<u>ULTras</u>: A Uniform Framework for Nondeterministic, Probabilistic, and Timed Process Models and Behavioral Equivalences

Marco Bernardo

University of Urbino - Italy

joint work with: R. De Nicola, M. Loreti, L. Tesei

Behavioral Models and Equivalences

- Behavioral models of complex computing systems are mostly based on labeled transition systems [Keller, 1976].
- State-transition graphs in which every transition is labeled with the action/event determining the state change.
- Focus on interaction/communication, as opposed to Kripke structures.
- The next transition to be executed is selected nondeterministically: implementation freedom, lack of information.
- Behavioral equivalences studied in the 1980's to establish a connection between different LTS models that exhibit the same behavior.
- Support top-down design and compositional state space minimization before applying verification techniques such as model checking.

A Unifying View

- Several generalizations to deal with probabilistic and/or timed systems since the late 1980's, yielding different models and equivalences.
- Possibly combining nondeterminism and quantitative aspects.
- Can we provide a unifying definition of the various models/equivalences?
- Do new models/equivalences emerge, which have interesting properties?
- Taking inspiration from two extensions of the LTS model:
 - Simple probabilistic automata [Segala, 1995].
 - Rate transition systems [De Nicola-Latella-Loreti-Massink, 2009].
- Transition format: next state distribution vs. single next state.

The ULTRAS Model

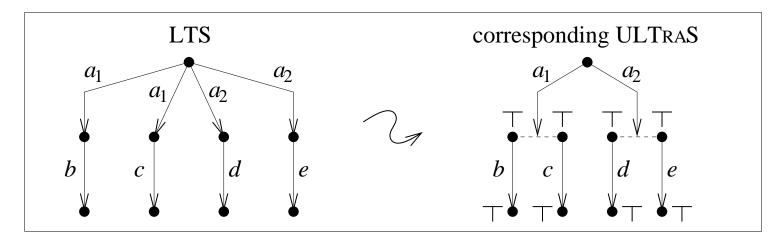
- $(D, \sqsubseteq_D, \bot_D)$: preordered set equipped with a minimum denoted by \bot_D , with each value representing a degree of one-step reachability.
- A uniform labeled transition system on $(D, \sqsubseteq_D, \bot_D)$, or D-ULTRAS, is a triple $\mathcal{U} = (S, A, \longrightarrow)$ where:
 - -S is an at most countable set of states.
 - -A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times [S\to D]$ is a transition relation.
- \mathcal{U} is functional iff \longrightarrow is a function from $S \times A$ to $[S \to D]$.
- Given a transition $s \xrightarrow{a} \Delta$, function Δ represents the distribution of reachability of all possible states from s via that transition.
- If $\Delta(s') = \perp_D$, then s' is not reachable from s via that transition.

Encoding Nondeterministic Models as ULTRAS

- An LTS can be encoded as a functional \mathbb{B} -ULTRAS, where $\mathbb{B} = \{\bot, \top\}$ is the support set of the Boolean algebra with $\bot \sqsubseteq_{\mathbb{B}} \top$.
- An LTS is a triple (S, A, \longrightarrow) where:
 - -S is an at most countable set of states.
 - A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times S$ is a transition relation.
- Corresponding functional \mathbb{B} -ULTRAS $\mathcal{U} = (S, A, \longrightarrow_{\mathcal{U}})$:
 - $-s \xrightarrow{a}_{\mathcal{U}} \Delta_{s,a}$ for all $s \in S$ and $a \in A$.

$$- \Delta_{s,a}(s') = \begin{cases} \top & \text{if } s \xrightarrow{a} s' \\ \bot & \text{if } (s,a,s') \notin \longrightarrow \end{cases} \text{ for all } s' \in S.$$

• External and internal forms of nondeterminism are encoded differently:



• The resulting functional \mathbb{B} -ULTRAS models can be viewed as alternating automata in which, however, every transition is existential: all states labeled with \top are alternative to each other.

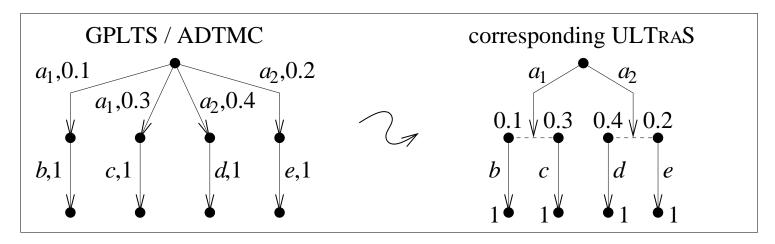
Encoding Probabilistic Models as ULTRAS

- Models featuring probabilities and different levels of nondeterminism.
- A GPLTS (or action-labeled discrete-time Markov chain ADTMC) can be encoded as a functional $\mathbb{R}_{[0,1]}$ -ULTRAS with the usual \leq .
- An RPLTS (or discrete-time Markov decision process MDP) can be encoded as a functional $\mathbb{R}_{[0,1]}$ -ULTRAS with the usual \leq .
- An NPLTS (which is an MDP with internal nondeterminism) can be encoded as an $\mathbb{R}_{[0,1]}$ -ULTRAS with the usual \leq .

- A generative probabilistic LTS is a triple (S, A, \longrightarrow) where:
 - -S is an at most countable set of states.
 - -A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times \mathbb{R}_{(0,1]}\times S$ is a transition relation.
 - Whenever $s \xrightarrow{a,p_1} s'$ and $s \xrightarrow{a,p_2} s'$, then $p_1 = p_2$.
 - $-\sum\{|p\in\mathbb{R}_{(0,1]}\mid \exists a\in A.\,\exists s'\in S.\,s\xrightarrow{a,p}s'\}\}\in\{0,1\} \text{ for all }s\in S.$
- Corresponding functional $\mathbb{R}_{[0,1]}$ -ULTRAS $\mathcal{U} = (S, A, \longrightarrow_{\mathcal{U}})$:
 - $-s \xrightarrow{a}_{\mathcal{U}} \Delta_{s,a}$ for all $s \in S$ and $a \in A$.

$$- \Delta_{s,a}(s') = \begin{cases} p & \text{if } s \xrightarrow{a,p} s' \\ 0 & \text{if } \nexists p \in \mathbb{R}_{(0,1]}. s \xrightarrow{a,p} s' \end{cases} \text{ for all } s' \in S.$$

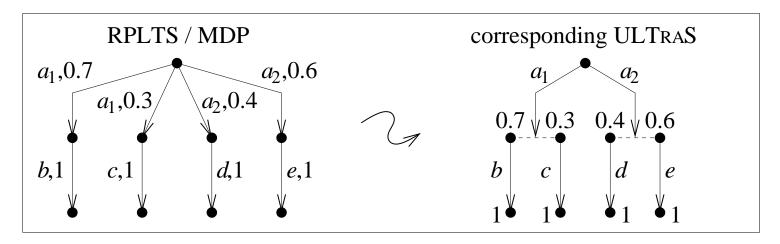
ullet External and internal probabilistic choices, probability sub distributions:



