. of the 10th European Performance Engineering Workshop (EPEW 2013), Springer, LNCS 8168:104–118, September 2013.
- M. Bernardo, "ULTRAS at Work: Compositionality Metaresults for Bisimulation and Trace Semantics", Journal of Logical and Algebraic Methods in Programming 94:150–182, January 2018.
- M. Bernardo, "Equational Characterization Metaresults for Bisimulation and Trace Semantics in ULTRAS", in preparation.
- M. Bernardo, R. De Nicola, M. Loreti, "Revisiting Trace and Testing Equivalences for Nondeterministic and Probabilistic Processes", Logical Methods in Computer Science 10(1:16):1–42, March 2014.
- M. Bernardo, R. De Nicola, M. Loreti, "Revisiting Bisimilarity and its Modal Logic for Nondeterministic and Probabilistic Processes", Acta Informatica 52:61–106, February 2015.
- M. Bernardo, R. De Nicola, M. Loreti, "Relating Strong Behavioral Equivalences for Processes with Nondeterminism and Probabilities", Theoretical Computer Science 546:63–92, August 2014.
- M. Miculan, M. Peressotti, "Structural Operational Semantics for Non-deterministic Processes with Quantitative Aspects", Theoretical Computer Science 655:135–154, December 2016.