- A reactive probabilistic LTS is a triple (S, A, \longrightarrow) where:
 - -S is an at most countable set of states.
 - -A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times \mathbb{R}_{(0,1]}\times S$ is a transition relation.
 - Whenever $s \xrightarrow{a,p_1} s'$ and $s \xrightarrow{a,p_2} s'$, then $p_1 = p_2$.
 - $-\sum\{|p\in\mathbb{R}_{(0,1]}\mid \exists s'\in S.\ s\xrightarrow{a,p}s'\}\}\in\{0,1\} \text{ for all } s\in S \text{ and } a\in A.$
- Corresponding functional $\mathbb{R}_{[0,1]}$ -ULTRAS $\mathcal{U} = (S, A, \longrightarrow_{\mathcal{U}})$:
 - $-s \xrightarrow{a}_{\mathcal{U}} \Delta_{s,a}$ for all $s \in S$ and $a \in A$.

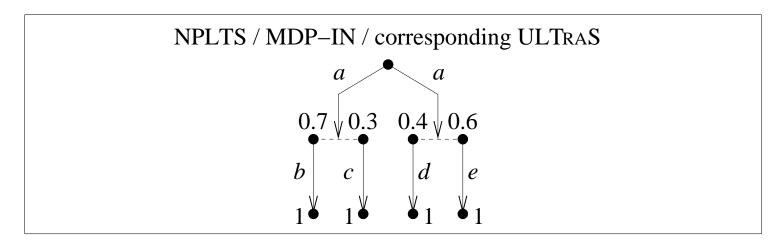
$$- \Delta_{s,a}(s') = \begin{cases} p & \text{if } s \xrightarrow{a,p} s' \\ 0 & \text{if } \nexists p \in \mathbb{R}_{(0,1]}. s \xrightarrow{a,p} s' \end{cases} \text{ for all } s' \in S.$$

• External nondeterminism & internal probabilistic choices:



- A nondeterministic and probabilistic LTS is a triple (S, A, \longrightarrow) where:
 - S is an at most countable set of states.
 - -A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times [S\to\mathbb{R}_{[0,1]}]$ is a transition relation.
 - $-\sum_{s'\in S} \Delta(s') = 1 \text{ for all } s \xrightarrow{a} \Delta.$
- The corresponding $\mathbb{R}_{[0,1]}$ -ULTRAS is (S, A, \longrightarrow) itself.
- <u>Not functional</u> due to the coexistence of internal nondeterminism and probabilistic choices.

• External/internal nondeterminism & internal probabilistic choices:



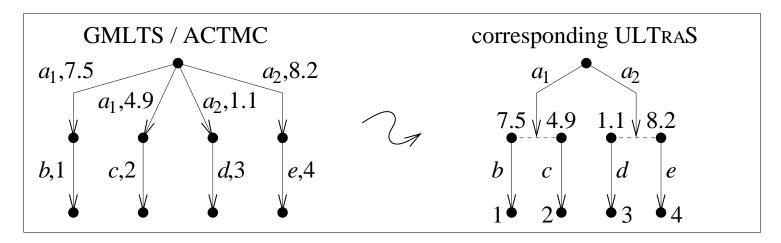
Encoding Stochastic Models as ULTRAS

- Models featuring rates and different levels of nondeterminism.
- Rates encompass both probabilistic and timing aspects.
- A GMLTS (or action-labeled continuous-time Markov chain ACTMC) can be encoded as a functional $\mathbb{R}_{>0}$ -ULTRAS with the usual \leq .
- An RMLTS (or continuous-time Markov decision process CTMDP) can be encoded as a functional $\mathbb{R}_{>0}$ -ULTRAS with the usual \leq .
- An NMLTS (which is a CTMDP with internal nondeterminism) can be encoded as an $\mathbb{R}_{>0}$ -ULTRAS with the usual \leq .

- A generative Markovian LTS is a triple (S, A, \longrightarrow) where:
 - -S is an at most countable set of states.
 - -A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times \mathbb{R}_{>0}\times S$ is a transition relation.
 - Whenever $s \xrightarrow{a,\lambda_1} s'$ and $s \xrightarrow{a,\lambda_2} s'$, then $\lambda_1 = \lambda_2$.
- Corresponding functional $\mathbb{R}_{\geq 0}$ -ULTRAS $\mathcal{U} = (S, A, \longrightarrow_{\mathcal{U}})$:
 - $-s \xrightarrow{a}_{\mathcal{U}} \Delta_{s,a}$ for all $s \in S$ and $a \in A$.

$$- \Delta_{s,a}(s') = \begin{cases} \lambda & \text{if } s \xrightarrow{a,\lambda} s' \\ 0 & \text{if } \nexists \lambda \in \mathbb{R}_{>0}. s \xrightarrow{a,\lambda} s' \end{cases} \text{ for all } s' \in S.$$

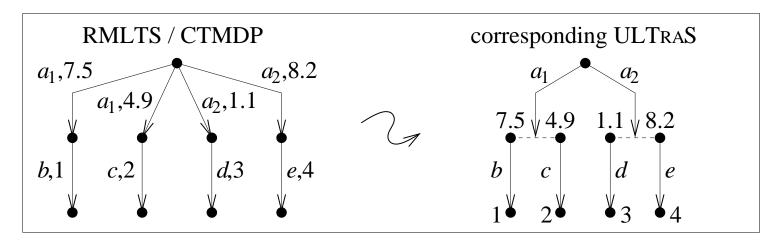
• External and internal rate-based probabilistic choices:



- A reactive Markovian LTS is a triple (S, A, \longrightarrow) where:
 - -S is an at most countable set of states.
 - -A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times \mathbb{R}_{>0}\times S$ is a transition relation.
 - Whenever $s \xrightarrow{a,\lambda_1} s'$ and $s \xrightarrow{a,\lambda_2} s'$, then $\lambda_1 = \lambda_2$.
- Corresponding functional $\mathbb{R}_{\geq 0}$ -ULTRAS $\mathcal{U} = (S, A, \longrightarrow_{\mathcal{U}})$:
 - $-s \xrightarrow{a}_{\mathcal{U}} \Delta_{s,a}$ for all $s \in S$ and $a \in A$.

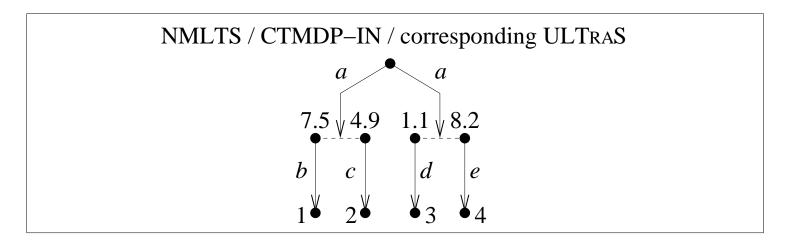
$$-\Delta_{s,a}(s') = \begin{cases} \lambda & \text{if } s \xrightarrow{a,\lambda} s' \\ 0 & \text{if } \nexists \lambda \in \mathbb{R}_{>0}. s \xrightarrow{a,\lambda} s' \end{cases} \text{ for all } s' \in S.$$

• External nondeterminism & internal rate-based probabilistic choices:



- A nondeterministic and Markovian LTS is a triple (S, A, \longrightarrow) where:
 - -S is an at most countable set of states.
 - -A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times [S\to\mathbb{R}_{\geq 0}]$ is a transition relation.
 - $-\sum_{s'\in S} \Delta(s') > 0 \text{ for all } s \xrightarrow{a} \Delta.$
- The corresponding $\mathbb{R}_{\geq 0}$ -ULTRAS is (S, A, \longrightarrow) itself.
- <u>Not functional</u> due to the coexistence of internal nondeterminism and rate-based probabilistic choices.

• Ext./int. nondeterminism & internal rate-based probabilistic choices:



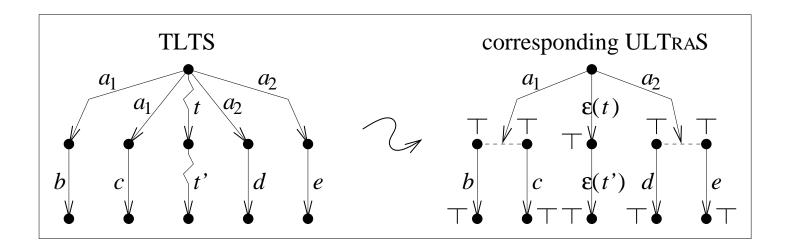
Encoding Timed Models as ULTRAS

- Timed automata (TA) are automata with clock variables that measure the passage of time within states, while transitions are instantaneous, may be subject to clock-based guards, and may reset some clocks.
- A TA/TLTS can be encoded as a functional \mathbb{B} -ULTRAS with $\bot \sqsubseteq_{\mathbb{B}} \top$.
- Probabilistic timed automata (PTA) are TA where the destination of every transition is a function associating with each state the probability of being the target state.
- A PTA/PTLTS can be encoded as an $\mathbb{R}_{[0,1]}$ -ULTRAS with the usual \leq .
- Markov automata (MA) retain the probabilistic flavor of transitions of PTA, while temporal aspects are described through exponentially distributed random variables rather than deterministic quantities.
- An MA can be encoded as an $\mathbb{R}_{[0,1]}$ -ULTRAS with the usual \leq .

- Due to the memoryless property of exponential distributions, clocks are not needed for MA.
- The presence of $\mathbb{R}_{\geq 0}$ -valued clocks causes the LTS-based semantics of TA/PTA to have uncountably many states, each corresponding to a pair formed by a vector of location states and a vector of clock values.
- Need to extend the definition of *D*-ULTRAS by allowing:
 - The set of states S to be possibly uncountable.
 - The set of transition-labeling actions A to be possibly uncountable.
 - The transition relation \longrightarrow to be $\subseteq S \times A \times [S \to D]_{cs}$.
- $[S \to D]_{cs}$ is the set of reachability distributions $\Delta : S \to D$ such that their support $supp(\Delta) = \{s \in S \mid \Delta(s) \neq \bot_D\}$ is at most countable.

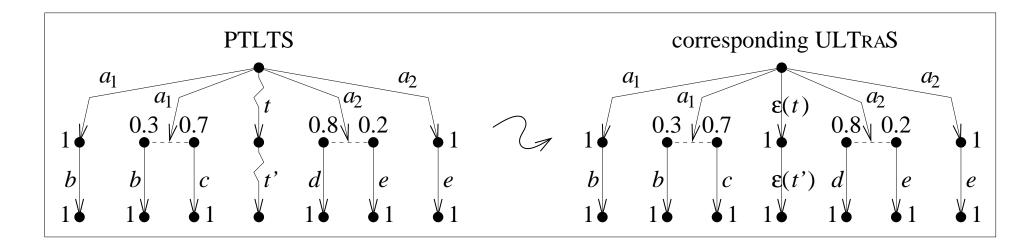
- A timed LTS (TLTS) is a quadruple $(S, A, \longrightarrow, \rightsquigarrow)$ where:
 - S is a possibly uncountable set of states.
 - A is a possibly uncountable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S\times A\times S$ is an action-transition relation such that the set $\{s'\in S\mid s\stackrel{a}{\longrightarrow} s'\}$ is at most countable for all $s\in S$ and $a\in A$.
 - $\longrightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is a time-transition relation satisfying:
 - * If $s \xrightarrow{0} s'$, then s' = s [zero delay].
 - * If $s \xrightarrow{t} s'_1$ and $s \xrightarrow{t} s'_2$, then $s'_1 = s'_2$ [time determinism].
 - $* s \xrightarrow{t_1+t_2} s'' \text{ iff } s \xrightarrow{t_1} s' \text{ and } s' \xrightarrow{t_2} s''$ [time additivity].

- We can merge the two transition relations into a single one by adding a special time-elapsing action $\epsilon(t)$ for every $t \in \mathbb{R}_{>0}$.
- A TLTS can be encoded as a functional B-ULTRAS:
 - External nondeterminism is preserved.
 - Internal nondeterminism is represented within the countable-support reachability distributions constituting the target of the transitions.
- Extends to TA.



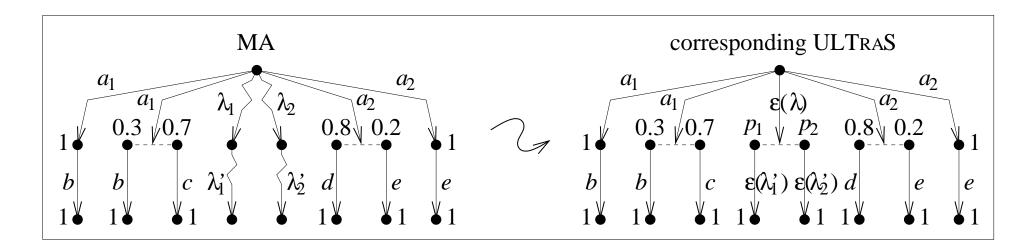
- A probabilistic timed LTS (PTLTS) is a quadruple $(S, A, \longrightarrow, \leadsto)$ where:
 - S is a possibly uncountable set of states.
 - A is a possibly uncountable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S \times A \times Distr_{cs}(S)$ is a probabilistic action-transition relation.
 - $\longrightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is a time-transition relation satisfying:
 - * If $s \xrightarrow{0} s'$, then s' = s [zero delay].
 - * If $s \xrightarrow{t} s'_1$ and $s \xrightarrow{t} s'_2$, then $s'_1 = s'_2$ [time determinism].
 - * $s \xrightarrow{t_1 + t_2} s''$ iff $s \xrightarrow{t_1} s'$ and $s' \xrightarrow{t_2} s''$ [time additivity].

- The target of any transition labeled with $\epsilon(t)$ is a Dirac distribution.
- A PTLTS can be encoded as an $\mathbb{R}_{[0,1]}$ -ULTRAS:
 - External nondeterminism is preserved as for TLTS.
 - Internal nondeterminism is preserved as well.
 - Not functional due to the coexistence of probability and internal nondeterminism.
- Extends to PTA.



- A Markov automaton (MA) is a quadruple $(S, A, \longrightarrow, -\infty)$ where:
 - S is an at most countable set of states.
 - A is a countable set of transition-labeling actions.
 - $-\longrightarrow \subseteq S \times A \times Distr(S)$ is a probabilistic action-transition relation.
 - $\longrightarrow \subseteq S \times \mathbb{R}_{\geq 0} \times S$ is a time-transition relation satisfying:
 - * If $s \xrightarrow{0} s'$, then s' = s [zero speed].
 - * $\sum_{(s,\lambda,s')\in \mathbb{Z}} \lambda < \infty$ for all $s \in S$ [speed boundedness].
- The execution probability of a time transition is proportional to its rate.
- Race policy: the time transition sampling the least duration is the one that is actually executed.
- The sojourn time in a state is exponentially distributed, with rate given by the sum of the rates of the outgoing time transitions.

- An MA can be encoded as an $\mathbb{R}_{[0,1]}$ -ULTRAS:
 - External/internal nondeterminism are preserved as for PTLTS.
 - The race policy is preserved by generating for each state a single transition labeled with $\epsilon(\lambda)$, where λ is the sum of the rates, with the target distribution assigning probabilities proportional to rates.
 - Not functional due to the coexistence of probability and internal nondeterminism.



ULTRAS as a Metamodel

- ULTRAS has the potential to provide:
 - A unifying mathematical theory for many models.
 - General results that can be readily instantiated.
 - A comparison and cross-fertilizing framework.
- More general than LTS models weighted over monoids [Klin, 2009].
- Akin to LTS models weighted over semirings.
- Formalizable as specific coalgebras [Miculan-Peressotti, 2014].

Behavioral Equivalences for the ULTRAS Model

- $(M, \sqsubseteq_M, \bot_M)$: preordered set equipped with a minimum denoted by \bot_M , with each value representing a degree of multi-step reachability.
- A measure function on $(M, \sqsubseteq_M, \bot_M)$ for $\mathcal{U} = (S, A, \longrightarrow)$, or M-measure function for \mathcal{U} , is a function $\mathcal{M}_M : S \times A^* \times 2^S \to M$ such that the value of $\mathcal{M}_M(s, \alpha, S')$ is defined by induction on $|\alpha|$ and depends only on the reachability of a state in S' from state s through computations labeled with trace α .
- A measure function somehow subsumes the existence of two operators:
 - A multiplicative operator \otimes that combines into an M-value the D-values corresponding to each individual step along a single computation labeled with trace α that goes from s to S'.
 - An additive operator \oplus that combines the M-values computed for each considered computation with the previous operator.

- D and M are not necessarily the same set.
- A D-value $\Delta(s')$ is related to one-step reachability.
- An M-value $\mathcal{M}_M(s,\alpha,S')$ is related to multi-step reachability.
- Testing equivalence for LTS models: the M-value will be a pair of \mathbb{B} -values $rather\ than\ a\ single\ \mathbb{B}$ -value to take into account the possibility and the necessity of reaching S' from s after α .
- Equivalences for NPLTS models: the M-value will be a nonemtpy set of $\mathbb{R}_{[0,1]}$ -values $rather\ than\ a\ single\ \mathbb{R}_{[0,1]}$ -value to take into account all possible ways of resolving internal nondeterminism.
- Equivalences for stochastic models: the M-value will be an $\mathbb{R}_{[0,1]}$ -valued function $rather\ than\ a\ single\ \mathbb{R}_{\geq 0}$ -value representing for each possible end-to-end/step-by-step deadline the probability (or set of probabilities) of reaching S' from s via α within the considered deadline.

- Let $\mathcal{U} = (S, A, \longrightarrow)$ be a *D*-ULTRAS.
- Let \mathcal{M}_M be an M-measure function for \mathcal{U} .
- Focus on strong equivalences: no abstraction from invisible actions.
- The simplest equivalence to define is trace equivalence.
- We say that $s_1, s_2 \in S$ are \mathcal{M}_M -trace equivalent, written $s_1 \sim_{\mathrm{Tr}, \mathcal{M}_M} s_2$, iff for all traces $\alpha \in A^*$:

$$\mathcal{M}_{M}(s_{1}, \alpha, S) = \mathcal{M}_{M}(s_{2}, \alpha, S)$$

• Using the entire S as set of destination states means that destination states are not important; what matters is the capability of executing α .

- The definition of bisimulation equivalence concentrates on traces of length 1 and does take into account destination states.
- An equivalence relation \mathcal{B} over S is an \mathcal{M}_M -bisimulation iff, whenever $(s_1, s_2) \in \mathcal{B}$, then for all actions $a \in A$ and groups of equivalence classes $\mathcal{G} \in 2^{S/\mathcal{B}}$:

$$\mathcal{M}_{M}(s_{1}, a, \bigcup \mathcal{G}) = \mathcal{M}_{M}(s_{2}, a, \bigcup \mathcal{G})$$

- Considering groups of equivalence classes, instead of single equivalence classes, is a useful generalization when dealing with:
 - continuous state spaces;
 - simulation preorders/equivalences.
- We say that $s_1, s_2 \in S$ are \mathcal{M}_M -bisimilar, written $s_1 \sim_{B, \mathcal{M}_M} s_2$, iff there exists an \mathcal{M}_M -bisimulation \mathcal{B} over S such that $(s_1, s_2) \in \mathcal{B}$.

- Testing equivalence requires some preliminary definitions.
- A *D*-observation system is a *D*-ULTRAS $\mathcal{O} = (O, A, \longrightarrow_{\mathcal{O}})$ where O contains a distinguished success state denoted by ω such that, whenever $\omega \xrightarrow{a} \Delta$, then $\Delta(o) = \bot_D$ for all $o \in O$.
- Need D-valued function δ for the interaction system $\mathcal{I}(\mathcal{U}, \mathcal{O})$ to combine the target distributions of the synchronizing transitions of \mathcal{U} and \mathcal{O} , which preserves \perp_D and is injective.
- States are configurations (s, o) that are successful when $o = \omega$: $S^{\delta}(\mathcal{U}, \mathcal{O})$.
- We say that $s_1, s_2 \in S$ are \mathcal{M}_M^{δ} -testing equivalent, written $s_1 \sim_{\mathrm{Te}, \mathcal{M}_M^{\delta}} s_2$, iff for every D-observation system $\mathcal{O} = (O, A, \longrightarrow_{\mathcal{O}})$ with initial state $o \in O$ and for all traces $\alpha \in A^*$:

$$\mathcal{M}_{M}^{\delta,\mathcal{O}}((s_{1},o),\alpha,\mathcal{S}^{\delta}(\mathcal{U},\mathcal{O})) = \mathcal{M}_{M}^{\delta,\mathcal{O}}((s_{2},o),\alpha,\mathcal{S}^{\delta}(\mathcal{U},\mathcal{O}))$$

Retrieving Existing Behavioral Equivalences

- Most of the bisimulation, trace, and testing equivalences appeared in the literature since the 1980's are captured by our general framework ...
- ... except when internal nondeterminism and probability/stochasticity coexist in the considered model.
- For NPLTS models, we have obtained equivalences different from those appeared in the literature, which possess interesting properties.
- For NMLTS models, there are no equivalences defined in the literature, hence we have provided them for the first time.

• Nondeterministic behavioral equivalences:

	$\sim_{\rm B} [{\rm Park}, 1981] [{\rm Milner}, 1984]$	$\sim_{\mathrm{B},\mathcal{M}_{\mathbb{B},ee}}$	
LTS	$\sim_{\mathrm{Tr}} [\mathrm{Brookes\text{-}Hoare\text{-}Roscoe}, 1984]$	$\sim_{\mathrm{Tr},\mathcal{M}_{\mathbb{B},ee}}$	functional \mathbb{B} -ULTRAS
	\sim_{Te} [De Nicola-Hennessy, 1984]	$\sim_{\mathrm{Te},\mathcal{M}^{\mathrm{LC}}_{\mathbb{B} imes\mathbb{B}}}$	

• Nondeterministic measure functions:

$$\mathcal{M}_{\mathbb{B},\vee}(s,\alpha,S') = \begin{cases} \bigvee_{s' \in S \text{ s.t. } \Delta_{s,a}(s') \neq \bot} \mathcal{M}_{\mathbb{B},\vee}(s',\alpha',S') & \alpha = a \circ \alpha' \\ \top;\bot & \alpha = \varepsilon, s \in S'? \end{cases}$$

$$\mathcal{M}_{\mathbb{B},\wedge}(s,\alpha,S') = \begin{cases} \bigwedge_{s' \in S \text{ s.t. } \Delta_{s,a}(s') \neq \bot} \mathcal{M}_{\mathbb{B},\wedge}(s',\alpha',S') & \alpha = a \circ \alpha' \\ \exists s' \in S \text{ s.t. } \Delta_{s,a}(s') \neq \bot} \\ \top;\bot & \alpha = \varepsilon, s \in S'? \end{cases}$$

$$\mathcal{M}_{\mathbb{B}\times\mathbb{B}}(s,\alpha,S') = (\mathcal{M}_{\mathbb{B},\vee}(s,\alpha,S'), \mathcal{M}_{\mathbb{B},\wedge}(s,\alpha,S'))$$

• Probabilistic behavioral equivalences:

	\sim_{PB}	$\sim_{\mathrm{B},\mathcal{M}_{\mathbb{R}_{[0,1]}}}$	functional $\mathbb{R}_{[0,1]}$ -ULTRAS
GPLTS	\sim_{PTr}	$\sim_{\mathrm{Tr},\mathcal{M}_{\mathbb{R}_{[0,1]}}}$	such that for all $s \in S$
	\sim_{PTe}	$\sim_{ ext{Te},\mathcal{M}^{ ext{NPM}}_{\mathbb{R}[0,1]}}$	$\sum_{a \in A} \sum_{s' \in S} \Delta_{s,a}(s') \in \{0,1\}$
RPLTS	$\sim_{\mathrm{PB}} [\mathrm{Larsen\text{-}Skou}, 1991]$	$\sim_{\mathrm{B},\mathcal{M}_{\mathbb{R}_{[0,1]}}}$	functional $\mathbb{R}_{[0,1]}$ -ULTRAS
	\sim_{PTr}	$ig \sim_{\mathrm{Tr},\mathcal{M}_{\mathbb{R}_{[0,1]}}}$	such that for all $s \in S$ and $a \in A$
	\sim_{PTe}	$\sim_{\mathrm{Te},\mathcal{M}^{\mathrm{PM}}_{\mathbb{R}_{[0,1]}}}$	$\sum_{s' \in S} \Delta_{s,a}(s') \in \{0,1\}$
NPLTS	$\sim_{\mathrm{PB,N}}$	$\sim_{\mathrm{B},\mathcal{M}_{2.}^{\mathbb{R}}[0,1]}$	$\mathbb{R}_{[0,1]} ext{-} ext{ULTRAS}$
	$\sim_{\mathrm{PTr,N}}$	$ig \sim_{\mathrm{Tr},\mathcal{M}_{2.}^{\mathbb{R}_{[0,1]}}}$	such that for all $s \xrightarrow{a} \Delta$
	$\sim_{\mathrm{PTe,N}}$	$\sim_{\mathrm{Te},\mathcal{M}^{\mathrm{PM}}_{2}}$	$\sum_{s' \in S} \Delta(s') = 1$

• Probabilistic measure functions:

$$\mathcal{M}_{\mathbb{R}_{[0,1]}}(s,\alpha,S') = \begin{cases} \sum_{s' \in S} \Delta_{s,a}(s') \cdot \mathcal{M}_{\mathbb{R}_{[0,1]}}(s',\alpha',S') & \alpha = a \circ \alpha' \\ 1;0 & \alpha = \varepsilon, s \in S'? \end{cases}$$

$$\mathcal{M}_{\mathbb{R}_{[0,1]}}(s,\alpha,S') = \begin{cases} \bigcup_{s' \in S} \sum_{a' \in S} \Delta(s') \cdot p_{s'} \mid p_{s'} \in \mathcal{M}_{\mathbb{R}_{[0,1]}}(s',\alpha',S') \} \\ s \xrightarrow{a} \Delta & \alpha = a \circ \alpha' \\ \{1\};\{0\} & \alpha = \varepsilon, s \in S'? \end{cases}$$

• Stochastic behavioral equivalences:

	\sim_{MB} [Hillston, 1996]	$\sim_{\mathrm{B},\mathcal{M}_{\mathrm{ete}}} \sim_{\mathrm{B},\mathcal{M}_{\mathrm{sbs}}}$	
GMLTS	$\sim_{ m MTr,ete} \sim_{ m MTr,sbs}$	$\sim_{\mathrm{Tr},\mathcal{M}_{\mathrm{ete}}}\sim_{\mathrm{Tr},\mathcal{M}_{\mathrm{sbs}}}$	functional $\mathbb{R}_{\geq 0}$ -ULTRAS
	$\sim_{ m MTe,ete} \sim_{ m MTe,sbs}$	$\sim_{ m Te}, \mathcal{M}_{ m ete}^{ m RM} \sim_{ m Te}, \mathcal{M}_{ m sbs}^{ m RM}$	
RMLTS	\sim_{MB}	$\sim_{\mathrm{B},\mathcal{M}_{\mathrm{ete,R}}} \sim_{\mathrm{B},\mathcal{M}_{\mathrm{sbs,R}}}$	
	$\sim_{\mathrm{MTr,ete,R}} \sim_{\mathrm{MTr,sbs,R}}$	$\sim_{\mathrm{Tr},\mathcal{M}_{\mathrm{ete,R}}} \sim_{\mathrm{Tr},\mathcal{M}_{\mathrm{sbs,R}}}$	functional $\mathbb{R}_{\geq 0}$ -ULTRAS
	$\sim_{\mathrm{MTe,ete,R}} \sim_{\mathrm{MTe,sbs,R}}$	$\sim_{ m Te}, \mathcal{M}_{ m ete,R}^{ m RM} \sim_{ m Te}, \mathcal{M}_{ m sbs,R}^{ m RM}$	
NMLTS	$\sim_{ m MB,N}$	$\sim_{\mathrm{B},\mathcal{M}_{\mathrm{ete},\mathrm{N}}}\sim_{\mathrm{B},\mathcal{M}_{\mathrm{sbs},\mathrm{N}}}$	$\mathbb{R}_{\geq 0}$ -ULTRAS such that
	$\sim_{\mathrm{MTr,ete,N}} \sim_{\mathrm{MTr,sbs,N}}$	$\sim_{\mathrm{Tr},\mathcal{M}_{\mathrm{ete},\mathrm{N}}} \sim_{\mathrm{Tr},\mathcal{M}_{\mathrm{sbs},\mathrm{N}}}$	for all $s \xrightarrow{a} \Delta$
	$\sim_{\mathrm{MTe,ete,N}} \sim_{\mathrm{MTe,sbs,N}}$	$\sim_{ m Te,\mathcal{M}_{ m ete,N}^{ m RM}} \sim_{ m Te,\mathcal{M}_{ m sbs,N}^{ m RM}}$	$\sum_{s' \in S} \Delta(s') > 0$

• Stochastic measure functions:

$$\mathcal{M}_{\text{ete},R}(s,\alpha,S')(t) = \begin{cases} \int\limits_{0}^{t} E_{\alpha}(s) \cdot e^{-E_{\alpha}(s) \cdot x} \cdot \sum_{s' \in S} \frac{\Delta_{s,a}(s')}{E_{\alpha}(s)} \cdot \mathcal{M}_{\text{ete},R}(s',\alpha',S')(t-x) \, \mathrm{d}x \\ & \alpha = a \circ \alpha', \, E_{a}(s) > 0 \\ 1;0 & \alpha = \varepsilon, \, s \in S'? \end{cases}$$

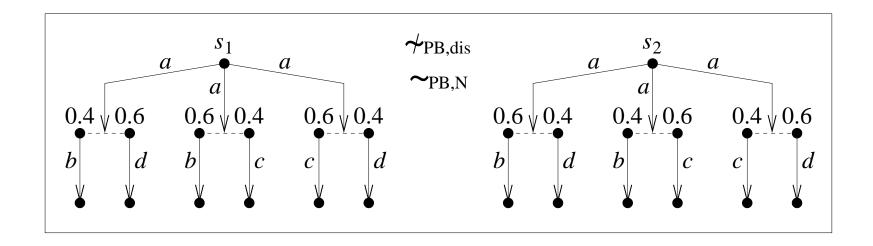
$$\mathcal{M}_{\text{sbs},R}(s,\alpha,S')(\theta) = \begin{cases} (1 - e^{-E_{\alpha}(s) \cdot t}) \cdot \sum_{s' \in S} \frac{\Delta_{s,a}(s')}{E_{\alpha}(s)} \cdot \mathcal{M}_{\text{sbs},R}(s',\alpha',S')(\theta') \\ & \alpha = a \circ \alpha', \, \theta = t \circ \theta', \, E_{a}(s) > 0 \\ 1;0 & \alpha = \varepsilon, \, s \in S'? \end{cases}$$

$$\mathcal{M}_{\text{ete},N}(s,\alpha,S')(t) = \begin{cases} \int\limits_{s}^{t} \Delta(S) \cdot e^{-\Delta(S) \cdot x} \cdot \sum_{s' \in S} \frac{\Delta(s')}{\Delta(S)} \cdot p_{s'} \, \mathrm{d}x \mid \\ p_{s'} \in \mathcal{M}_{\text{ete},N}(s',\alpha',S')(t-x) \} & \alpha = a \circ \alpha' \\ \{1\}; \{0\} & \alpha = \varepsilon, \, s \in S'? \end{cases}$$

$$\mathcal{M}_{\text{sbs},N}(s,\alpha,S')(\theta) = \begin{cases} \int\limits_{s}^{t} \{(1 - e^{-\Delta(S) \cdot t}) \cdot \sum_{s' \in S} \frac{\Delta(s')}{\Delta(S)} \cdot p_{s'} \mid \\ s \xrightarrow{a \to \Delta} \\ p_{s'} \in \mathcal{M}_{\text{sbs},N}(s',\alpha',S')(\theta') \} & \alpha = a \circ \alpha', \, \theta = t \circ \theta' \\ \{1\}; \{0\} & \alpha = \varepsilon, \, s \in S'? \end{cases}$$

New Behavioral Equivalences for NPLTS Models

- Bisimilarity $\sim_{PB,dis}$ introduced in [Segala-Lynch, 1994].
- An equivalence relation \mathcal{B} over S is a probabilistic group-distribution bisimulation iff, whenever $(s_1, s_2) \in \mathcal{B}$, then for each $s_1 \xrightarrow{a} \Delta_1$ there exists $s_2 \xrightarrow{a} \Delta_2$ such that for all $\mathcal{G} \in 2^{S/\mathcal{B}}$ it holds that $\Delta_1(\bigcup \mathcal{G}) = \Delta_2(\bigcup \mathcal{G})$.
- Very discriminating, not characterized by PML/PCTL.
- Coarsest congruence contained in our $\sim_{PB,N}$, characterized by PML!
- Obtained by simply anticipating the quantification over \mathcal{G} .
- An equivalence relation \mathcal{B} over S is a probabilistic bisimulation iff, whenever $(s_1, s_2) \in \mathcal{B}$, then for all $\mathcal{G} \in 2^{S/\mathcal{B}}$ it holds that for each $s_1 \xrightarrow{a} \Delta_1$ there exists $s_2 \xrightarrow{a} \Delta_2$ such that $\Delta_1(\bigcup \mathcal{G}) = \Delta_2(\bigcup \mathcal{G})$.



- Trace equivalence $\sim_{\text{PTr,dis}}$ introduced in [Segala, 1995].
- $s_1 \sim_{\text{PTr,dis}} s_2$ iff for each $\mathcal{Z}_1 \in Res(s_1)$ there exists $\mathcal{Z}_2 \in Res(s_2)$ such that for all $\alpha \in A^*$:

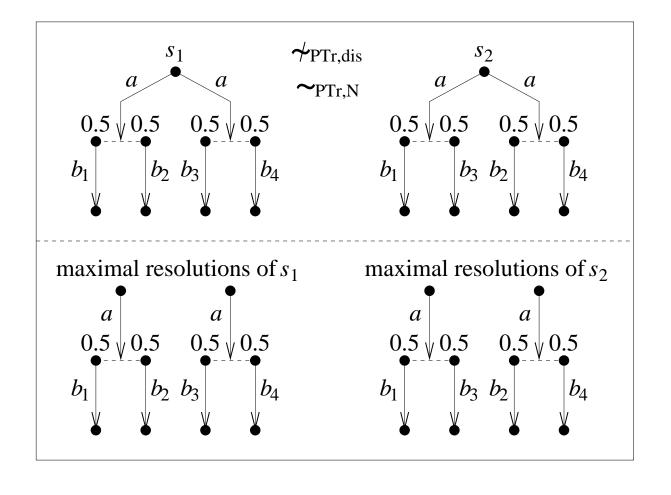
$$prob(\mathcal{CC}(z_{s_1}, \alpha)) = prob(\mathcal{CC}(z_{s_2}, \alpha))$$

and symmetrically for each $\mathcal{Z}_2 \in Res(s_2)$.

- Very discriminating, not a congruence w.r.t. parallel composition.
- Our trace equivalence $\sim_{PTr,N}$ is coarser and compositional!
- Obtained by simply anticipating the quantification over α .
- $s_1 \sim_{\text{PTr,N}} s_2$ iff for all $\alpha \in A^*$ it holds that for each $\mathcal{Z}_1 \in Res(s_1)$ there exists $\mathcal{Z}_2 \in Res(s_2)$ such that:

$$prob(\mathcal{CC}(z_{s_1}, \alpha)) = prob(\mathcal{CC}(z_{s_2}, \alpha))$$

and symmetrically for each $\mathcal{Z}_2 \in Res(s_2)$.



- Testing equivalence ~_{PTe-⊔□} of [Yi-Larsen, 1992; Jonsson-Yi, 1995] then revisited in [Segala, 1996; Deng-Van Glabbeek-Hennessy-Morgan, 2008].
- $s_1 \sim_{\text{PTe-} \sqcup \sqcap} s_2$ iff for every $\mathcal{T} = (O, A, \longrightarrow_{\mathcal{T}})$ with initial state $o \in O$:

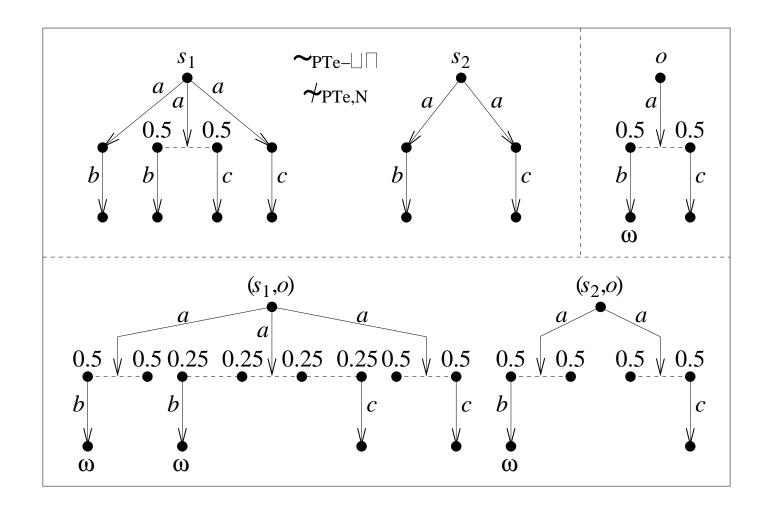
$$\bigsqcup_{\mathcal{Z}_1 \in Res_{\max}(s_1, o)} prob(\mathcal{SC}(z_{s_1, o})) = \bigsqcup_{\mathcal{Z}_2 \in Res_{\max}(s_2, o)} prob(\mathcal{SC}(z_{s_2, o}))$$

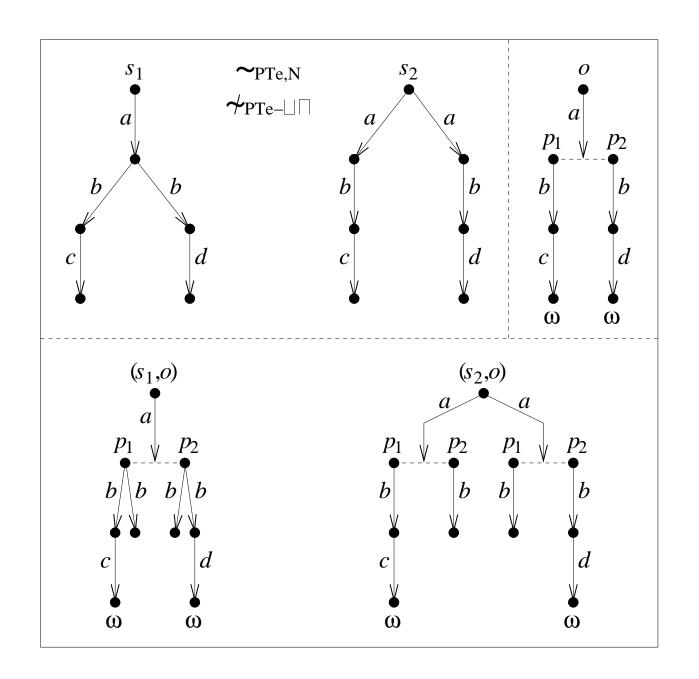
$$\prod_{\mathcal{Z}_1 \in Res_{\max}(s_1, o)} prob(\mathcal{SC}(z_{s_1, o})) = \prod_{\mathcal{Z}_2 \in Res_{\max}(s_2, o)} prob(\mathcal{SC}(z_{s_2, o}))$$

- Very discriminating, not fully compatible with the classical one.
- Our testing equiv. $\sim_{PTe,N}$ is fully compatible with the classical one!
- Considering success probabilities in a trace-by-trace fashion.
- $s_1 \sim_{\text{PTe,N}} s_2$ iff for every $\mathcal{T} = (O, A, \longrightarrow_{\mathcal{T}})$ with initial state $o \in O$ and for all $\alpha \in A^*$ it holds that for each $\mathcal{Z}_1 \in Res_{\max,\mathcal{C},\alpha}(s_1,o)$ there exists $\mathcal{Z}_2 \in Res_{\max,\mathcal{C},\alpha}(s_2,o)$ such that:

$$prob(\mathcal{SCC}(z_{s_1,o},\alpha)) = prob(\mathcal{SCC}(z_{s_2,o},\alpha))$$

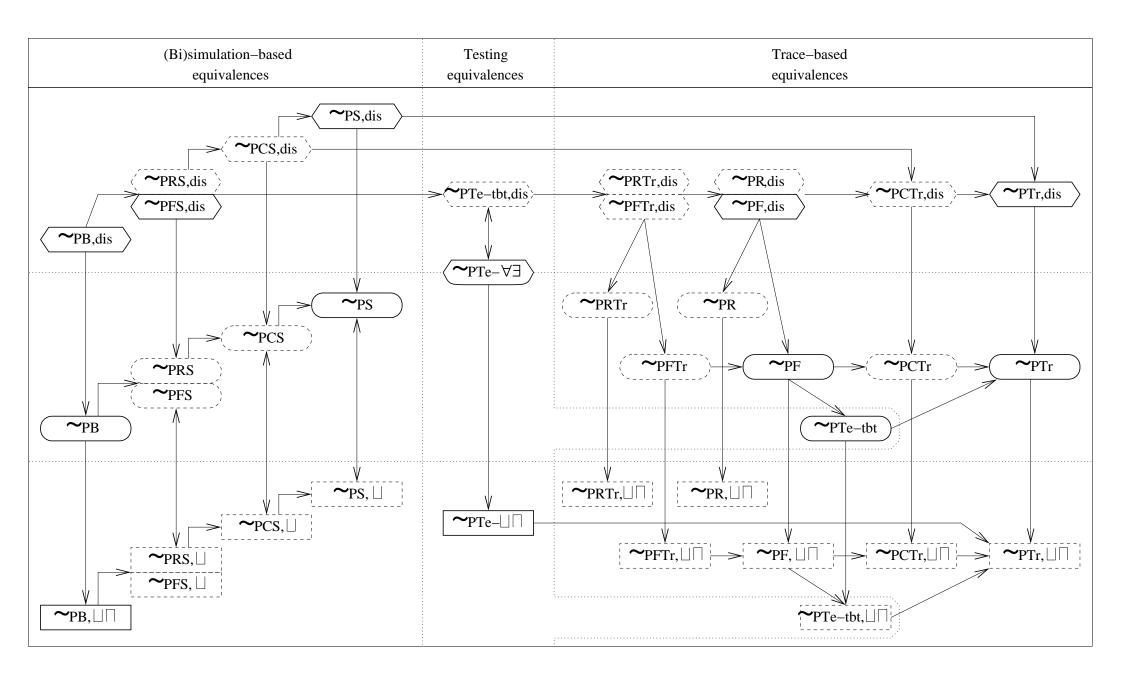
and symmetrically for each $\mathcal{Z}_2 \in Res_{\max,\mathcal{C},\alpha}(s_2,o)$.

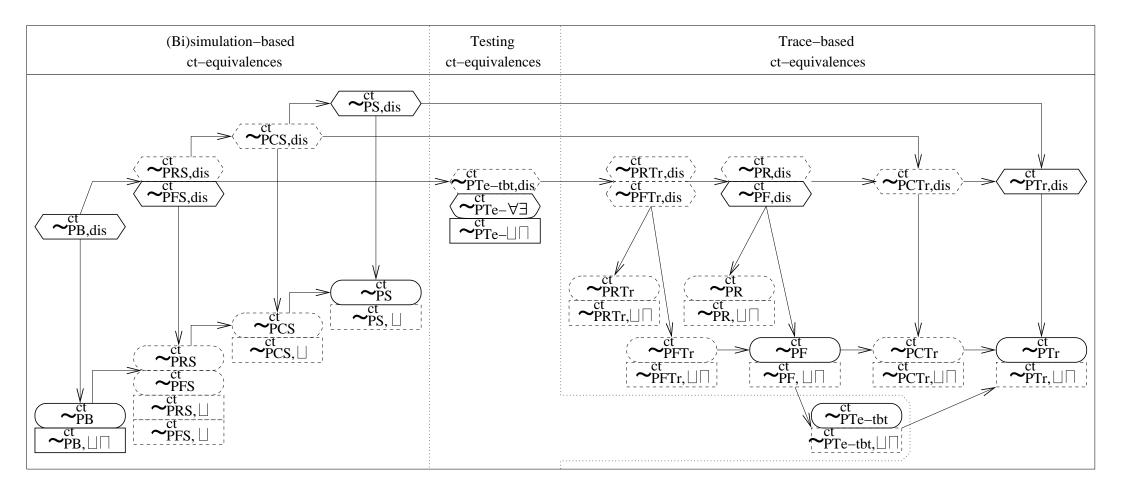




Spectrum of NPLTS Behavioral Equivalences

- Spectrum of LTS behavioral equivalences in [Van Glabbeek, 1990] and of GPLTS behavioral equivalences in [Jou-Smolka, 1990]: one fragment.
- Three different fragments in the spectrum for NPLTS models:
 - $-\sim_{\mathrm{PB,dis}}$ and $\sim_{\mathrm{PTr,dis}}$ require fully matching resolutions: for every trace, the probability of performing that trace must be the same in both resolutions, which thus possess the same trace distribution.
 - $-\sim_{PB} (\sim_{PB,N})$ and $\sim_{PTr} (\sim_{PTr,N})$ use partially matching resolutions: a resolution on one side is allowed to be matched by different resolutions on the other side with respect to different traces.
 - $-\sim_{\text{PTe-}} \square$ considers only extremal probabilities over all resolutions.
- Deterministic schedulers vs. randomized schedulers.





Future Work

- Defining an ULTRAS-based operational semantics of process calculi of nondeterministic, probabilistic, stochastic, timed, or mixed nature, for investigating their relative expressiveness.
- Studying a generic process algebra together with uniform results for congruence properties & equational/logical characterizations, as well as uniform algorithms for equivalence checking and model checking.
- Providing uniform definitions of weak behavioral equivalences.
- Extension of ULTRAS with transitions of the form $\Delta \xrightarrow{a} \Delta'$:
 - State distributions describing alternatives among global states: Kleisli lifting of state-to-state-distribution reachability relations.
 - State distributions describing combinations of local states:
 Petri nets as N-ULTRAS models in which states are Petri net places and transitions are Petri net transitions.